[en] There is a great need for objective external training load prescription and performance capacity evaluation in equestrian disciplines. Therefore, reliable standardised exercise tests (SETs) are needed. Classic SETs require maximum intensities with associated risks to deduce training loads from pre-described cut-off values. The lactate minimum speed (LMS) test could be a valuable alternative. Our aim was to compare new performance parameters of a modified LMS-test with those of an incremental SET, to assess the effect of training on LMS-test parameters and curve-shape, and to identify the optimal mathematical approach for LMS-curve parameters. Six untrained standardbred mares (3-4 years) performed a SET and LMS-test at the start and end of the 8-week harness training. The SET-protocol contains 5 increments (4 km/h; 3 min/step). The LMS-test started with a 3-min trot at 36-40 km/h [until blood lactate (BL) > 5 mmol/L] followed by 8 incremental steps (2 km/h; 3 min/step). The maximum lactate steady state estimation (MLSS) entailed >10 km run at the LMS and 110% LMS. The GPS, heartrate (Polar®), and blood lactate (BL) were monitored and plotted. Curve-parameters (R core team, 3.6.0) were (SET) VLa1.5/2/4 and (LMS-test) area under the curve (AUC>/<LMS), LMS and Aerobic Window (AW) via angular vs. threshold method. Statistics for comparison: a paired t-test was applied, except for LMS: paired Wilcoxon test; (p < 0.05). The Pearson correlation (r > 0.80), Bland-Altman method, and ordinary least products (OLP) regression analyses were determined for test-correlation and concordance. Training induced a significant increase in VLa1.5/2/4. The width of the AW increased significantly while the AUC</>LMS and LMS decreased post-training (flattening U-curve). The LMS BL steady-state is reached earlier and maintained longer after training. BLmax was significantly lower for LMS vs. SET. The 40° angular method is the optimal approach. The correlation between LMS and VMLSS was significantly better compared to the SET. The VLa4 is unreliable for equine aerobic capacity assessment. The LMS-test allows more reliable individual performance capacity assessment at lower speed and BL compared to SETs. The LMS-test protocol can be further adapted, especially post-training; however, inducing modest hyperlactatemia prior to the incremental LMS-stages and omitting inclusion of a per-test recovery contributes to its robustness. This LMS-test is a promising tool for the development of tailored training programmes based on the AW, respecting animal welfare.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
De Maré, Lorie ✱; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée ; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
Boshuizen, Berit ✱; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium ; Equine Hospital Wolvega, Oldeholtpade, Netherlands
Vidal Moreno de Vega, Carmen; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
de Meeûs, Constance; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
Plancke, Lukas; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
Gansemans, Yannick; Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
Van Nieuwerburgh, Filip; Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
Deforce, Dieter; Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
de Oliveira, Jean Eduardo; Cargill, Research and Development Centre Europe, Vilvoorde, Belgium
Hosotani, Guilherme; Cargill, Research and Development Centre Europe, Vilvoorde, Belgium
Oosterlinck, Maarten; Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
Delesalle, Catherine; Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Profiling the Aerobic Window of Horses in Response to Training by Means of a Modified Lactate Minimum Speed Test: Flatten the Curve.
Allen K. J. van Erck-Westergren E. Franklin S. H. (2016). Exercise testing in the equine athlete. Equine Vet. Educ. 28 89–98. 10.1111/eve.12410
Alves J. Santos A. Brites P. Ferreira-Dias G. (2012). Evaluation of physical fitness in police dogs using an incremental exercise test. Comp. Exerc. Physiol. 8 219–226. 10.3920/CEP12027 29510743
Arratibel-Imaz I. Calleja-González J. Emparanza J. I. Terrados N. Mjaanes J. M. Ostojic S. M. (2016). Lack of concordance amongst measurements of individual anaerobic threshold and maximal lactate steady state on a cycle ergometer. Phys. Sportsmed. 44 34–45. 10.1080/00913847.2016.1122501 26578151
Arratibel-Lmaz I. Calleja-González J. Terrados N. (2017). Validity of blood lactate measurements between the two LactatePro versions. Arch. Med. Del. Deport. 34 86–91.
Aunola S. Rusko H. (1992). Does anaerobic threshold correlate with maximal lactate steady-state? J. Sports Sci. 10 309–323. 10.1080/02640419208729931 1387688
Bacon L. (1999). Evaluating a test protocol for predicting maximum lactate steady state. J. Sport Med. Phys. Fit. 39 300–308.
Beneke R. (1995). Anaerobic threshold, individuale anaerobic threshold, and maximal lactate steady state in rowing. Med. Sci. Sports Exerc. 27 863–867.
Betros C. L. McKeever K. H. Kearns C. F. Malinowski K. (2002). Effects of ageing and training on maximal heart rate and VO2max. Equine Vet. J. Suppl. 34 100–105. 10.1111/j.2042-3306.2002.tb05399.x 12405667
Bourgela M. Blais D. M. M. (1991). Reproducibility and validity of VLA4 in Standardbred Pacer Horses on track. Equine Exerc. Physiol. 3 196–201.
Broeckx S. Y. Martens A. M. Bertone A. L. Van Brantegem L. Duchateau L. Van Hecke L. (2019). The use of equine chondrogenic-induced mesenchymal stem cells as a treatment for osteoarthritis: as randomised, double-blinded, placebo-controlled proof-of-concept study. Equine Vet. J. 51 787–794. 10.1111/evj.13089 30815897
Brooks G. A. (2020). Lactate as a fulcrum of metabolism. Redox Biol. 35:101454. 10.1016/j.redox.2020.101454 32113910
Campos E. Z. Nordsborg N. B. Da Silva A. S. R. Zagatto A. M. Neto J. G. Andrade V. L. et al. (2014). The response of the lactate minimum test to a 12-week swimming training. Motriz Rev. Educ. Fis. 20 286–291. 10.1590/S1980-65742014000300007
Carter H. Jones A. M. Doust J. H. (1999). Effect of 6 weeks of endurance training on the lactate minimum speed. J. Sports Sci. 17 957–967. 10.1080/026404199365353 10622356
Clemente Suárez V. J. González-Ravé J. M. (2014). Four weeks of training with different aerobic workload distributions - Effect on aerobic performance. Eur. J. Sport Sci. 14(Suppl.1), 1–7. 10.1080/17461391.2011.635708 24444193
Courouce A. (1999). Field exercise testing for assessing fitness in French standardbred Trotters. Vet. J. 157 112–122. 10.1053/tvjl.1998.0302 10204407
Crotty N. M. Boland M. Mahony N. Donne B. Fleming N. (2021). Reliability and Validity of the Lactate Pro 2 Analyzer. Meas. Phys. Educ. Exerc. Sci. 25 202–211. 10.1080/1091367X.2020.1865966
Cunha R. R. Najara V. Cunha D. C. Moreira S. R. Kokubun E. Campbell C. S. et al. (2009). Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats. Cell Biochem. Funct. 27 351–357. 10.1002/cbf
Davie A. L. Evans D. J. (2000). Blood Lactate Responses to Submaximal Field Exercise Tests in Thoroughbred Horses. Vet. J. 159 252–258. 10.1053/tvjl.1999.0420 10775469
De Mare L. Boshuizen B. Plancke L. De Meeus C. De Bruijn M. Delesalle C. (2017). Standardized exercise tests in horses: Current situation and future perspectives. Vlaams Diergeneeskd Tijdschr. 86 63–72. 10.21825/vdt.v86i2.16290
Donovan C. M. Brooks G. A. (1983). Endurance training affects lactate clearance, not lactate production. Am. J. Physiol. Endocrinol. Metab. 7 83–92. 10.1152/ajpendo.1983.244.1.e83 6401405
Dubreucq C. Chatard J. C. Courouce A. Auvinet B. (1995). Reproducibility of a standardised exercise test for Standardbred trotters under field conditions. Equine Vet. J. 27 108–112. 10.1111/j.2042-3306.1995.tb04900.x
Dyson S. (2000). Lameness and Poor Performance in the Sports Horse: Dressage, Show Jumping and Horse Trials (Eventing). 2000 AAEP Conv. Proc. 46 308–315.
Evans D. L. Harris R. C. Snow D. H. (1993). Correlation of racing performance with blood lactate and heart rate after exercise in Thoroughbred horses. Equine Vet. J. 25 441–445. 10.1111/j.2042-3306.1993.tb02987.x 8223377
Ferasin L. Marcora S. (2009). Reliability of an incremental exercise test to evaluate acute blood lactate, heart rate and body temperature responses in Labrador retrievers. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 179 839–845. 10.1007/s00360-009-0367-z 19455341
Foxdal P. Sjödin A. Sjödin B. (1996). Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise. Int. J. Sports Med. 17 360–365. 10.1055/s-2007-972861 8858408
Gondim F. J. Zoppi C. C. Pereira-da-Silva L. de Macedo D. V. (2007). Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146 375–380. 10.1016/j.cbpa.2006.11.002 17234441
Gramkow H. L. Evans D. L. (2006). Correlation of race earnings with velocity at maximal heart rate during a field exercise test in Thoroughbred racehorses. Equine Vet. J. 38(Suppl.36), 118–122. 10.1111/j.2042-3306.2006.tb05526.x 17402405
Hamlin M. J. Shearman J. P. Hopkins W. G. (2002). Changes in physiological parameters in overtrained Standardbred racehorses. Equine Vet. J. 34 383–388. 10.2746/042516402776249146 12117111
Hauser T. Adam J. Schulz H. (2014). Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int. J. Sports Med. 35 517–521. 10.1055/s-0033-1353176 24227122
Heck H. Mader A. Hess G. Mucke S. Muller R. Hoflmann W. (1985). Justification of the 4 mmol/L lactate threshold. Int. J. Sport Med. 6 117–130. 10.1055/s-2008-1025824 4030186
Impellizzeri F. M. Marcora S. M. Coutts A. J. (2019). Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 14 270–273. 10.1123/ijspp.2018-0935 30614348
Jacobs I. Kaiser P. (1982). Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man. Acta Physiol. Scand. 114 461–466. 10.1111/j.1748-1716.1982.tb07010.x 7136776
Janeba M. Yaeger D. White R. Stavrianeas S. (2010). The dmax method does not produce a valid estimate of the lactate threshold. J. Exerc. Physiol. Online 13 50–57.
Knoepfli-Lenzin C. U. B. (2011). Lactate minimum is valid to estimate maximal lactate steady state in moderately and highly trained subjects. Strength Cond. 25 1355–1359. 10.1519/JSC.0b013e3181d6dbf4 21522075
Kohrt W. M. O’Connor J. S. S. J. S. (1987). Longitudinal assessment of responses by triathletes to swimming, cycling, and running. Med. Sci. Sports Exerc. 21 569–575.
Leleu C. Cotrel C. Courouce-Malblanc A. (2005). Relationships between physiological variables and race performance in French standardbred trotters. Vet. Rec. 156 339–342. 10.1136/vr.156.11.339 15789646
Lillo-Bevia J. R. Moran-Navarro R. Martinez-Cava A. Cerezuela V. Pallares J. G. A. (2018). 1-day maximal lactate steady-state assessment protocol for trained cyclists. J. Sci. Cycl. 7 9–16. 10.28985/180630.jsc.03
Lindner A. E. (2010b). Relationships between racing times of standardbreds and v4 and v200. J Anim Sci. 88 950–954. 10.2527/jas.2009-2241 19933440
Lindner A. E. (2010a). Maximal lactate steady state during exercise in blood of horses. J. Anim. Sci. 88 2038–2044. 10.2527/jas.2009-2693 20190168
Ludbrook J. (2002). Statistical techniques for comparing measurers and methods of measurement: a critical review. Clin. Exp. Pharmacol. Physiol. 29 527–536. 10.1046/j.1440-1681.2002.03686.x 12060093
MacIntosh B. R. Shane E. S. K. (2002). The Lactate Minimum Test for Cycling: estimation of the Maximal Lactate Steady State. Can. J. Appl. Physiol. 27 232–249. 10.1139/h02-014 12180316
Manzo A. Ootaki Y. Ootaki C. Kamohara K. Fukamachi K. (2009). Paper Comparative study of heart rate variability between healthy human subjects and healthy dogs, rabbits and calves. Lab. Anim. 43 41–45. 10.1258/la.2007.007085 19001066
Messias L. H. D. Gobatto C. A. Beck W. R. Manchado-Gobatto F. B. (2017). The lactate minimum test: Concept, methodological aspects and insights for future investigations in human and animal models. Front. Physiol. 8:389. 10.3389/fphys.2017.00389 28642717
Miranda M. C. P. C. Queiroz-Neto A. Silva-Júnior J. R. Pereira M. C. (2014). Comparison of the lactate minimum speed and the maximal lactate steady state to determine aerobic capacity in purebred Arabian horses. N Z Vet. J. 62 15–20. 10.1080/00480169.2013.815103 23869425
Miyagi W. E. Leite J. V. M. Zagatto A. M. (2013). Influence of the selection from incremental stages on lactate minimum intensity; a pilot study. Braz J. K. Hum. Perf. 15 715–725.
Palmer A. S. Potteiger J. A. Nau K. L. Tong R. J. (1999). A 1-day maximal lactate steady-state assessment protocol for trained runners. Med. Sci. Sports Exerc. 31 1336–1341. 10.1097/00005768-199909000-00016 10487377
Peyré-Tartaruga L. A. Coertjens M. (2018). Locomotion as a powerful model to study integrative physiology: Efficiency, economy, and power relationship. Front. Physiol. 9 1–16. 10.3389/fphys.2018.01789 30618802
Płoszczyca K. Jazic D. Piotrowicz Z. Chalimoniuk M. Langfort J. Czuba M. (2020). Comparison of maximal lactate steady state with anaerobic threshold determined by various methods based on graded exercise test with 3-minute stages in elite cyclists. BMC Sports Sci. Med. Rehabil. 12 1–9. 10.1186/s13102-020-00219-3 33292555
Poole D. C. Erickson H. H. (2008). Cardiovascular Function and Oxygen Transport: Responses to Exercise and Training. First Edit. Amsterdam: Elsevier Ltd, 10.1016/B978-070202857-1.50012-3
Restan A. Z. Cerqueira J. A. (2019). Lactate and glucose thresholds and heart rate deflection points for Beagles during INTENSE exercise. Am. J. Vet. Res. 80:3. 10.2460/ajvr.80.3.284 30801212
Ribeiro L. Balikian P. Malachias P. B. V. (2003). Stage Length, spline function and lactate minimum swimming speed. J. Sport Med. Phys. Fit. 43 312–318.
Ribeiro L. F. P. Gonçalves C. G. S. Kater D. P. Lima M. C. S. Gobatto C. A. (2009). Influence of recovery manipulation after hyperlactemia induction on the lactate minimum intensity. Eur. J. Appl. Physiol. 105 159–165. 10.1007/s00421-008-0885-5 18853175
Rodrigues N. A. Torsoni A. S. Fante T. Reis I. G. M. (2016). Claudio Alexandre Manchado-Gobatto FB. Lactate minimum underestimates the maximal lactate steady-state in swimming mice. Appl. Physiol. Nutr. Metab. 42 1–25. 10.1139/apnm-2016-0198 28006434
Rogers B. Giles D. Draper N. Hoos O. Gronwald T. (2021). A New Detection Method Defining the Aerobic Threshold for Endurance Exercise and Training Prescription Based on Fractal Correlation Properties of Heart Rate Variability. Front. Physiol. 11:596567. 10.3389/fphys.2020.596567 33519504
Santos L. Gonzalez V. Iscar M. Brime J. I. Fernandez-Rio J. Egocheaga J. et al. (2010). A new individual and specific test to determine the aerobic–anaerobic transition zone (santos test) in competitive judokas. J. Cond. Res. 24 2419–2428. 10.1519/JSC.0b013e3181e34774 20802284
Serrano M. G. Evans D. L. Hodgson J. L. (2002). Heart rate and blood lactate responses during exercise in preparation for eventing competition. Equine Vet. J. Suppl. 34 135–139. 10.1111/j.2042-3306.2002.tb05406.x 12405674
Siahkouhian M. Azizan S. Roohi B. N. A. (2012). new approach for the determination of anaerobic threshold: Methodological survey on the modified Dmax method. J. Hum. Sport Exerc. 7 599–607. 10.4100/jhse.2012.72.23
Simões H. G. Hiyane W. C. Sotero R. C. Pardono E. Puga G. M. L. (2009). Polynomial modeling for the identification of lactate minimum velocity by different methods. J. Sport Med. Phys. Fit. 49 14–18.
Singer E. R. Barnes J. Saxby F. Murray J. K. (2008). Injuries in the event horse: Training versus competition. Vet. J. 175 76–81.
Smith M. F. Balmer J. Coleman D. A. Bird S. R. Davison R. C. R. (2002). Method of lactate elevation does not affect the determination of the lactate minimum. Med. Sci. Sports Exerc. 34 1744–1749. 10.1097/00005768-200211000-00009 12439078
Soares O. A. B. Ferraz G. C. Martins C. B. Dias D. P. M. Lacerda-Neto J. C. Queiroz-Neto A. (2014). Comparison of maximal lactate steady state with V2, V4, individual anaerobic threshold and lactate minimum speed in horses. Arq. Bras. Med. Vet. e Zootec. 66 39–46. 10.1590/S0102-09352014000100007
Sotero R. C. Cunha V. N. C. Madrid B. Sales M. M. Moreira S. R. (2011). Lactate minimum identification in youth runners through a track test of three incremental stages. Rev. Bras. Med. Esporte. 17 119–122.
Sotero R. C. Pardono E. Landwehr R. Campbell C. S. G. Simoes H. G. (2009). Blood glucose minimum predicts maximal lactate steady state on running. Int. J. Sports Med. 30 643–646. 10.1055/s-0029-1220729 19569005
Svedahl K. MacIntosh B. R. (2003). Anaerobic threshold: The concept and methods of measurement. Can. J. Appl. Physiol. 28 299–323. 10.1139/h03-023 12825337
Swensen T. C. Harnish C. R. Beitman L. Keller B. A. (1999). Noninvasive estimation of the maximal lactate steady state in trained cyclists. Med. Sci. Sports Exerc. 31 742–746. 10.1097/00005768-199905000-00019 10331897
Tegtbur U. Busse M. W. Braumann K. M. (1993). Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med. Sci. Sports Exerc. 25 620–627. 10.1249/00005768-199305000-00015 30958151
Urhausen A. Coen B. Weiler B. Kindermann W. (1993). Individual anaerobic threshold and maximum lactate steady state. Int. J. Sports Med. 14 134–139. 10.1055/s-2007-1021157 8509241
van Erck E. Votion D.-M. Serteyn D. Art T. (2007). Evaluation of oxygen consumption during field exercise tests in Standardbred trotters. Equine Comp. Exerc. Physiol. 4 43–49. 10.1017/s1478061507776466
von Haaren B. Haertel S. Stumpp J. Hey S. Ebner-Priemer U. (2015). Reduced emotional stress reactivity to a real-life academic examination stressor in students participating in a 20-week aerobic exercise training: a randomised controlled trial using Ambulatory Assessment. Psychol. Sport Exerc. 20 67–75. 10.1016/j.psychsport.2015.04.004
Wahl P. Zwingmann L. Manunzio C. Wolf J. Bloch W. (2018). Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running. Int. J. Sports Med. 39 541–548. 10.1055/s-0044-102131 29775989
Wyon M. Redding E. (2003). Strengths and Weaknesses of Current Methods for Evaluating the Aerobic Power of Dancers. J. Danc. Med. Sci. 7 10–16.
Zagatto A. M. Padulo J. Müller P. T. G. Miyagi W. E. Malta E. S. Papoti M. (2014). Hyperlactemia induction modes affect the lactate minimum power and physiological responses in cycling. J. Strength Cond. Res. 28 2927–2934. 10.1519/JSC.0000000000000490 24736777
Zhou S. Weston S. B. (1997). Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol. Meas. 18 145–154. 10.1088/0967-3334/18/2/005
Zwingmann L. Strütt S. Martin A. Volmary P. Bloch W. Wahl P. (2019). Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes. Phys. Sportsmed. 47 174–181. 10.1080/00913847.2018.1546103 30408426