[en] Biodiversity loss, as driven by anthropogenic global change, imperils biosphere intactness and integrity. Ecosystem services such as top-down regulation (or biological control; BC) are susceptible to loss of extinction-prone taxa at upper trophic levels and secondary 'support' species e.g., herbivores. Here, drawing upon curated open-access interaction data, we structurally analyze trophic networks centered on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and assess their robustness to species loss. Tri-partite networks link 80 BC organisms (invertebrate or microbial), 512 lepidopteran hosts and 1194 plants (including 147 cultivated crops) in the Neotropics. These comprise threatened herbaceous or woody plants and conservation flagships such as saturniid moths. Treating all interaction partners functionally equivalent, random herbivore loss exerts a respective 26 % or 108 % higher impact on top-down regulation in crop and non-crop settings than that of BC organisms (at 50 % loss). Equally, random loss of BC organisms affects herbivore regulation to a greater extent (13.8 % at 50 % loss) than herbivore loss mediates their preservation (11.4 %). Yet, under moderate biodiversity loss, (non-pest) herbivores prove highly susceptible to loss of BC organisms. Our topological approach spotlights how agriculturally-subsidized BC agents benefit vegetation restoration, while non-pest herbivores uphold biological control in on- and off-farm settings alike. Our work underlines how the on-farm usage of endemic biological control organisms can advance conservation, restoration, and agricultural sustainability imperatives. We discuss how integrative approaches and close interdisciplinary cooperation can spawn desirable outcomes for science, policy and practice.
Disciplines :
Entomology & pest control
Author, co-author :
Wyckhuys, Kris A G ✱; Chrysalis Consulting, Danang, Viet Nam, Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China, School of Biological Sciences, University of Queensland, Saint Lucia, Australia, Food and Agriculture Organization (FAO), Rome, Italy. Electronic address: k.wyckhuys@uq.edu.au
Pozsgai, Gabor ✱; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, University of the Azores, Angra do Heroísmo, Portugal
Ben Fekih, Ibtissem ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Sanchez-Garcia, Francisco J; Instituto Murciano de Investigacion y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
Elkahky, Maged; Food and Agriculture Organization (FAO), Rome, Italy
✱ These authors have contributed equally to this work.
Language :
English
Title :
Biodiversity loss impacts top-down regulation of insect herbivores across ecosystem boundaries.
Original title :
[en] Biodiversity loss impacts top-down regulation of insect herbivores across ecosystem boundaries
Abdala-Roberts, L., Puentes, A., Finke, D.L., Marquis, R.J., Montserrat, M., Poelman, E.H., Rasmann, S., Sentis, A., van Dam, N.M., Wimp, G., Mooney, K., Tri-trophic interactions: bridging species, communities and ecosystems. Ecol. Lett. 22:12 (2019), 2151–2167.
Alfaro-Tapia, A., Alvarez-Baca, J.K., Tougeron, K., Van Baaren, J., Lavandero, B., Le Lann, C., Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 200:3 (2022), 425–440.
Barry, K.E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A.J., Bai, Y., et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34:2 (2019), 167–180.
Bascompte, J., Scheffer, M., The resilience of plant–pollinator networks. Annu. Rev. Entomol. 68 (2023), 363–380.
Beckett, S.J., Improved community detection in weighted bipartite networks. R. Soc. Open Sci., 3, 2016, 140536.
Blubaugh, C.K., Asplund, J.S., Judson, S.M., Smith, O.M., Snyder, W.E., Does the ‘enemies hypothesis’ operate by enhancing natural enemy evenness?. Biological Control, 152, 2021, 104464.
Boettner, G.H., Elkinton, J.S., Boettner, C.J., Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv. Biol. 14:6 (2000), 1798–1806.
Bommarco, R., Kleijn, D., Potts, S.G., Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28:4 (2013), 230–238.
Brühl, C.A., Bakanov, N., Köthe, S., Eichler, L., Sorg, M., Hörren, T., Mühlethaler, R., Meinel, G., Lehmann, G.U., Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep., 11(1), 2021, 24144.
Burra, D.D., Pretty, J., Neuenschwander, P., Liu, Z., Zhu, Z.R., Wyckhuys, K.A.G., Human health outcomes of a restored ecological balance in African agro-landscapes. Sci. Total Environ., 775, 2021, 145872.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., et al. Biodiversity loss and its impact on humanity. Nature 486:7401 (2012), 59–67.
Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., Ram, K., Rgbif: Interface to the global biodiversity information facility API. Version, 3(7), 2024, 9 https://cran.r-project.org/package=rgbif.
Csárdi, G., Nepusz, T., The igraph software package for complex network research. InterJournal complex systems 1695, 1695. Version, 1(6), 2006 https://cran.r-project.org/package=igraph.
Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L.A., et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Science. Advances, 5(10), 2019, eaax0121.
Dee, L.E., Allesina, S., Bonn, A., Eklöf, A., Gaines, S.D., Hines, J., Jacob, U., McDonald-Madden, E., Possingham, H., Schröter, M., Thompson, R.M., Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32:2 (2017), 118–130.
Dee, L.E., Cowles, J., Isbell, F., Pau, S., Gaines, S.D., Reich, P.B., When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34:8 (2019), 746–758.
Deguine, J.P., Aubertot, J.N., Bellon, S., Côte, F., Lauri, P.E., Lescourret, F., Ratnadass, A., Scopel, E., Andrieu, N., Bàrberi, P., et al. Agroecological crop protection for sustainable agriculture. Adv. Agron. 178 (2023), 1–59.
Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H., Chan, K.M., et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science, 366(6471), 2019, eaax3100.
Ditzler, L., van Apeldoorn, D.F., Schulte, R.P., Tittonell, P., Rossing, W.A., Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm. Eur. J. Agron., 122, 2021, 126197.
Dormann, C.F., Gruber, B., Fründ, J., Introducing the bipartite package: Analysing ecological networks. R News 8 (2008), 8–11 Version 2.19 https://cran.r-project.org/package=bipartite.
Duffy, J.E., Biodiversity and ecosystem function: the consumer connection. Oikos 99:2 (2002), 201–219.
Felipe-Lucia, M.R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., Boeddinghaus, R.S., Bonkowski, M., Buscot, F., Fiore-Donno, A.M., Frank, K., Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. 117:45 (2020), 28140–28149.
Fricke, E.C., Ordonez, A., Rogers, H.S., Svenning, J.C., The effects of defaunation on plants’ capacity to track climate change. Science 375:6577 (2022), 210–214.
Garibaldi, L.A., Oddi, F.J., Miguez, F.E., Bartomeus, I., Orr, M.C., Jobbágy, E.G., Kremen, C., Schulte, L.A., Hughes, A.C., Bagnato, C., Abramson, G., Working landscapes need at least 20% native habitat. Conserv. Lett., 14(2), 2021, e12773.
Gillespie, M.A., Gurr, G.M., Wratten, S.D., Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomol. Exp. Appl. 159:2 (2016), 207–221.
Gonthier, D.J., Ennis, K.K., Farinas, S., Hsieh, H.Y., Iverson, A.L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B.J., Perfecto, I., Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 2014, 20141358.
Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T., Jauker, F., Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. 2:9 (2018), 1408–1417.
Hackett, T.D., Sauve, A.M., Davies, N., Montoya, D., Tylianakis, J.M., Memmott, J., Reshaping our understanding of species’ roles in landscape-scale networks. Ecol. Lett. 22:9 (2019), 1367–1377.
Hairston, N.G., Smith, F.E., Slobodkin, L.B., Community structure, population control, and competition. Am. Nat. 94:879 (1960), 421–425.
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS One, 12(10), 2017, e0185809.
Harvey, E., Marleau, J.N., Gounand, I., Leroux, S.J., Firkowski, C.R., Altermatt, F., et al. A general meta-ecosystem model to predict ecosystem functions at landscape extents. Ecography, 2023(11), 2023, e06790.
Heimpel, G.E., Cock, M.J., Shifting paradigms in the history of classical biological control. BioControl 63 (2018), 27–37.
Heimpel, G.E., Wyckhuys, K.A.G., Biological control as a conservation science. Mason, P.G., (eds.) Biological Control: Global Impacts, Challenges and Future Directions of Pest Management, 2021, CSIRO Publishing, Clayton, Australia.
Heinen, J.H., Rahbek, C., Borregaard, M.K., Conservation of species interactions to achieve self-sustaining ecosystems. Ecography 43:11 (2020), 1603–1611.
Hochberg, M.E., The potential role of pathogens in biological control. Nature 337:6204 (1989), 262–265.
Hopper, K.R., Roush, R.T., Mate finding, dispersal, number released, and the success of biological control introductions. Ecological Entomology 18:4 (1993), 321–331.
Hu, Z., Myint, Y.Y., Zhang, T., Bai, S., He, K., Wyckhuys, K.A., Li, Z., Wang, Z., Loss of parasitoid diversity in China's corn agro-ecosystem over a 30-year time period. Biodivers. Conserv. 32:4 (2023), 1309–1325.
Janzen, D.H., The deflowering of Central America. Nat. Hist. 83 (1974), 48–53.
Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D.E., Coscieme, L., Golden, A.S., Guerra, C.A., Jacob, U., Takahashi, Y., Settele, J., et al. The direct drivers of recent global anthropogenic biodiversity loss. Science. Advances, 8(45), 2022, eabm9982.
Johnson, C.N., Balmford, A., Brook, B.W., Buettel, J.C., Galetti, M., Guangchun, L., Wilmshurst, J.M., Biodiversity losses and conservation responses in the Anthropocene. Science 356:6335 (2017), 270–275.
Kenis, M., Benelli, G., Biondi, A., Calatayud, P.A., Day, R., Desneux, N., et al. Invasiveness, biology, ecology, and management of the fall armyworm. Spodoptera frugiperda. Entomologia Generalis doiI, 2022, 10.1127/entomologia/2022/1659.
Keyes, A.A., et al. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun., 12(1), 2021, 1586.
Kleijn, D., Bommarco, R., Fijen, T.P., Garibaldi, L.A., Potts, S.G., Van Der Putten, W.H., Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34:2 (2019), 154–166.
Kruess, A., Tscharntke, T., Habitat fragmentation, species loss, and biological control. Science 264:5165 (1994), 1581–1584.
Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132 (2015), 1–41.
Landis, D.A., Wratten, S.D., Gurr, G.M., Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:1 (2000), 175–201.
Leitão, R.P., Zuanon, J., Villéger, S., Williams, S.E., Baraloto, C., Fortunel, C., Mendonça, F.P., Mouillot, D., Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci., 283(1828), 2016, 20160084.
Lezama-Gutiérrez, R., Hamm, J.J., Molina-Ochoa, J., López-Edwards, M., Pescador-Rubio, A., González-Ramirez, M., Styer, E.L., Occurrence of entomopathogens of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Mexican states of Michoacán, Colima. Jalisco and Tamaulipas. Florida Entomologist, 2001, 23–30.
Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S.J., Montoya, J.M., Wang, S., Aussenac, R., Germain, R., Thompson, P.L., Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96:5 (2021), 2333–2354.
Ma, A., Lu, X., Gray, C., Raybould, A., Tamaddoni-Nezhad, A., Woodward, G., Bohan, D.A., Ecological networks reveal resilience of agro-ecosystems to changes in farming management. Nature Ecology & Evolution 3:2 (2019), 260–264.
Marino, P.C., Landis, D.A., Hawkins, B.A., Conserving parasitoid assemblages of north American pest Lepidoptera: does biological control by native parasitoids depend on landscape complexity?. Biological Control 37:2 (2006), 173–185.
Mata, V.A., da Silva, L.P., Veríssimo, J., Horta, P., Raposeira, H., McCracken, G.F., Rebelo, H., Beja, P., Combining DNA metabarcoding and ecological networks to inform conservation biocontrol by small vertebrate predators. Ecol. Appl., 31(8), 2021, e02457.
McKinney, M.L., Lockwood, J.L., Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14 (1999), 450–453.
Mei, Z., Scheper, J., Kleijn, D., Arthropod predator identity and evenness jointly shape the delivery of pest control services. Pest Manag. Sci. 80:2 (2024), 569–576.
Memmott, J., Gibson, R., Carvalheiro, L.G., Henson, K., Heleno, R.H., Mikel, M.L., Pearce, S., The conservation of ecological interactions. Insect Conservation Biology, 2007, 226–244.
Miller, K.E., Polaszek, A., Evans, D.M., A dearth of data: fitting parasitoids into ecological networks. Trends Parasitol. 37:10 (2021), 863–874.
Molina-Ochoa, J., Carpenter, J.E., Heinrichs, E.A., Foster, J.E., Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: an inventory. Fla. Entomol. 86:3 (2003), 254–289.
Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C.D.L., Petchey, O.L., et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30:11 (2015), 673–684.
Ostandie, N., Muneret, L., Giffard, B., Thiéry, D., Rusch, A., The shape of the predator biomass distribution affects biological pest control services in agricultural landscapes. Funct. Ecol. 35:1 (2021), 193–204.
Ostfeld, R.S., LoGiudice, K., Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84:6 (2003), 1421–1427.
Perović, D.J., Gámez-Virués, S., Landis, D.A., Wäckers, F., Gurr, G.M., Wratten, S.D., You, M.S., Desneux, N., Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol. Rev. 93:1 (2018), 306–321.
Petermann, J.S., Müller, C.B., Weigelt, A., Weisser, W.W., Schmid, B., Effect of plant species loss on aphid–parasitoid communities. J. Anim. Ecol. 79:3 (2010), 709–720.
Pocock, M.J., Schmucki, R., Bohan, D.A., Inferring species interactions from ecological survey data: a mechanistic approach to predict quantitative food webs of seed feeding by carabid beetles. Ecol. Evol. 11:18 (2021), 12858–12871.
Poelen, J.H., Simons, J.D., Mungall, C.J., Global biotic interactions: an open infrastructure to share and analyze species-interaction datasets. Eco. Inform. 24 (2014), 148–159.
Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., MacDonald, A., et al. Global knowledge gaps in species interaction networks data. J. Biogeogr. 48:7 (2021), 1552–1563.
Quesada-Moraga, E., Garrido-Jurado, I., Yousef-Yousef, M., González-Mas, N., Multitrophic interactions of entomopathogenic fungi in biocontrol. BioControl 67:5 (2022), 457–472.
Quintessence Consortium, Networking our way to better ecosystem service provision. Trends Ecol. Evol. 31:2 (2016), 105–115.
R Core Team, R., 2012. R: A language and environment for statistical computing.
Raymond, L., Plantegenest, M., Gagic, V., Navasse, Y., Lavandero, B., Aphid parasitoid generalism: development, assessment, and implications for biocontrol. J. Pest. Sci. 89 (2016), 7–20.
Redhead, J.W., Woodcock, B.A., Pocock, M.J.O., Pywell, R.F., Vanbergen, A.J., Oliver, T.H., Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21:12 (2018), 1821–1832.
Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F., Eisenhauer, N., Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:6081 (2012), 589–592.
Requier, F., Pérez-Méndez, N., Andersson, G.K., Blareau, E., Merle, I., Garibaldi, L.A., Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 38:2 (2023), 196–205.
Robinson, M.L., Strauss, S.Y., Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. Proc. Natl. Acad. Sci. 117:4 (2020), 2043–2048.
Robinson, G.S., Ackery, P.R., Kitching, I., Beccaloni, G.W., Hernández, L.M., HOSTS - a Database of the World's Lepidopteran Hostplants. 2023, Natural History Museum, London, UK.
Romeis, J., Babendreier, D., Wäckers, F.L., Shanower, T.G., Habitat and plant specificity of Trichogramma egg parasitoids—underlying mechanisms and implications. Basic and Applied Ecology 6:3 (2005), 215–236.
Root, R.B., Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica Oleracea). Ecological monographs 43 (1973), 95–124.
Ross, S.R.J., Arnoldi, J.F., Loreau, M., White, C.D., Stout, J.C., Jackson, A.L., Donohue, I., Universal scaling of robustness of ecosystem services to species loss. Nat. Commun., 12(1), 2021, 5167.
Sánchez-Bayo, F., Wyckhuys, K.A.G., Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232 (2019), 8–27.
Scheu, S., Plants and generalist predators as links between the below-ground and above-ground system. Basic and Applied Ecology 2:1 (2001), 3–13.
Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., et al. No saturation in the accumulation of alien species worldwide. Nat. Commun., 8(1), 2017, 14435.
Segoli, M., Abram, P.K., Ellers, J., Hardy, I.C., Greenbaum, G., Heimpel, G.E., Keasar, T., Ode, P.J., Sadeh, A., Wajnberg, E., Trait-based approaches to predicting biological control success: challenges and prospects. Trends Ecol. Evol., 2023, 10.1016/j.tree.2023.04.008 (in press).
Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:7780 (2019), 671–674.
Shanafelt, D.W., Dieckmann, U.l.f., Jonas, M., Franklin, O., Loreau, M., Perrings C., Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380 (2015), 426–435.
Snyder, W.E., Give predators a complement: conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135 (2019), 73–82.
Stireman, J.O. III, Dyer, L.A., Greeney, H.F. III, Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conservation and Diversity 10:5 (2017), 367–384.
Straub, C.S., Snyder, W.E., Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:2 (2006), 277–282.
Straub, C.S., Finke, D.L., Snyder, W.E., Are the conservation of natural enemy biodiversity and biological control compatible goals?. Biological control 45:2 (2008), 225–237.
Symondson, W.O.C., Sunderland, K.D., Greenstone, M.H., Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47:1 (2002), 561–594.
Tambo, J.A., Day, R.K., Lamontagne-Godwin, J., Silvestri, S., Beseh, P.K., Oppong-Mensah, B., et al. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: an analysis of farmers’ control actions. Int. J. Pest Manag. 66:4 (2020), 298–310.
Turchin, P., Taylor, A.D., Reeve, J.D., Dynamical role of predators in population cycles of a forest insect: an experimental test. Science 285:5430 (1999), 1068–1071.
Tylianakis, J.M., Tscharntke, T., Lewis, O.T., Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:7124 (2007), 202–205.
Valiente-Banuet, A., Aizen, M.A., Alcántara, J.M., Arroyo, J., Cocucci, A., Galetti, M., et al. Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology 29:3 (2015), 299–307.
Valverde, S., Vidiella, B., Montanez, R., Fraile, A., Sacristán, S., García-Arenal, F., Coexistence of nestedness and modularity in host–pathogen infection networks. Nature Ecology & Evolution 4:4 (2020), 568–577.
Van Driesche, R.G., Carruthers, R.I., Center, T., Hoddle, M.S., Hough-Goldstein, J., Morin, L., Smith, L., Wagner, D.L., Blossey, B., Brancatini, V., et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54 (2010), S2–S33.
Vidal, M.C., Murphy, S.M., Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21:1 (2018), 138–150.
Walker, B., Crépin, A.S., Nyström, M., Anderies, J.M., Andersson, E., Elmqvist, T., Queiroz, C., Barrett, S., Bennett, E., Cardenas, J.C., et al. Response diversity as a sustainability strategy. Nature Sustainability 6 (2023), 621–629.
Winfree, R., Kremen, C., Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276 (2009), 229–237.
Winfree, R., Fox, W., J., Williams, N.M., Reilly, J.R. and Cariveau, D.P., Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18:7 (2015), 626–635.
Wood, S.N., Generalized Additive Models: An Introduction with R. 2nd edition, 2017, Chapman and Hall/CRC.
Wyckhuys, K.A., Nguyen, H., Fonte, S.J., Artefactual depiction of predator–prey trophic linkages in global soils. Sci. Rep., 11(1), 2021, 23861.
Wyckhuys, K.A., Zhang, W., Colmenarez, Y.C., Simelton, E., Sander, B.O., Lu, Y., Tritrophic defenses as a central pivot of low-emission, pest-suppressive farming systems. Curr. Opin. Environ. Sustain., 58, 2022, 101208.
Wyckhuys, K.A., Tang, F.H., Hadi, B.A., Pest management science often disregards farming system complexities. Communications Earth & Environment, 4(1), 2023, 223.
Wyckhuys, K.A., Akutse, K.S., Amalin, D.M., Araj, S.E., Barrera, G., Beltran, M.J.B., et al. Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda. Biological Control, 191, 2024, 105460.
Yang, F., Liu, B., Zhu, Y., Wyckhuys, K.A., van der Werf, W., Lu, Y., Species diversity and food web structure jointly shape natural biological control in agricultural landscapes. Communications Biology, 4(1), 2021, 979.
Yang, X., Wyckhuys, K.A., Jia, X., Nie, F., Wu, K., Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manage., 282, 2021, 111949.
Zemenick, A.T., Kula, R.R., Russo, L., Tooker, J., A network approach reveals parasitoid wasps to be generalized nectar foragers. Arthropod Plant Interact. 13 (2019), 239–251.