biogeography; climate; environmental gradients; functional traits; seed mass; species abundance; specific leaf area; trees; wood density; Global and Planetary Change; Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Aim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. Location: Global. Time period: Recent. Major taxa studied: Trees. Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Bouchard, Elise ; Department of Biological Sciences, Centre for Forest Research (CFR), Université du Québec à Montréal, Montreal, Canada
Searle, Eric B. ; Department of Biological Sciences, Centre for Forest Research (CFR), Université du Québec à Montréal, Montreal, Canada ; Ontario Forest Research Institute, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Canada
Drapeau, Pierre ; Department of Biological Sciences, Centre for Forest Research (CFR), Université du Québec à Montréal, Montreal, Canada
Liang, Jingjing ; Forest Advanced Computing and Artificial Intelligence Lab (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, United States
Gamarra, Javier G. P. ; Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
Abegg, Meinrad
Alberti, Giorgio
Zambrano, Angelica Almeyda
Alvarez-Davila, Esteban
Alves, Luciana F.
Avitabile, Valerio
Aymard, Gerardo
Bastin, Jean-François ; Université de Liège - ULiège > TERRA Research Centre > Biodiversité et Paysage
Birnbaum, Philippe
Bongers, Frans
Bouriaud, Olivier
Brancalion, Pedro
Broadbent, Eben
Bussotti, Filippo
Gatti, Roberto Cazzolla
Češljar, Goran
Chisholm, Chelsea
Cienciala, Emil
Clark, Connie J.
Corral-Rivas, José Javier
Crowther, Thomas W.
Dayanandan, Selvadurai
Decuyper, Mathieu
de Gasper, André L.
de-Miguel, Sergio
Derroire, Géraldine
DeVries, Ben
Djordjević, Ilija
Van Do, Tran
Dolezal, Jiri
Fayle, Tom M.
Fridman, Jonas
Frizzera, Lorenzo
Gianelle, Damiano
Hemp, Andreas
Hérault, Bruno
Herold, Martin
Imai, Nobuo
Jagodziński, Andrzej M.
Jaroszewicz, Bogdan
Jucker, Tommaso
Kepfer-Rojas, Sebastian
Keppel, Gunnar
Khan, Mohammed Latif
Kim, Hyun Seok
Korjus, Henn
Kraxner, Florian
Laarmann, Diana
Lewis, Simon
Lu, Huicui
Maitner, Brian S.
Marcon, Eric
Marshall, Andrew R.
Mukul, Sharif A.
Nabuurs, Gert-Jan
Nava-Miranda, María Guadalupe
Parfenova, Elena I.
Park, Minjee
Peri, Pablo L.
Pfautsch, Sebastian
Phillips, Oliver L.
Piedade, Maria Teresa F.
Piotto, Daniel
Poulsen, John R.
Poulsen, Axel Dalberg
Pretzsch, Hans
Reich, Peter B.
Rodeghiero, Mirco
Rolim, Samir
Rovero, Francesco
Saikia, Purabi
Salas-Eljatib, Christian
Schall, Peter
Schepaschenko, Dmitry
Schöngart, Jochen
Šebeň, Vladimír
Sist, Plinio
Slik, Ferry
Souza, Alexandre F.
Stereńczak, Krzysztof
Svoboda, Miroslav
Tchebakova, Nadezhda M.
ter Steege, Hans
Tikhonova, Elena V.
Usoltsev, Vladimir A.
Valladares, Fernando
Viana, Helder
Vibrans, Alexander C.
Wang, Hua-Feng
Westerlund, Bertil
Wiser, Susan K.
Wittmann, Florian
Wortel, Verginia
Zawiła-Niedźwiecki, Tomasz
Zhou, Mo
Zhu, Zhi-Xin
Zo-Bi, Irié C.
Paquette, Alain ; Department of Biological Sciences, Centre for Forest Research (CFR), Université du Québec à Montréal, Montreal, Canada
NSERC - Natural Sciences and Engineering Research Council
Funding text :
This work was funded in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Alain Paquette. This work was also made possible by the Global Forest Biodiversity Database ( https://www.gfbinitiative.org/ ), which represents the work of over 200 independent investigators and their public and private funding agencies (see Appendix S13 Supplementary acknowledgements). The study was supported by the TRY initiative on plant traits ( http://www.try‐db .org). The TRY database is hosted at the Max Planck Institute for Biogeochemistry (MPI BGC, Germany) and supported by Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig. We are thankful to Orane Mordacq and Cameron Daoust for their help in cleaning and processing the data as well as collecting functional trait values from literature, and Charlotte Langlois, Marine Fernandez and Maxime Paquette for preparing the manuscript. We would like to thank François Rousseu, Daniel Schoenig, Daniel Lesieur and Mélanie Desrochers, CFR professionals in statistics, database management and GIS.This work was funded in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Alain Paquette. This work was also made possible by the Global Forest Biodiversity Database (https://www.gfbinitiative.org/), which represents the work of over 200 independent investigators and their public and private funding agencies (see Appendix S13 Supplementary acknowledgements). The study was supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY database is hosted at the Max Planck Institute for Biogeochemistry (MPI BGC, Germany) and supported by Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. We are thankful to Orane Mordacq and Cameron Daoust for their help in cleaning and processing the data as well as collecting functional trait values from literature, and Charlotte Langlois, Marine Fernandez and Maxime Paquette for preparing the manuscript. We would like to thank François Rousseu, Daniel Schoenig, Daniel Lesieur and Mélanie Desrochers, CFR professionals in statistics, database management and GIS.
Ackerly, D., Knight, C., Weiss, S., Barton, K., & Starmer, K. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130(3), 449–457. https://doi.org/10.1007/s004420100805
Anderegg, L. D. L., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E., & HilleRisLambers, J. (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21(5), 734–744. https://doi.org/10.1111/ele.12945
Baker, H. G. (1972). Seed weight in relation to environmental conditions in California. Ecology, 53(6), 997–1010. https://doi.org/10.2307/1935413
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S. A., Blach-Overgaard, A., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Georges, D., Goetz, S. J., Guay, K. C., Henry, G. H. R., HilleRisLambers, J., Hollister, R. D., Karger, D. N., Kattge, J., Manning, P., … Weiher, E. (2018). Plant functional trait change across a warming tundra biome. Nature, 562(7725), 57–62. https://doi.org/10.1038/s41586-018-0563-7
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., Kattge, J., Pillar, V. D., Schrodt, F., Mahecha, M. D., Peet, R. K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Dávila, E., … Jandt, U. (2018). Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2(12), 1906–1917. https://doi.org/10.1038/s41559-018-0699-8
Bustos Navarrete, C., & Coutinho Soares, F. (2020). dominanceanalysis: Dominance Analysis. R package version 1.3.0.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Cingolani, A. M., Cabido, M., Gurvich, D. E., Renison, D., & Díaz, S. (2007). Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? Journal of Vegetation Science, 18(6), 911–920. https://doi.org/10.1111/j.1654-1103.2007.tb02607.x
Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in Coastal California. Ecological Monographs, 79(1), 109–126. https://doi.org/10.1890/07-1134.1
Costa-Saura, J. M., Martínez-Vilalta, J., Trabucco, A., Spano, D., & Mereu, S. (2016). Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspectives in Plant Ecology, Evolution and Systematics, 21, 23–30. https://doi.org/10.1016/j.ppees.2016.05.001
Crawford, R. M. M. (1989). Studies in plant survival. Blackwell Scientific.
De Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., De Kort, H., De Schrijver, A., Diekmann, M., Eriksson, O., Gruwez, R., Hermy, M., Lenoir, J., Plue, J., Coomes, D. A., & Verheyen, K. (2013). Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 101(3), 784–795. https://doi.org/10.1111/1365-2745.12074
de la Riva, E. G., Violle, C., Pérez-Ramos, I. M., Marañón, T., Navarro-Fernández, C. M., Olmo, M., & Villar, R. (2018). A multidimensional functional trait approach reveals the imprint of environmental stress in Mediterranean Woody Communities. Ecosystems, 21(2), 248–262. https://doi.org/10.1007/s10021-017-0147-7
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489
Dubuis, A., Rossier, L., Pottier, J., Pellissier, L., Vittoz, P., & Guisan, A. (2013). Predicting current and future spatial community patterns of plant functional traits. Ecography, 36(11), 1158–1168. https://doi.org/10.1111/j.1600-0587.2013.00237.x
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Fortunel, C., Paine, C. E. T., Fine, P. V. A., Kraft, N. J. B., & Baraloto, C. (2014). Environmental factors predict community functional composition in Amazonian forests. Journal of Ecology, 102(1), 145–155. https://doi.org/10.1111/1365-2745.12160
Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Fridley, J. D., & Grime, J. P. (2010). Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology, 91(8), 2272–2283.
Fridley, J. D., Grime, J. P., & Bilton, M. (2007). Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. Journal of Ecology, 95(5), 908–915. https://doi.org/10.1111/j.1365-2745.2007.01256.x
Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M. C., Fröberg, M., Stendahl, J., Philipson, C. D., Mikusiński, G., Andersson, E., Westerlund, B., Andrén, H., Moberg, F., Moen, J., & Bengtsson, J. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. https://doi.org/10.1038/ncomms2328
Garnier, E., Cortez, J., Billès, G., Navas, M. L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., & Toussaint, J. P. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630–2637. https://doi.org/10.1890/03-0799
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., & Schepaschenko, D. G. (2015). Boreal forest health and global change. Science, 349(6250), 819–822. https://doi.org/10.1126/science.aaa9092
Gong, H., & Gao, J. (2019). Soil and climatic drivers of plant SLA (specific leaf area). Global Ecology and Conservation, 20, e00696. https://doi.org/10.1016/j.gecco.2019.e00696
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20(4), 539–553. https://doi.org/10.1111/ele.12748
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111(982), 40–1194. https://doi.org/10.1086/283244
Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86(6), 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. https://doi.org/10.1007/s004420100628
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justices, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century Forest cover changer. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1239552
Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), 1–40. https://doi.org/10.1371/journal.pone.0169748
Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163(2), 192–211. https://doi.org/10.1086/381004
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105(2727), 367–368. https://doi.org/10.1126/science.105.2727.367
Joswig, J. S., Wirth, C., Schuman, M. C., Kattge, J., Reu, B., Wright, I. J., Sippel, S. D., Rüger, N., Richter, R., Schaepman, M. E., van Bodegom, P. M., Cornelissen, J. H. C., Díaz, S., Hattingh, W. N., Kramer, K., Lens, F., Niinemets, Ü., Reich, P. B., Reichstein, M., … Mahecha, M. D. (2022). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 6(1), 36–50. https://doi.org/10.1038/s41559-021-01616-8
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., & Acosta, A. T. (2020). TRY plant trait database–enhanced coverage and open access. Global Change Biology, 26(1), 119–188. https://doi.org/10.1111/gcb.14904
Keppel, G., Craven, D., Weigelt, P., Smith, S. A., van der Sande, M. T., Sandel, B., Levin, S. C., Kreft, H., & Knight, T. M. (2021). Synthesizing tree biodiversity data to understand global patterns and processes of vegetation. Journal of Vegetation Science, 32(3), e13021. https://doi.org/10.1111/jvs.13021
Kerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: Why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3), 519–521. https://doi.org/10.1016/j.jtbi.2008.12.026
Kricher, J. C. (2017). The new neotropical companion. In The new neotropical companion. Princeton University Press.
Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73(6), 1943–1967. https://doi.org/10.2307/1941447
Liang, J., Gamarra, J. G. P., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D. F., Reich, P. B., Crowther, T. W., Nabuurs, G.-J., de Miguel, S., Fang, J., Woodall, C. W., Svenning, J.-C., Jucker, T., Bastin, J.-F., Wiser, S. K., Slik, F., Hérault, B., Alberti, G., … Hui, C. (2022). Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution., 6, 1423–1437. https://doi.org/10.1038/s41559-022-01831-x
Lord, J., Egan, J., Clifford, T., Jurado, E., Leishman, M., Williams, D., & Westoby, M. (1997). Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. Journal of Biogeography, 24(2), 205–211. https://doi.org/10.1046/j.1365-2699.1997.00126.x
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, Ü., Ordonez, A., Reich, P. B., & Santiago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706–717. https://doi.org/10.1111/geb.12296
Malhado, A. C. M., Oliveira-Neto, J. A., Stropp, J., Strona, G., Dias, L. C. P., Pinto, L. B., & Ladle, R. J. (2015). Climatological correlates of seed size in Amazonian forest trees. Journal of Vegetation Science, 26(5), 956–963. https://doi.org/10.1111/jvs.12301
Maynard, D. S., Bialic-Murphy, L., Zohner, C. M., Averill, C., van den Hoogen, J., Ma, H., Mo, L., Smith, G. R., Acosta, A. T. R., Aubin, I., Berenguer, E., Boonman, C. C. F., Catford, J. A., Cerabolini, B. E. L., Dias, A. S., González-Melo, A., Hietz, P., Lusk, C. H., Mori, A. S., … Crowther, T. W. (2022). Global relationships in tree functional traits. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-30888-2
Moles, A. T. (2017). Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology, 106(1), 1–18. https://doi.org/10.1111/1365-2745.12887
Moles, A. T., Ackerly, D. D., Tweddle, J. C., Dickie, J. B., Smith, R., Leishman, M. R., Mayfield, M. M., Pitman, A., Wood, J. T., & Westoby, M. (2007). Global patterns in seed size. Global Ecology and Biogeography, 16, 109–116. https://doi.org/10.1111/j.1466-822x.2006.00259.x
Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M., Tindall, M. L., Sack, L., Pitman, A., Kattge, J., Aarssen, L. W., Anand, M., Bahn, M., Blonder, B., Cavender-Bares, J., Cornelissen, J. H. C., Cornwell, W. K., Díaz, S., Dickie, J. B., Freschet, G. T., … Bonser, S. P. (2014). Which is a better predictor of plant traits: Temperature or precipitation? Journal of Vegetation Science, 25(5), 1167–1180. https://doi.org/10.1111/jvs.12190
Moles, A. T., Westoby, M., & Eriksson, O. (2006). Seed size and plant strategy across the whole life cycle. Oikos, 113(1), 91–105. https://doi.org/10.1111/j.0030-1299.2006.14194.x
Nesha, K., Herold, M., De Sy, V., de Bruin, S., Araza, A., Málaga, N., Gamarra, J. G. P., Hergoualc'h, K., Pekkarinen, A., Ramirez, C., Morales-Hidalgo, D., & Tavani, R. (2022). Exploring characteristics of national forest inventories for integration with global space-based forest biomass data. Science of the Total Environment, 850, 157788. https://doi.org/10.1016/j.scitotenv.2022.157788
O'Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S. M., Levick, S. R., Preisler, Y., Väänänen, P., & Macinnis-Ng, C. (2017). A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. Journal of Applied Ecology, 54(6), 1669–1686. https://doi.org/10.1111/1365-2664.12874
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2
Ordoñez, J. C., Van Bodegom, P. M., Witte, J.-P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x
Pakeman, R. J., Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Doležal, J., Eriksson, O., Freitas, H., Golodets, C., Kigel, J., Kleyer, M., Lepš, J., Meier, T., Papadimitriou, M., Papanastasis, V. P., Quested, H., Quétier, F., Rusch, G., … Vile, D. (2008). Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology, 96(2), 355–366. https://doi.org/10.1111/j.1365-2745.2007.01336.x
Pakeman, R. J., & Quested, H. M. (2007). Sampling plant functional traits: What proportion of the species need to be measured? Applied Vegetation Science, 10(1), 91–96. https://doi.org/10.1111/j.1654-109x.2007.tb00507.x
Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. RFID Journal, 8(1), 204–218. https://doi.org/10.32614/rj-2016-014
Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., … C Cornelissen, J. H. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), 715–716. https://doi.org/10.1071/BT12225_CO
Pinho, B. X., Tabarelli, M., Braak, C. J. F., Wright, S. J., Arroyo-Rodríguez, V., Benchimol, M., Engelbrecht, B. M. J., Pierce, S., Hietz, P., Santos, B. A., Peres, C. A., Müller, S. C., Wright, I. J., Bongers, F., Lohbeck, M., Niinemets, Ü., Slot, M., Jansen, S., Jamelli, D., … Melo, F. P. L. (2021). Functional biogeography of neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 30(7), 1430–1446. https://doi.org/10.1111/geb.13309
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
Preston, K. A., Cornwell, W. K., & DeNoyer, J. L. (2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170(4), 807–818. https://doi.org/10.1111/j.1469-8137.2006.01712.x
R Core Team. (2020). R: A language and environment for statistical computing. https://www.R-project.org/
Réjou-Méchain, M., Mortier, F., Bastin, J. F., Cornu, G., Barbier, N., Bayol, N., Bénédet, F., Bry, X., Dauby, G., Deblauwe, V., Doucet, J. L., Doumenge, C., Fayolle, A., Garcia, C., Kibambe Lubamba, J. P., Loumeto, J. J., Ngomanda, A., Ploton, P., Sonké, B., … Gourlet-Fleury, S. (2021). Unveiling African rainforest composition and vulnerability to global change. Nature, 593(7857), 90–94. https://doi.org/10.1038/s41586-021-03483-6
Sedio, B. E., Parker, J. D., Mcmahon, S. M., & Wright, A. S. J. (2018). Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology, 99(12), 2647–2653. https://doi.org/10.1002/ecy.2533
Shipley, B., Laughlin, D. C., Sonnier, G. G., & Otfinowski, R. (2011). A strong test of a maximum entropy model of trait-based community assembly. Ecology, 92(2), 507–517. https://doi.org/10.1890/10-0394.1
Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L. Dantas, V., de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., … Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419. https://doi.org/10.1111/ele.12508
Šímová, I., Violle, C., Kraft, N. J. B., Storch, D., Svenning, J. C., Boyle, B., Donoghue, J. C., Jørgensen, P., McGill, B. J., Morueta-Holme, N., Piel, W. H., Peet, R. K., Regetz, J., Schildhauer, M., Spencer, N., Thiers, B., Wiser, S., & Enquist, B. J. (2015). Shifts in trait means and variances in north American tree assemblages: Species richness patterns are loosely related to the functional space. Ecography, 38(7), 649–658. https://doi.org/10.1111/ecog.00867
Simpson, A. H., Richardson, S. J., & Laughlin, D. C. (2016). Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Global Ecology and Biogeography, 25(8), 964–978. https://doi.org/10.1111/geb.12457
Stahl, U., Kattge, J., Reu, B., Voigt, W., Ogle, K., Dickie, J., & Wirth, C. (2013). Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 4(10), 1–28. https://doi.org/10.1890/ES13-00143.1
Stahl, U., Reu, B., & Wirth, C. (2014). Predicting species' range limits from functional traits for the tree flora of North America. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13739–13744. https://doi.org/10.1073/pnas.1300673111
Suzuki, R., Xu, J., & Motoya, K. (2006). Global analyses of satellite-derived vegetation index related to climatological wetness and warmth. International Journal of Climatology, 26(4), 425–438. https://doi.org/10.1002/joc.1256
Swenson, N. G., & Enquist, B. J. (2007). Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94(3), 451–459. https://doi.org/10.3732/ajb.94.3.451
Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B., Weiser, M. D., Elser, J. J., Fagan, W. F., Forero-Montaña, J., Fyllas, N., Kraft, N. J. B., Lake, J. K., Moles, A. T., Patiño, S., Phillips, O. L., Price, C. A., Reich, P. B., Quesada, C. A., Stegen, J. C., … Nolting, K. M. (2012). The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 21(8), 798–808. https://doi.org/10.1111/j.1466-8238.2011.00727.x
Swenson, N. G., & Weiser, M. D. (2010). Plant geography upon the basis of functional traits: An example from eastern North American trees. Ecology, 91(8), 2234–2241. https://doi.org/10.1890/09-1743
Ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molino, J. F., Prévost, M. F., Spichiger, R., Castellanos, H., Von Hildebrand, P., & Vásquez, R. (2006). Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443(7110), 444–447. https://doi.org/10.1038/nature05134
Terborgh, J. (1973). On the notion of favorableness in plant ecology. The American Naturalist, 107(956), 481–501. https://doi.org/10.1086/282852
Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232. https://doi.org/10.1111/2041-210X.13107
Villar, R., & Merino, J. (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151(1), 213–226. https://doi.org/10.1046/j.1469-8137.2001.00147.x
Vleminckx, J., Fortunel, C., Valverde-Barrantes, O., Timothy Paine, C. E., Engel, J., Petronelli, P., Dourdain, A. K., Guevara, J., Béroujon, S., & Baraloto, C. (2021). Resolving whole-plant economics from leaf, stem and root traits of 1467 Amazonian tree species. Oikos, 130(7), 1193–1208. https://doi.org/10.1111/oik.08284
Waldock, C., Dornelas, M., & Bates, A. E. (2018). Temperature-driven biodiversity change: Disentangling space and time. Bioscience, 68(11), 873–884. https://doi.org/10.1093/biosci/biy096
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199(2), 213–227. https://doi.org/10.1023/A:1004327224729
Wieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., Kerkhoff, A. J., McCarthy, M. C., Michaletz, S. T., Swenson, N. G., Asner, G. P., Bentley, L. P., Enquist, B. J., & Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences, 116(2), 587–592. https://doi.org/10.6084/m9.figshare.7436951.v1
Wiemann, M. C., & Williamson, G. B. (2002). Geographic variation in wood specific gravity: Effects of latitude, temperature, and precipitation. Wood and Fiber Science, 34(1), 97–107.
Wigley, B. J., Slingsby, J. A., Díaz, S., Bond, W. J., Fritz, H., & Coetsee, C. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology, 104(5), 1357–1369. https://doi.org/10.1111/1365-2745.12598
Wilson, P. J., Thompson, K., & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1), 155–162. https://doi.org/10.1046/j.1469-8137.1999.00427.x
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D. I., & Westoby, M. (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14(5), 411–421. https://doi.org/10.1111/j.1466-822x.2005.00172.x
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Zhang, S.-B., Cao, K.-F., Fan, Z.-X., & Zhang, J.-L. (2013). Potential hydraulic efficiency in angiosperm trees increases with growth-site temperature but has no trade-off with mechanical strength. Global Ecology and Biogeography, 22(8), 971–981. https://doi.org/10.1111/geb.12056
Zhang, S.-B., Ferry Slik, J. W., Zhang, J.-L., & Cao, K.-F. (2011). Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecology and Biogeography, 20(2), 241–250. https://doi.org/10.1111/j.1466-8238.2010.00582.x
Adler, P. B., Salguero-Gómez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache, C., & Franco, M. (2014). Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences, 111(2), 740–745.
Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P., Bonal, D., Bönisch, G., Bradford, M., Cernusak, L. A., Cosio, E. G., Creek, D., Crous, K. Y., Domingues, T., Dukes, J. S., Egerton, J. J. G., Evans, J. R., Farquhar, G. D., Fyllas, N. M., Gauthier, P. P. G., … Zaragoza-Castells, J. (2015). Global variability in leaf respiration among plant functional types in relation to climate and leaf traits. New Phytologist. https://doi.org/10.1111/nph.13253
Atkin, O. K., Schortemeyer, M., McFarlane, N., & Evans, J. R. (1999). The response of fast- and slow-growing acacia species to elevated atmospheric CO2: An analysis of the underlying components of relative growth rate. Oecologia, 120, 544–554.
Auger, S., & Shipley, B. (2012). Interspecific and intraspecific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science. 10.1111/j.1654–1103.2012.01473.x
Baraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Patino, S., Roggy, J.-C., & Chave, J. (2010). Decoupled leaf and stem economics in rainforest trees. Ecology Letters, 13, 1338–1347.
Blonder, B., Buzzard, B., Sloat, L., Simova, I., Lipson, R., Boyle, B., & Enquist, B. (2012). The shrinkage effect biases estimates of paleoclimate. American Journal of Botany, 99(11), 1756–1763.
Blonder, B., Violle, C., & Enquist, B. J. (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101, 981–989. https://doi.org/10.1111/1365-2745.12102
Blonder, B., Violle, C., Patrick, L., & Enquist, B. (2011). Leaf venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14(2), 91–100.
Bocanegra-González, K. T., Fermandez-Mendez, F., & Galvis-Jiménez, J. F. (2013). Determinación de la resiliencia en bosques secundarios húmedos tropicales a través de la diversidad funcional de árboles en la región del Bajo Calima. Tesis, Universidad del Tolima, Facultad de Ingeniería Forestal, Ibagué.
Bond-Lamberty, B., Wang, C., & Gower, S. T. (2002). Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology, 22(14), 993–1001.
Brown, K. A., Flynn, D. F. B., Abram, N. K., Ingram, J. C., Johnson, S. E., & Wright, P. (2011). Assessing natural resource use by forest-reliant communities in madagascar using functional diversity and functional redundancy metrics. PLoS ONE, 6(9), e24107. https://doi.org/10.1371/journal.pone.0024107
Burrascano, S., Copiz, R., Del Vico, E., Fagiani, S., Giarrizzo, E., Mei, M., Mortelliti, A., Sabatini, F. M., & Blasi, C. (2015). Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology, 16(2), 244–253. https://doi.org/10.1556/168.2015.16.2.12
Butterfield, B. J., & Briggs, J. M. (2011). Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia, 165, 477–487.
Byun, C., de Blois, S., & Brisson, J. (2013). Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology. https://doi.org/10.1111/1365-2745.12016
Campbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O., & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176, 375–389.
Campetella, G., Botta-Dukát, Z., Wellstein, C., Canullo, R., Gatto, S., Chelli, S., Mucina, L., & Bartha, S. (2011). Patterns of plant trait-environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38–48. https://doi.org/10.1016/j.agee.2011.06.025
Carswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., Nobre, A. D., & Jarvis, P. G. (2000). Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology., 20(3), 179–186. 8 p.
Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C., & Villar-Salvador, P. (1998). Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 116, 57–66.
Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J., & Downes, B. J. (2014). Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Diversity and Distributions, 20, 1084–1096. https://doi.org/10.1111/ddi.12225
Cavender-Bares, J., Keen, A., & Miles, B. (2006). Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109–S122.
Chacón-Madrigal, E., Wolfgang, W., Hietz, P. & Dullinger, S. A stress-tolerance syndrome distinguishes endemic tropical trees from their widespread congeners. Unpublished.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martinez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Jarmila Pittermann, R., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752–755. https://doi.org/10.1038/nature11688
Cornelissen, J. H. C. (1996). An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology, 84, 573–582.
Cornelissen, J. H. C., Cerabolini, B., Castro-Diez, P., Villar-Salvador, P., Montserrat-Marti, G., Puyravaud, J. P., Maestro, M., Werger, M. J. A., & Aerts, R. (2003). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311–322.
Cornelissen, J. H. C., Diez, P. C., & Hunt, R. (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755–765.
Cornelissen, J. H. C., Quested, H. M., Gwynn-Jones, D., Van Logtestijn, R. S. P., De Beus, M. A. H., Kondratchuk, A., Callaghan, T. V., & Aerts, R. (2004). Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology, 18, 779–786.
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., van Bodegom, P., Brovkin, V., Chatain, A., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065–1071.
Craven, D., Braden, D., Ashton, M. S., Berlyn, G. P., Wishnie, M., & Dent, D. (2007). Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management, 238, 335–346.
Dahlin, K. M., Asner, G. P., & Field, C. B. (2013). Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences USA., 110(17), 6895–6900.
Dang-Le, A. T., Edelin, C., & Le-Cong, K. (2013). Ontogenetic variations in leaf morphology of the tropical rain forest species Dipterocarpus alatus Roxb. Ex G. Don. Trees, 27, 773. https://doi.org/10.1007/s00468-012-0832-2
De Frutos, Á., Navarro, T., Pueyo, Y., & Alados, C. L. (2015). Inferring resilience to fragmentation-induced changes in plant communities in a semi-arid Mediterranean ecosystem. PLoS ONE, 10, e0118837. https://doi.org/10.1371/journal.pone.0118837
Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., Montserrat-Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M. C., Shirvany, F. A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295–304.
Domingues, T. F., Martinelli, L. A., & Ehleringer, J. R. (2007). Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecology, 193, 101–112. https://doi.org/10.1007/s11258-006-9251-z
Domingues, T. F., Meir, P., Feldpausch, T. R., et al. (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33, 959–980.
Fagúndez, J., & Izco, J. (2008). Seed morphology of two distinct species of Erica L. (Ericaceae). Acta Botanica Malacitana, 33, 1–9.
Fitter, A. H., & Peat, H. J. (1994). The ecological Flora database. Journal of Ecology, 82, 415–425.
Fonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964–977.
Forgiarini, C., Souza, A. F., Longhi, S. J., & Oliveira, J. M. (2015). In the lack of extreme pioneers: Trait relationships and ecological strategies of 66 subtropical tree species. Journal of Plant Ecology, 8, 359–367. https://doi.org/10.1093/jpe/rtu028
Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P., & Aerts, R. (2010). Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98, 362–373.
Fyllas, N. M., Patino, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., Paiva, R., Schwarz, M., Horna, V., Mercado, L. M., Santos, A., Arroyo, L., Jimenez, E. M., Luizao, F. J., Neill, D. A., Silva, N., Prieto, A., Rudas, A., Silviera, M., … Lloyd, J. (2009). Basin-wide variations in foliar properties of Amazonian forest: Phylogeny, soils and climate. Biogeosciences, 6, 2677–2708.
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., … Zarovali, M. P. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99, 967–985.
Giarrizzo, E., Burrascano, S., Chiti, T., de Bello, F., Lepš, J., Zavattero, L., & Blasi, C. (2016). Re-visiting historical semi-natural grasslands in the Apennines to assess patterns of changes in species composition and functional traits. Applied Vegetation Science. https://doi.org/10.1111/avsc.12288
Gonzalez-Akre, E., McShea, W., Bourg, N., & Anderson-Teixeira, K. (2015). Leaf traits data (SLA) for 56 woody species at the Smithsonian Conservation Biology Institute-ForestGEO Forest dynamic plot. Front Royal, Virginia. USA [Data set]. Version 1.0. www.try-db.org
Gos, P., Loucougaray, G., Colace, M. P., Arnoldi, C., Gaucherand, S., Dumazel, D., Girard, L., Delorme, S., & Lavorel, S. (2016). Relative contribution of soil, management and traits to co-variations of multiple ecosystem properties in grasslands. Oecologia, 180, 1001. https://doi.org/10.1007/s00442-016-3551-3
Green, W. 2009. USDA PLANTS Compilation, version 1, 09-02-02. NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA 70874–74,490 USA. http://bricol.net/downloads/data/PLANTSdatabase/
Gutiérrez, A. G., & Huth, A. (2012). Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Systematics and Evolution., 14, 243–256.
Hattermann, D., Elstner, C., Markus, B.-R., & Lutz, E. Measurements from the project “Relative effects of local and regional factors as drivers for plant community diversity, functional trait diversity and genetic structure of species on Baltic uplift islands” funded by the German Research Foundation—DFG: BE 4143/5–1 and EC 209/12–1.
Hietz, P., Rosner, S., Hietz-Seifert, U., & Wright, S. J. (2017). Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytologist, 213, 170–180.
Higuchi, P., & Silva, A. C. (2013). Araucaria Forest Database.
Jennifer, S. (2010). Powers and Peter tiffin 2012 plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Functional Ecology, 24, 927–936. https://doi.org/10.1111/j.1365-2435.2010.01701.x
Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2014). Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems, 17, 808–819.
Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15, 976–991.
Kazakou, E., Vile, D., Shipley, B., Gallet, C., & Garnier, E. (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21–30.
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G. T. (2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27(5), 1254–1261.
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J. M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G. M., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the northwest European flora. Journal of Ecology, 96, 1266–1274.
Kraft, N. J. B., Valencia, R., & Ackerly, D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580–582.
Kühn, I., Durka, W., & Klotz, S. (2004). BiolFlor—A new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution, 10, 363–365.
Kurokawa, H., & Nakashizuka, T. (2008). Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology, 89, 2645–2656.
Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J., & Laliberte, E. (2011). Climatic constraints on trait-based forest assembly. Journal of Ecology, 99, 1489–1499.
Laughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. (2010). A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology, 24, 493–501.
Lhotsky B., Anikó Csecserits, Bence Kovács, & Zoltán Botta-Dukát. New plant trait records of the Hungarian Flora.
Li, R., Zhu, S., Chen, H. Y. H., John, R., Zhou, G., Zhang, D., Zhang, Q., & Ye, Q. (2015). Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? Ecology Letters, 18, 1181–1189. https://doi.org/10.1111/ele.12497
Loveys, B. R., Atkinson, L. J., Sherlock, D. J., Roberts, R. L., Fitter, A. H., & Atkin, O. K. (2003). Thermal acclimation of leaf and root respiration: An investigation comparing inherently fast- and slow-growing plant species. Global Change Biology, 9, 895–910.
Lukeš, P., Stenberg, P., Rautiainen, M., Mõttus, M., & Vanhatalo, K. M. (2013). Optical properties of leaves and needles for boreal tree species in Europe. Remote Sensing Letters, 4(7), 667–676.
Lusk, C. H., Kaneko, T., Grierson, E., & Clearwater, M. (2013). Correlates of tree species sorting along a temperature gradient in New Zealand rain forests: Seedling functional traits, growth and shade tolerance. Journal of Ecology, 101, 1531–1541.
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, Ü., Ordoñez, A., Reich, P. B., & Santiago, L. S. (2015c). Data from: Global effects of soil and climate on leaf photosynthetic traits and rates. Dryad Digital Repository https://doi.org/10.5061/dryad.j42m7
Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, Ü., Ordoñez, A., Reich, P. B., & Santiago, L. S. (2015b). Global soil and climate effects on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706–717.
Martinez-Garza, C., Bongers, F., & Poorter, L. (2013a). Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology and Management, 303, 35–45.
Medlyn, B. E., Badeck, F.-W., De Pury, D. G. G., Barton, C. V. M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M. E., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Roberntz, P., … Jarvis, P. G. (1999). Effects of elevated CO2 on photosynthesis in European forest species: A meta-analysis of model parameters. Plant, Cell and Environment, 22, 1475–1495.
Meir, P., Kruijt, B., Broadmeadow, M., Kull, O., Carswell, F., & Nobre, A. (2002). Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment., 25(3), 343–357. 15 p.
Meir, P., & Levy, P. E. (2007). Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology., 192(2), 277–287. 11 p.
Messier, J., McGill, B. J., & Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838–848.
Michaletz, S. T., & Johnson, E. A. (2006). A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, 36(11), 2839–2851.
Milla, R., & Reich, P. B. (2011). Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 107, 455–465.
Moretti, M., & Legg, C. (2009). Combining plant and animal traits to assess community functional responses to disturbance. Ecography, 32, 299309. https://doi.org/10.1111/j.1600-0587.2008.05524.x
Mori, A. S., Shiono, T., Haraguchi, T. F., Ota, A. T., Koide, D., Ohgue, T., Kitagawa, R., Maeshiro, R., Aung, T. T., Nakamori, T., Hagiwara, Y., Matsuoka, S., Ikeda, A., Hishi, T., Hobara, S., Mizumachi, E., Frisch, A., Thor, G., Fujii, S., … Gustafsson, L. (2015). Functional redundancy of multiple forest taxa along an elevational gradient: Predicting the consequences of non-random species loss. Journal of Biogeography, 42, 1383–1396. https://doi.org/10.1111/jbi.12514
Niinemets, U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453–469.
Ogaya, R., & Penuelas, J. (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: Photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137–148.
Onstein, R. E., Carter, R. J., Yaowu Xing, H., & LinderInstitute, P. (2014). Diversification rate shifts in the cape floristic region: The right traits in the right place at the right time. Perspectives in Plant Ecology, Evolution and Systematics, 16(6), 331–340. https://doi.org/10.1016/j.ppees.2014.08.002
Ordonez, J. C., van Bodegom, P. M., Witte, J. P. M., Bartholomeus, R. P., van Hal, J. R., & Aerts, R. (2010). Plant strategies in relation to resource supply in Mesic to wet environments: Does theory Mirror nature? American Naturalist, 175, 225–239.
Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J. M., Rodrigo, A., Espelta, J. M., Palacio, S., Fernández-Santos, B., Fernandes, P. M., & Pausas, J. G. (2009). Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90, 1420.
Penuelas, J., Sardans, J., Llusia, J., Owen, S., Carnicer, J., Giambelluca, T. W., Rezende, E. L., Waite, M., & Niinemets, Ü. (2010). Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16, 2171–2185.
Pierce, S., Brusa, G., Vagge, I., & Cerabolini, B. E. L. (2013). Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 27(4), 1002–1010.
Pillar, V. D., & Sosinski, E. E. (2003). An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science, 14, 323–332.
Poorter, H., Niinemets, U., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182, 565–588.
Prentice, I. C., Meng, T., Wang, H., Harrison, S. P., Ni, J., & Wang, G. (2011). Evidence for a universal scaling relationship of leaf CO2 drawdown along a moisture gradient. New Phytologist, 190, 169–180.
Preston, K. A., Cornwell, W. K., & DeNoyer, J. L. (2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170, 807–818.
Price, C. A., & Enquist, B. J. (2007). Scaling of mass and morphology in dicotyledonous leaves: An extension of the WBE model. Ecology, 88(5), 1132–1141.
Quested, H. M., Cornelissen, J. H. C., Press, M. C., Callaghan, T. V., Aerts, R., Trosien, F., Riemann, P., Gwynn-Jones, D., Kondratchuk, A., & Jonasson, S. E. (2003). Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology, 84, 3209–3221.
Reich, P. B., Oleksyn, J., & Wright, I. J. (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 160, 207–212.
Reich, P. B., Tjoelker, M. G., Pregitzer, K. S., Wright, I. J., Oleksyn, J., & Machado, J. L. (2008). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793–801.
Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (May 2011).
Royal Botanical Gardens KEW Seed Information Database (SID). http://data.kew.org/sid/
Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J., & Weller, E. (2007). Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9, 53–70.
Shiodera, S., Rahajoe, J. S., & Kohyama, T. (2008). Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology, 24, 121–133.
Shipley, B. (2002). Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology, 16(5), 682–689.
Shipley, B., & Vu, T. T. (2002). Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153, 359–364.
Siefert, A. (2012). Spatial patterns of functional divergence in old-field plant communities. Oikos, 121, 907–914.
Slot, M., Rey-Sanchez, C., Winter, K., & Kitajima, K. (2014). Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Functional Ecology, 28, 1074–1086. https://doi.org/10.1111/1365-2435.12263
Swaine, E. K. (2007). Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest. PhD thesis. University of Aberdeen.
Takkis, K. (2014). Changes in plant species richness and population performance in response to habitat loss and fragmentation. Dissertationes Biologicae Universitatis Tartuensis 255, 2014-04-07 http://hdl.handle.net/10062/39546
van de Weg, M. J., Grace, P. M. J., & Ramos, G. D. (2011). Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia. https://doi.org/10.1007/s00442-011-2068-z
van de Weg, M. J., Meir, P., Grace, J., & Atkin, O. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along the Amazon-Andes gradient in Peru. Plant Ecology & Diversity, 2(3), 243–254.
van der Plas, F., & Olff, H. (2014). Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah. Oecologia, 175, 639. https://doi.org/10.1007/s00442-014-2920-z
Vergutz, L., S. Manzoni, A. Porporato, R.F. Novais, and R.B. Jackson. 2012. A global database of carbon and nutrient concentrations of Green and senesced leaves [Data set]. Oak Ridge National Laboratory Distributed Active Archive Center. http://daac.ornl.gov. https://doi.org/10.3334/ORNLDAAC/1106
Vile, D. 2005. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations. [Doctoral thesis, Université de Sherbrook.]
Walker, A.P. 2014. A global data set of leaf photosynthetic rates, leaf N and P, and specific leaf area. [Data set]. Oak Ridge National Laboratory Distributed Active Archive Center. http://daac.ornl.gov. https://doi.org/10.3334/ORNLDAAC/1224
Willis, C. G., Halina, M., Lehman, C., Reich, P. B., Keen, A., McCarthy, S., & Cavender-Bares, J. (2010). Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, 33, 565–577.
Wilson, K. B., Baldocchi, D. D., & Hanson, P. J. (2000). Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20(9), 565–578.
Wirth, C., & Lichstein, J. W. (2009). The imprint of species turnover on old-growth Forest carbon balances - insights from a trait-based model of Forest dynamics. In C. Wirth, G. Gleixner, & M. Heimann (Eds.), Old-growth forests: Function, fate and value (pp. 81–113). Springer.
Wright, I. J., Ackerly, D. D., Bongers, F., Harms, K. E., Ibarra-Manriquez, G., Martinez-Ramos, M., Mazer, S. J., Muller-Landau, H. C., Paz, H., Pitman, N. C. A., Poorter, L., Silman, M. R., Vriesendorp, C. F., Webb, C. O., Westoby, M., & Wright, S. J. (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003–1015.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2011). Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 91, 3664–3674.
Xu, L. K., & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23, 865–877.