[en] The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors of gene regulation. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur in CD4+ T-cells. Moreover, histone acetylation and deacetylation inhibitors reverse the expression of multiple genes involved in SLE, indicating histone modification in SLE. Autoreactive T-cells and B-cells have been shown to alter the patterns of epigenetic changes in SLE patients. Understanding the molecular mechanisms involved in the pathogenesis of SLE is critical for the introduction of effective, target-directed and tolerated therapies. In this review, we summarize the recent findings that highlight the importance of epigenetic modifications and their mechanisms in SLE.
Disciplines :
Genetics & genetic processes
Author, co-author :
Farivar, Shirin ; Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
Shaabanpouraghamaleki, Fateme ; Université de Liège - ULiège > Faculté des Sciences > Form. doct. sc. (bioch., biol. mol. cel., bioinf. - paysage) ; Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
Language :
English
Title :
Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Fairhurst AM, Wandstrat AE, Wakeland EK. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Advances in immunology 2006; 92: 1-69.
Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: a comprehensive review. Journal of autoimmunity 2015; 64: 125-136.
Shiari R, Yegane MH, farivar S, Parvaneh VJ, Mirjavadi SA. Neuropsychiatric Symptoms as The first manifestation of juvenile systemic lupus erythematosus: a complicated case with Klinefelter’s syndrome. Iranian journal of child neurology 2014; 8(1): 62-65.
Tiffin N, Adeyemo A, Okpechi I. A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet journal of rare diseases 2013, 8: 2.
Chighizola C, Meroni PL. The role of environmental estrogens and autoimmunity. Autoimmunity reviews 2012; 11(6-7): A493-A501.
Cooney CM, Bruner GR, Aberle T, Namjou-Khales B, Myers LK, Feo L, Li S, D'Souza A, Ramirez A, Harley JB, Scofield RH. 46,X,del (X)(q13) Turner's syndrome women with systemic lupus erythematosus in a pedigree multiplex for SLE. Genes and immunity 2009; 10(5): 478-481.
Shiari R, Farivar S. Juvenile systemic lupus erythematosus associated with Klinefelter's syndrome: a case report. Reumatologia clinica 2010; 6(4): 212-213.
Molokhia M, McKeigue P. Systemic lupus erythematosus: genes versus environment in high risk populations. Lupus 2006; 15(11): 827-832.
Criswell LA. The genetic contribution to systemic lupus erythematosus. Bulletin of the NYU hospital for joint diseases 2008; 66(3): 176-183.
Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: putting the pieces together. Genes and immunity 2002; 3: S71-S85.
Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, Doménech I, Aydintug AO, Jedryka-Góral A, de Ramón E. Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. Medicine (Baltimore) 1993; 72(2): 113-124.
Graham DSC. Genome-wide association studies in systemic lupus erythematosus: a perspective. Arthritis research and therapy 2009; 11(4): 119.
Tsao BP. The genetics of human systemic lupus erythematosus. Trends in immunology 2003; 24(11): 595-602.
Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. Journal of autoimmunity 2013; 41: 25-33.
Farivar S, Tezerjani MD, Parvini N, Shiari R. Association of 1661A/G Cytotoxic T lymphocyte Antigen-4 (CTLA-4) Gene Polymorphism With a Clinical Subset of Iranian Children With Systemic Lupus Erythematosus. Thrita 2014; 3(1): 10.5812/thrita. 16020.
Parvaneh VJ, Shiari R, Mahbobi L, Babaei D. Chronic granulomatous disease associated with systemic lupus erythematosus and systemic onset juvenile idiopathic arthritis. Pediatric Rheumatology online journal 2014; 12(Suppl 1): P169.
Beccastrini E, D'Elios MM, Emmi G, Silvestri E, Squatrito D, Prisco D, Emmi L. Systemic lupus erythematosus: immunopathogenesis and novel therapeutic targets. Internationakl journal of immunopathology and pharmacolofy 2013; 26(3): 585-596.
Farivar S, Hassani M, Shiari R. Interleukin-1 as a key factor in the development of inflammatory diseases. Archives of pediatric infectious diseases 2014; 2(4): e18177.
Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W, Zhang Q, Zhang P, Yu X, Xia Y, Yi N, Gao F, Wang L, Yung S, Chan TM, Sawalha AH, Richardson B, Gershwin ME, Li N, Lu Q. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. Journal of autoimmunity 2014; 54: 127-136.
Zhao M, Wang J, Liao W, Li D, Li M, Wu H, Zhang Y, Gershwin ME, Lu Q. Increased 5-hydroxymethyl-cytosine in CD4+ T cells in systemic lupus erythematosus. Journal of autoimmunity 2016; 69: 64-73.
Yan S, Yim LY, Lu L, Lau CS, Chan VSF. MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune network 2014; 14(3): 138-148.
Liu CC, Ou T, Wu CC, Li RN, Lin YC, Lin CH, Tsai WC, Liu HW, Yen JH. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus 2011; 20(2): 131-136.
Sawalha AH, Webb R, Han S, Kelly JA, Kaufman KM, Kimberly RP, Alarcón-Riquelme ME, James JA, Vyse TJ, Gilkeson GS, Choi CB, Scofield RH, Bae SC, Nath SK, Harley JB. Common variants within MECP2 confer risk of systemic lupus erythematosus. PloS one 2008; 3(3): e1727.
Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, Chatham WW, Kimberly RP. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS genetics 2013; 9(8): e1003678.
Patel DR, Richardson BC. Epigenetic mechanisms in lupus. Current opinion in rheumatology 2010; 22(5): 478-482.
Wang G, Zhang M, Li X, Zhang H, Chen W, Kan M, QWang YM. Ultraviolet B exposure of peripheral blood mononuclear cells of patients with systemic lupus erythematosus inhibits DNA methylation. Lupus 2009; 18(12): 1037-1044.
Wu Z, Li X, Qin H, Zhu X, Xu J, Shi W. Ultraviolet B enhances DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus via inhibiting DNMT1 catalytic activity. Journal of dermatological science 2013; 71(3): 167-173.
Yung RL, Richardson BC. Role of T cell DNA methylation in lupus syndromes. Lupus 1994; 3(6): 487-491.
Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, Richardson B. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis and rheumatology 2002; 46(5): 1282-1291.
Zhou Y, Lu Q. DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmunity reviews 2008; 7(5): 376-383.
Batchelor J, Welsh K, Tinoco RM, Dollery C, Hughes GR, Bernstein R, Ryna P, Naish PF, Aber GM, Bing RF, Russell GI. Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. The lancet 1980; 1(8178): 1107-1109.
Zhu X, Li F, Yang B, Liang J, Qin H, Xu J. Effects of ultraviolet B exposure on DNA methylation in patients with systemic lupus erythematosus. Experimental and therapeutic medicine 2013; 5(4): 1219-1225.
Richardson BC. Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. The Journal of nutrition 2002; 132(8 Suppl): 2401S-2405S.
Richardson B. Impact of aging on DNA methylation. Ageing research reviews 2003; 2(3): 245-261.
Januchowski Ra, Prokop J, Jagodzinski PP. Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. Journal of applied genetics 2004; 45(2): 237-248.
Pan Y, Sawalha AH. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Translational research 2009; 153(1): 4-10.
Stewart JJ. The female X-inactivation mosaic in systemic lupus erythematosus. Immunology today 1998; 19(8): 352-357.
McDonald G, Cabal N, Vannier A, Umiker B, Yin RH, Orjalo AV Jr, Johansson HE, Han JH, Imanish-Kari T. Female bias in systemic lupus erythematosus is associated with the differential expression of X-linked toll-like receptor 8. Frontiers in immunology 2015; 6: 457.
Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. The journal of immunology 2007; 179(9): 6352-6358.
Shirakawa F, Yamashita U, Suzuki H. Decrease in HLA-DR-positive monocytes in patients with systemic lupus erythematosus (SLE). The journal of immunology 1985; 134(6): 3560-3562.
Sano H, Compton LJ, Shiomi N, Steinberg AD, Jackson RA, Sasaki T. Low expression of human histocompatibility leukocyte antigen-DR is associated with hypermethylation of human histocompatibility leukocyte antigen-DR alpha gene regions in B cells from patients with systemic lupus erythematosus. Journal of clinical investigation 1985; 76(4): 1314-1322.
Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochemical Journal 1998; 332(Pt 2): 281-292.
Newton AC. Protein kinase C: structure, function, and regulation. Journal of biological chemistry 1995; 270(480): 28495-28498.
Edwards AS, Newton AC. Phosphorylation at conserved carboxyl-terminal hydrophobic motif regulates the catalytic and regulatory domains of protein kinase C. Journal of biological chemistry 1997; 272(29): 18382-18390.
Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. Impaired T cell protein kinase Cδ activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. The journal of immunology 2007; 179: 5553-5563.
Sawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D, Osban J, Knowlton N, Johnson K, Richardson B, Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes and immunity 2008; 9(4): 368-378.
Oelke K, Richardson B. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression. International reviews of immunology 2004; 23(3-4): 315-331.
Gorelik GJ, Yarlagadda S, Patel DR, Richardson BC. Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells. Arthritis and rheumatology 2012; 64(9): 2964-2974.
Nanthapisal S, Omoyinmi E, Murphy C, Standing A, Eisenhut M, Eleftheriou D, Brogan PA. Early-onset juvenile SLE associated with a novel mutation in protein kinase C δ. Pediatrics 2017; 139(1): e20160781.
Zhao S, Long H, Lu Q. Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clinical reviews in allergy and immunology 2010; 39(1): 3-9.
Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH, Rehimi H. The role of miRNA in inflammation and autoimmunity. Autoimmunity reviews 2013; 12(12): 1160-1165.
Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PloS one 2010; 5(12): e14302.
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N. MicroRNA‐146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis and rheumatology 2009; 60(4): 1065-1075.
Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. Journal of autoimmunity 2011; 37(3): 180-189.
Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N. MicroRNA‐125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis and rheumatology 2010; 62(11): 3425-3435.
Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, Langefeld CD, Kelly JA, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Alarcón GS, Vyse TJ, Pons-Estel BA, Argentine Collaborative Group, Freedman BI, Gaffney PM, Sivils KM, James JA, Gregersen PK, Anaya JM, Niewold TB, Merrill JT, Criswell LA, Stevens AM, Boackle SA, Cantor RM, Chen W, Grossman JM, Hahn BH, Harley JB, Alarcόn-Riquelme ME, BIOLUPUS and GENLES networks, Brown EE, Tsao BP. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS genetics 2013; 9(2): e1003336.
Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, Qiu X, Dai Y, Yung S, Chan TM, Lu Q. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clinical epigenetics 2015; 7: 24.
Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, Li PK, Szeto CC. Serum and urinary cell–free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. The Journal of rheumatology 2010; 37(12): 2516-2522.
Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS, Xie QH, Zhuang Y, Zou QM, Mao XH. Identification of MyD88 as a novel target of miR‐155, involved in negative regulation of Helicobacter pylori‐induced inflammation. FEBS letters 2010; 584(8): 1481-1486.
Chafin CB, Regna NL, Dai R, Caudell DL, Reilly CM. MicroRNA-let-7a expression is increased in the mesangial cells of NZB/W mice and increases IL-6 production in vitro. Autoimmunity 2013; 46(6): 351-362.
Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. The journal of immunology 2010; 184(12): 6773-6781.
Hewagama A. Role of X-chromosome encoded miRNAs in autoimmunity: suppressing the suppressor and female predisposition. Rheumatology: current research 2013; 3: 118.
Amarilyo G, La Cava A. miRNA in systemic lupus erythematosus. Clinical immunology 2012; 144(1): 26-31.
Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H, Lu Q. MicroRNA‐126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis and rheumatology 2011; 63(5): 1376-1386.
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature immunology 2008; 9(4): 405-414.
Altorok N, Sawalha AH. Epigenetics in the pathogenesis of systemic lupus erythematosus. Current opinion in rheumatology 2013; 25(5): 569-576.
Sawasdikosol S, Alzabin S, Burakoff S. Hematopoietic progenitor kinase 1 for modulation of an immune response. Retrieved from: https://patents.google.com/patent/US20070087988A1/lt.
Zhou Y, Qiu X, Luo Y, Yuan J, Li Y, Zhong Q, Zhao M, Lu Q. Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 2011; 20(13): 1365-1371.
Dai Y, Zhang L, Hu C, Zhang Y. Genome-wide analysis of histone H3 lysine 4 trimethylation by ChIP-chip in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Clinical and experimental rheumatology 2010; 28(2): 158-168.
Rauen T, Hedrich CM, Juang YT, Tenbrock K, Tsokos GC. cAMP-responsive element modulator (CREM) α protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus. Journal of biological chemistry 2011; 286(50): 43437-43446.
Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes and immunity 2010; 11(2): 124-133.
Knight JS, Kaplan MJ. Lupus neutrophils:‘NET’gain in understanding lupus pathogenesis. Current opinion in rheumatology 2012; 24(5): 441-450.
Liu CL, Tangsombatvisit S, Rosenberg JM, Mandelbaum G, Gillespie EC, Gozani OP, Alizadeh AA, Utz PJ. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis research and therapy 2012; 14(1): R25.
Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J, Vlag J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clinical and experimental immunology 2015; 179(1): 68-74.
Sullivan KE, Suriano A, Dietzmann K, Lin J, Goldman D, Petri MA. The TNFα locus is altered in monocytes from patients with systemic lupus erythematosus. Clinical immunology 2007; 123(1): 74-81.
Leung YT, Shi L, Maurer K, Song L, Zhang Z, Petri M, Sullivan KE. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015; 10(3): 191-199.
Sui W, Tan Q, Yang M, Yan Q, Lin H, Ou M, Xue W, Chen J, Zou T, Jing H, Guo L, Cao C, Sun Y, Cui Z, Dai Y. Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip. International journal of molecular medicine 2015; 35(5): 1467-1479.
Singer N, Richardson B, Powers D, Hooper F, Lialios F, Endres J, Bott CM, Fox DA. Role of the CD6 glycoprotein in antigen-specific and autoreactive responses of cloned human T lymphocytes. Immunology 1996; 88(4): 537-543.
Hedrich CM, Crispín JC, Rauen T, Ioannidis C, Koga T, Rodriguez NR, Apostolidis SA, Kyttaris VC, Tsokos GC. cAMP responsive element modulator (CREM) α mediates chromatin remodeling of CD8 during the Generation of CD3+ CD4− CD8− T cells. Journal of biological chemistry 2014; 289(4): 2361-2370.
Apostolidis SA, Lieberman LA, Kis-Toth K, Crispín JC, Tsokos GC. The dysregulation of cytokine networks in systemic lupus erythematosus. Journal of interferon and cytokine research 2011; 31(10): 769-779.
Crispín JC, Hedrich CM, Tsokos GC. Gene-function studies in systemic lupus erythematosus. Nature reviews rheumatology 2013; 9(8): 476-484.
Kim SJ, Gregersen PK, Diamond B. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. The Journal of clinical investigation 2013; 123(2): 823-833.
Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. The journal of immunology 2009; 183(3): 2150-2158.
Zhou H, Hasni SA, Perez P, Tandon M, Jang SI, Zheng C, Kopp JB, Austin H 3rd, Balow JE, Alevizos I, Illei GG. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. Journal of the American society of nephrology 2013; 24(7): 1073-1087.
Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. The journal of immunology 2010; 185(10): 6226-6233.
Lashine YA, Salah S, Aboelenein HR, Abdelaziz AI. Correcting the expression of miRNA-155 represses PP2Ac and enhances the release of IL-2 in PBMCs of juvenile SLE patients. Lupus 2015; 24(3): 240-247.
Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proceedings of the national academy of sciences 2009; 106(8): 2735-2740.
Kang SG, Liu W-H, Lu P, Jin HY, Lim HW, Shepherd J, et al. MicroRNAs of the miR-17 [sim] 92 family are critical regulators of TFH differentiation. Nature immunology 2013,14:849-857.
Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, Liang D, He D, Wang W, Shi Y, Harely JB, Shen N, Qian Y. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature medicine 2012; 18(7): 1077-1086.
Liu Y, Dong J, Mu R, Gao Y, Tan X, Li Y, Li Z, Yang G. MicroRNA‐30a Promotes B Cell Hyperactivity in Patients With Systemic Lupus Erythematosus by Direct Interaction With Lyn. Arthritis and rheumatology 2013; 65(6): 1603-1611.
Fan W, Liang D, Tang Y, Qu B, Cui H, Luo X, Huang X, Chen S, Higgs BW, Jallal B, Yao Y, Harely JB, Shen N. Identification of microRNA‐31 as a novel regulator contributing to impaired interleukin‐2 production in T cells from patients with systemic lupus erythematosus. Arthritis and rheumatology 2012; 64(11): 3715-3725.
Yin H, Wu H, Zhao M, Zhang Q, Long H, Fu S, Lu Q. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 trimethylation levels in CD4+ T cells of patients with systemic lupus erythematosus. Oncotarget 2017; 8(30): 48938-48947.
Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. The journal of immunology 2008; 181(12): 8761-8766.
Hedrich CM, Rauen T, Tsokos GC. cAMP-responsive element modulator (CREM) α protein signaling mediates epigenetic remodeling of the human interleukin-2 gene implications in systemic lupus erythematosus. Journal of biological chemistry 2011; 286(50): 43429-43436.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.