[en] Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.
Precision for document type :
Review article
Disciplines :
Food science
Author, co-author :
Qiao, Jiangtao ; Université de Liège - ULiège > TERRA Research Centre
Zhang, Yu; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Haubruge, Eric ; Université de Liège - ULiège > GxABT : Services généraux du site > Site GxABT - Gestion de site
Wang, Kai ; Université de Liège - ULiège > TERRA Research Centre
El-Seedi, Hesham R; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden, International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China, Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
Dong, Jie; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
Xu, Xiang; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address: xuxiang@caas.cn
Zhang, Hongcheng ; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China. Electronic address: 460414874@qq.com
Language :
English
Title :
New insights into bee pollen: Nutrients, phytochemicals, functions and wall-disruption.
This research was supported by the Modern Agro-industry Technology Research System (CARS-45-KXJ19), the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2019-IAR) from the Ministry of Agriculture of P.R. China, the China Scholarship Council (CSC).
Aabed, K., Bhat, R. S., Moubayed, N., Al-Mutiri, M., Al-Marshoud, M., Al-Qahtani, A., & Ansary, A. (2019). Ameliorative effect of probiotics (Lactobacillus paracaseii and Protexin®) and prebiotics (propolis and bee pollen) on clindamycin and propionic acid-induced oxidative stress and altered gut microbiota in a rodent model of autism. Cellular and Molecular Biology, 65(1), 1-7. 10.14715/cmb/2019.65.1.1.
Adaškevičiūtė, V., Kaškonienė, V., Barčauskaitė, K., Kaškonas, P., Maruška, A., The impact of fermentation on bee pollen polyphenolic compounds composition. Antioxidants, 11(4), 2022, 645, 10.3390/antiox11040645.
Anjos, O., Fernandes, R., Cardoso, S.M., Delgado, T., Farinha, N., Paula, V., Carpes, S.T., Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. Lwt 111 (2019), 869–875, 10.1016/j.lwt.2019.05.105.
Awad, T., Moharram, H., Shaltout, O., Asker, D., Youssef, M., Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 48:2 (2012), 410–427 https://doi:10.1016/j.foodres.2012.05.004.
Aylanc, V., Falcão, S.I., Ertosun, S., Vilas-Boas, M., From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends in Food Science & Technology 109 (2021), 464–481, 10.1016/j.tifs.2021.01.042.
Aylanc, V., Larbi, S., Calhelha, R., Barros, L., Rezouga, F., Rodríguez-Flores, M.S., Falcão, S.I., Evaluation of antioxidant and anticancer activity of mono-and polyfloral moroccan bee pollen by characterizing phenolic and volatile compounds. Molecules, 28(2), 2023, 835, 10.3390/molecules28020835.
Aylanc, V., Tomás, A., Russo-Almeida, P., Falcão, S.I., Vilas-Boas, M., Assessment of bioactive compounds under simulated gastrointestinal digestion of bee pollen and bee bread: Bioaccessibility and antioxidant activity. Antioxidants, 10(5), 2021, 651, 10.3390/antiox10050651.
Barta, D.G., Cornea-Cipcigan, M., Margaoan, R., Vodnar, D.C., Biotechnological processes simulating the natural fermentation process of bee bread and therapeutic properties—An overview. Frontiers in Nutrition, 9, 2022, 871896, 10.3389/fnut.2022.871896.
Campos, M.G., Bogdanov, S., de Almeida-Muradian, L.B., Szczesna, T., Mancebo, Y., Frigerio, C., Ferreira, F., Pollen composition and standardisation of analytical methods. Journal of Apicultural Research 47:2 (2008), 154–161, 10.1080/00218839.2008.11101443.
Campos, M.G.R., Frigerio, C., Lopes, J., Bogdanov, S., What is the future of bee-pollen?. Journal of Apiproduct & Apimedical Science 2:4 (2010), 131–144, 10.1080/00218839.2008.11101443.
Carpes, S., De Alencar, S., Cabral, I., Oldoni, T., Mourão, G.B., Haminiuk, C., Masson, M., Polyphenols and palynological origin of bee pollen of Apis mellifera L. from Brazil. Characterization of polyphenols of bee pollen. CyTA-Journal of Food 11:2 (2013), 150–161, 10.1080/19476337.2012.711776.
Cavaliere, C., Foglia, P., Pastorini, E., Samperi, R., Laganà, A., Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry 19:21 (2005), 3143–3158, 10.1002/rcm.2185.
Čeksteryté, V., Kurtinaitienė, B., Venskutonis, P.R., Pukalskas, A., Kazernavičiūtė, R., Balžekas, J., Evaluation of antioxidant activity and flavonoid composition in differently preserved bee products. Czech Journal of Food Sciences 34:2 (2016), 133–142, 10.17221/312/2015-CJFS.
Chabot, S., Dizeyi, N., Ramnemark, L., Lluel, P., Abrahamsson, P.-A., Grabe, M., Impact of Cernitin™ on induced chronic prostatitis in animal model for understanding management of lower urinary tract symptoms. Phytomedicine Plus, 1(4), 2021, 100057, 10.1016/j.phyplu.2021.100057.
Chantarudee, A., Phuwapraisirisan, P., Kimura, K., Okuyama, M., Mori, H., Kimura, A., Chanchao, C., Chemical constituents and free radical scavenging activity of corn pollen collected from Apis mellifera hives compared to floral corn pollen at Nan, Thailand. BMC Complementary and Alternative Medicine 12:1 (2012), 1–12, 10.1186/1472-6882-12-45.
Chehraghi, M., Jafarizadeh-Malmiri, H., Javadi, A., Anarjan, N., Effects of planetary ball milling and ultrasonication on the nutrients and physico–chemical and biological properties of the honey bee pollen. Journal of Food Measurement and Characterization, 1–10, 2023, 10.1007/s11694-023-01913-9.
Chen, S., Zhao, H., Cheng, N., Cao, W., Rape bee pollen alleviates dextran sulfate sodium (DSS)-induced colitis by neutralizing IL-1β and regulating the gut microbiota in mice. Food Research International 122 (2019), 241–251, 10.1016/j.foodres.2019.04.022.
Ćirić, J., Haneklaus, N., Rajić, S., Baltić, T., Lazić, I.B., Đorđević, V., Chemical composition of bee bread (perga), a functional food: A review. Journal of Trace Elements and Minerals, 100038, 2022, 10.1016/j.jtemin.2022.100038.
Clarke, D., Morley, E., Robert, D., The bee, the flower, and the electric field: Electric ecology and aerial electroreception. Journal of Comparative Physiology A 203 (2017), 737–748, 10.1007/s00359-017-1176-6.
Daudu, O.M., Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes assessment. Journal of Apicultural Science 63:2 (2019), 315–325, 10.2478/jas-2019-0020.
De‐Melo, A. A. M., Estevinho, L. M., Moreira, M. M., Delerue‐Matos, C., Freitas, A. d. S. d., Barth, O. M., & Almeida‐Muradian, L. B. d. (2018). Phenolic profile by HPLC‐MS, biological potential, and nutritional value of a promising food: Monofloral bee pollen. Journal of Food Biochemistry, 42(5), e12536. 10.1111/jfbc.12536.
Denisow, B., Denisow-Pietrzyk, M., Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture 96:13 (2016), 4303–4309, 10.1002/jsfa.7729.
Di Cagno, R., Filannino, P., Cantatore, V., Gobbetti, M., Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread. Food Microbiology 82 (2019), 218–230, 10.1016/j.fm.2019.02.007.
Dong, J., Gao, K., Wang, K., Xu, X., Zhang, H., Cell wall disruption of rape bee pollen treated with combination of protamex hydrolysis and ultrasonication. Food Research International 75 (2015), 123–130, 10.1016/j.foodres.2015.05.039.
Dong, J., Yang, Y., Wang, X., Zhang, H., Fatty acid profiles of 20 species of monofloral bee pollen from China. Journal of Apicultural Research 54:5 (2015), 503–511, 10.1080/00218839.2016.1173427.
El-Khatib, F.M., Yafi, N.R., Yafi, F.A., Over-the-Counter Supplements and Men's Health. Effects of Lifestyle on Men's Health, 2019, Elsevier, 281–300, 10.1016/B978-0-12-816665-9.00015-9.
El Ghouizi, A., Bakour, M., Laaroussi, H., Ousaaid, D., El Menyiy, N., Hano, C., Lyoussi, B., Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants, 12(3), 2023, 557, 10.3390/antiox12030557.
El Ghouizi, A., El Menyiy, N., Falcão, S. I., Vilas-Boas, M., & Lyoussi, B. (2020). Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Veterinary World, 13(7), 1251. 10.14202/vetworld.2020.1251-1261.
Fatrcová-Šramková, K., Nôžková, J., Máriássyová, M., Kačániová, M., Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. Journal of Environmental Science and Health, Part B 51:3 (2016), 176–181, 10.1080/03601234.2015.1108811.
Feng, Z.-f., Chen, X. f., & Di, D. l. (2012). Online extraction and isolation of highly polar chemical constituents from B rassica napus L. pollen by high shear technique coupled with high‐performance counter‐current chromatography. Journal of separation science, 35(5-6), 625-632. 10.1002/jssc.201100992.
Gao, K., Zhang, H., Dong, J., Protamex hydrolysis and cell wall of rape bee-pollen. Food Science 32:20 (2011), 99–103.
Gardana, C., Del Bo, C., Quicazán, M.C., Corrrea, A.R., Simonetti, P., Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis 73 (2018), 29–38, 10.1016/j.jfca.2018.07.009.
Hu, Y., Chen, S., Yan, W., Ji, L., Shao, M., Sun, Z., Li, X., Rape bee pollen alleviates renal tissue damage in diabetic rats via anti-inflammation, anti-oxidation, and modulating gut microbiota. eFood, 4(4), 2023, e101.
Jethon, Z., Kielan-Bak, Z., Tara, B., & Ziolkowska, B. Effect of Cernilton on Anaerobic Metabolism.
Kacemi, R., Campos, M.G., Translational research on bee pollen as a source of nutrients: a scoping review from bench to real world. Nutrients, 15(10), 2023, 2413, 10.3390/nu15102413.
Karabagias, I.K., Karabagias, V.K., Gatzias, I., Riganakos, K.A., Bio-functional properties of bee pollen: the case of “bee pollen yoghurt”. Coatings, 8(12), 2018, 423, 10.3390/coatings8120423.
Keskin, M., Özkök, A., Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech Journal of Food Sciences 38:4 (2020), 203–208, 10.17221/79/2020-CJFS.
Ketkar, S.S., Rathore, A.S., Lohidasan, S., Rao, L., Paradkar, A.R., Mahadik, K.R., Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. Journal of Integrative Medicine 12:4 (2014), 379–389, 10.1016/S2095-4964(14)60033-9.
Khalifa, S. A., Elashal, M. H., Yosri, N., Du, M., Musharraf, S. G., Nahar, L., … Zou, X. (2021). Bee pollen: Current status and therapeutic potential. Nutrients, 13(6), 1876. doi.org/10.3390/nu13061876.
Khalil, F.A., El-Sheikh, N.M., The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity if sodium fluoride in rats. Journal of American Science 11:6 (2010), 310–316 http://www.americanscience.org.
Kieliszek, M., Piwowarek, K., Kot, A.M., Błażejak, S., Chlebowska-Śmigiel, A., Wolska, I., Pollen and bee bread as new health-oriented products: A review. Trends in Food Science & Technology 71 (2018), 170–180, 10.1016/j.tifs.2017.10.021.
Kim, S.B., Liu, Q., Ahn, J.H., Jo, Y.H., Turk, A., Hong, I.P., Lee, M.K., Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorganic Chemistry 81 (2018), 127–133, 10.1016/j.bioorg.2018.08.014.
Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L., Olczyk, K., Bee pollen: Chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine, 2015, 2015, 10.1155/2015/297425.
Kostić, A.Ž., Milinčić, D.D., Gašić, U.M., Nedić, N., Stanojević, S.P., Tešić, Ž.L., Pešić, M.B., Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. Lwt, 112, 2019, 108244, 10.1016/j.lwt.2019.06.011.
Larbi, S., Aylanc, V., Rodríguez-Flores, M.S., Calhelha, R.C., Barros, L., Rezouga, F., Vilas-Boas, M., Differentiating between monofloral portuguese bee pollens using phenolic and volatile profiles and their impact on bioactive properties. Molecules, 28(22), 2023, 7601, 10.3390/molecules28227601.
Leander, G., A preliminary investigation on the therapeutic effect of Cernilton N in chronic prostatovesiculitis. Svenska Lakartidningen, 59(45), 1962, 3296.
Li, Q.-Q., Wang, K., Marcucci, M.C., Sawaya, A.C.H.F., Hu, L., Xue, X.-F., Hu, F.-L., Nutrient-rich bee pollen: A treasure trove of active natural metabolites. Journal of Functional Foods 49 (2018), 472–484, 10.1016/j.jff.2018.09.008.
Li, Q., Liang, X., Zhao, L., Zhang, Z., Xue, X., Wang, K., Wu, L., UPLC-Q-exactive orbitrap/MS-based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti-inflammatory properties. Journal of Agricultural and Food Chemistry 65:32 (2017), 6848–6860, 10.1021/acs.jafc.7b02285.
Liu, G., Tang, H., Xie, R., Chen, J., Bai, W., Advance on cell wall disruption method of bee pollen. Food Research and Development 35:12 (2014), 102–104.
Manning, R., Fatty acids in pollen: A review of their importance for honey bees. Bee World 82:2 (2001), 60–75, 10.1080/0005772X.2001.11099504.
Nakase, K., Kimura, I., Kimura, M., Effects of pollen-extract components, diamines and derivatives of feruloylputrescine on isolated bladder and urethral smooth muscles of mice. The Japanese Journal of Pharmacology 53:2 (1990), 157–164, 10.1254/jjp.53.157.
Negri, G., Barreto, L. M. R. C., Sper, F. L., Carvalho, C. d., & Campos, M. d. G. R. (2018). Phytochemical analysis and botanical origin of Apis mellifera bee pollen from the municipality of Canavieiras, Bahia State, Brazil. Brazilian Journal of Food Technology, 21. 10.1590/1981-6723.17616.
Negri, G., Teixeira, E. W., Florêncio Alves, M. L. T. M., Moreti, A. C. d. C. C., Otsuk, I. P., Borguini, R. G., & Salatino, A. (2011). Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. Journal of agricultural and food chemistry, 59(10), 5516-5522. 10.1021/jf200602k.
Olas, B., Bee products as interesting natural agents for the prevention and treatment of common cardiovascular diseases. Nutrients, 14(11), 2022, 2267, 10.3390/nu14112267.
Othman, Z. A., Wan Ghazali, W. S., Noordin, L., Mohd. Yusof, N. A., & Mohamed, M. (2019). Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants, 9(1), 33. 10.3390/antiox9010033.
Ozkan, K., Sagcan, N., Ozulku, G., Sagdic, O., Toker, O.S., Muz, M.N., Bioactive and bioaccessibility characteristics of honeybee pollens collected from different regions of Turkey. Journal of Food Measurement and Characterization 12 (2018), 581–587, 10.1007/s11694-017-9670-7.
Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., Estevinho, L.M., Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology 63 (2014), 233–239, 10.1016/j.fct.2013.11.010.
Pereira Gomes, A. N., Camara, C. A., Sousa, A. d. S., dos Santos, F. d. A. R., Campos, M. G., & Silva, T. M. S. (2022). Chemical composition and free radical-scavenging activities of monofloral bee pollen from Mimosa pudica L. Journal of Apicultural Research, 1-8. 10.1080/00218839.2022.2056290.
Qiao, J., Feng, Z., Zhang, Y., Xiao, X., Dong, J., Haubruge, E., Zhang, H., Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chemistry, 405, 2023, 134800, 10.1016/j.foodchem.2022.134800.
Qiao, J., Xiao, X., Wang, K., Haubruge, E., Dong, J., Zhang, H., Rapeseed bee pollen alleviates chronic non-bacterial prostatitis via regulating gut microbiota. Journal of the Science of Food and Agriculture, 2023, 10.1002/jsfa.12878.
Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., Lucini, L., UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science & Technology 54:2 (2019), 335–346, 10.1111/ijfs.13941.
Rodríguez-Flores, M.S., Escuredo, O., Seijo, M.C., Rojo, S., Vilas-Boas, M., Falcão, S.I., Phenolic profile of castanea bee pollen from the northwest of the Iberian Peninsula. Separations, 10(4), 2023, 270, 10.3390/separations10040270.
Rzepecka-Stojko, A., Stojko, J., Jasik, K., Buszman, E., Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients, 9(12), 2017, 1369, 10.3390/nu9121369.
Saavedra, K.I., Rojas, C., Delgado, G.E., Características polínicas y composición química del polen apícola colectado en Cayaltí (Lambayeque-Perú). Revista chilena de nutrición 40:1 (2013), 71–78, 10.4067/S0717-75182013000100011.
Su, J., Yang, X., Lu, Q., Liu, R., Antioxidant and anti-tyrosinase activities of bee pollen and identification of active components. Journal of Apicultural Research 60:2 (2021), 297–307, 10.1080/00218839.2020.1722356.
Tao, Y., Yin, S., Fu, L., Wang, M., Meng, L., Li, F., Li, Q., Identification of allergens and allergen hydrolysates by proteomics and metabolomics: A comparative study of natural and enzymolytic bee pollen. Food Research International, 158, 2022, 111572, 10.1016/j.foodres.2022.111572.
Thakur, M., Nanda, V., Assessment of physico-chemical properties, fatty acid, amino acid and mineral profile of bee pollen from India with a multivariate perspective. Journal of Food & Nutrition Research, 57(4), 2018.
Thakur, M., Nanda, V., Composition and functionality of bee pollen: A review. Trends in Food Science & Technology 98 (2020), 82–106, 10.1016/j.tifs.2020.02.001.
Thakur, M., Nanda, V., Exploring the physical, functional, thermal, and textural properties of bee pollen from different botanical origins of India. Journal of Food Process Engineering, 43(1), 2020, e12935.
Thorpe, A., Neal, D., Benign prostatic hyperplasia. The Lancet 361:9366 (2003), 1359–1367, 10.1016/S0140-6736(03)13073-5.
Tutun, H., Kaya, M.M., Usluer, M.S., Kahraman, H.A., Bee pollen: Its antioxidant activity. Uludağ Arıcılık Dergisi 21:1 (2021), 119–131, 10.31467/uluaricilik.896045.
Urcan, A.C., Criste, A.D., Dezmirean, D.S., Mărgăoan, R., Caeiro, A., Graça Campos, M., Similarity of data from bee bread with the same taxa collected in India and Romania. Molecules, 23(10), 2018, 2491, 10.3390/molecules23102491.
Vit, P., Bertha, S., Silvia, P.R., Ruíz, J., Maza, F., María, P.-V., Elizabeth, P.-P., Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture, 78–84, 2016, 10.9755/ejfa.2015-05-245.
Wang, J., Chen, Y., Zhao, L., Zhang, Y., Fang, X., Lipidomics reveals the molecular mechanisms underlying the changes in lipid profiles and lipid oxidation in rape bee pollen dried by different methods. Food Research International, 162, 2022, 112104, 10.1016/j.foodres.2022.112104.
Wang, Y., Ma, L.-T., Hang, X.-B., Yang, W.-R., Liu, F., Xu, B.-H., Digestion of protein of two pollen types in China by the honeybee (Apis mellifera L). Apidologie 45 (2014), 590–600, 10.1007/s13592-014-0278-1.
Wu, W., Qiao, J., Xiao, X., Kong, L., Dong, J., Zhang, H., In vitro and In vivo digestion comparison of bee pollen with or without wall-disruption. Journal of the Science of Food and Agriculture 101:7 (2021), 2744–2755, 10.1002/jsfa.10902.
Wu, W., Wang, K., Qiao, J., Dong, J., Li, Z., Zhang, H., Improving nutrient release of wall-disrupted bee pollen with a combination of ultrasonication and high shear technique. Journal of the Science of Food and Agriculture 99:2 (2019), 564–575, 10.1002/jsfa.9216.
Xie, J., Wei, F., Luo, L., Dai, L., Zeng, L., Wang, X., Effect of cell wall-disruption processes on wall disruption, antioxidant activity and nutrients in tea pollen. International Journal of Food Science & Technology 57:6 (2022), 3361–3374, 10.1111/ijfs.15612.
Xu, X., Dong, J., Mu, X., Sun, L., Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food and Bioproducts Processing 89:1 (2011), 47–52, 10.1016/j.fbp.2010.03.003.
Yan, S., Li, Q., Xue, X., Wang, K., Zhao, L., Wu, L., Analysis of improved nutritional composition of bee pollen (Brassica campestris L.) after different fermentation treatments. International Journal of Food Science & Technology 54:6 (2019), 2169–2181, 10.1111/ijfs.14124.
Yan, S., Wang, K., Wang, X., Ou, A., Wang, F., Wu, L., Xue, X., Effect of fermented bee pollen on metabolic syndrome in high-fat diet-induced mice. Food Science and Human Wellness 10:3 (2021), 345–355, 10.1016/j.fshw.2021.02.026.
Yang, B.C., Jin, L.L., Yang, Y.F., Li, K., Peng, D.M., Inhibitory effect of rape pollen supercritical CO2 fluid extract against testosterone-induced benign prostatic hyperplasia in rats. Experimental and Therapeutic Medicine 8:1 (2014), 31–37, 10.3892/etm.2014.1680.
Yang, K., Wu, D., Ye, X., Liu, D., Chen, J., Sun, P., Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry 61:3 (2013), 708–718, 10.1021/jf304056b.
Yang, Y., Zhang, J. l., Zhou, Q., Wang, L., Huang, W., & Wang, R. d. (2019). Effect of ultrasonic and ball‐milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. Journal of the Science of Food and Agriculture, 99(12), 5350-5357. 10.1002/jsfa.9774.
Yuan, Y., Zhong, S., Deng, Z., Li, G., Zhang, J., Li, H., Effect of wall-disruption on nutrient composition and in vitro digestion of camellia and lotus bee pollens. Food Science and Human Wellness., 2023 10.26599/FSHW.2022.9250132.
Zhang, H., Liu, R., Lu, Q., Separation and characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules, 25(6), 2020, 1264, 10.3390/molecules25061264.
Zhang, H., Lu, Q., Liu, R., Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chemistry, 375, 2022, 131908, 10.1016/j.foodchem.2021.131908.
Zhang, H., Wang, X., Wang, K., Li, C., Antioxidant and tyrosinase inhibitory properties of aqueous ethanol extracts from monofloral bee pollen. Journal of Apicultural Science 59:1 (2015), 119–128, 10.1515/jas-2015-0013.
Zhang, H., Zhu, X., Huang, Q., Zhang, L., Liu, X., Liu, R., Lu, Q., Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chemistry, 409, 2023, 135342, 10.1016/j.foodchem.2022.135342.
Zhang, J., Cao, W., Zhao, H., Guo, S., Wang, Q., Cheng, N., Bai, N., Protective mechanism of Fagopyrum esculentum Moench. Bee pollen EtOH extract against type II diabetes in a high-fat diet/streptozocin-induced C57BL/6J mice. Frontiers Nutrition, 9, 2022, 925351, 10.3389/fnut.2022.925351.
Zhang, X., Wu, X., Xiao, G., Liu, G., Dong, H., Liu, R., Lu, Q., Phenolamide extract of apricot bee pollen alleviates glucolipid metabolic disorders and modulates the gut microbiota and metabolites in high-fat diet-induced obese mice. Food & Function 14:10 (2023), 4662–4680, 10.1039/D3FO01016C.
Zhang, X., Yu, M., Zhu, X., Liu, R., Lu, Q., Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen. Food Chemistry, 389, 2022, 133071, 10.1016/j.foodchem.2022.133071.
Zhao, Y., Yan, Y., Zhou, W., Chen, D., Huang, K., Yu, S., Cao, Y., Effects of polysaccharides from bee collected pollen of Chinese wolfberry on immune response and gut microbiota composition in cyclophosphamide-treated mice. Journal of Functional Foods, 72, 2010, 104057 https://doi-org-ssl.1323.top/10.1016/j.jff.2020.104057.
Zuluaga, C., Serrato, J., Quicazan, M., Bee-pollen structure modification by physical and biotechnological processing: Influence on the availability of nutrients and bioactive compounds. Chemical Engineering Transactions 43 (2015), 79–84, 10.3303/CET1543014.