Penoy, Noémie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Delma, Kouka Luc ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Berger, Manon ; Université de Liège - ULiège > Faculté de Médecine > Doct. scienc. biom. pharma.
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Piel, Géraldine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Supercritical fluid methods for liposome production and sterilization
Publication date :
2024
Main work title :
Liposomes in drug delivery : what, where, how and when to deliver
Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020;154-155:102-122. https://doi.org/10.1016/J.ADDR.2020.07.002.
Bigazzi W, Penoy N, Evrard B, Piel G. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem Eng J 2020;383:123106. https://doi.org/10.1016/j.cej.2019.123106.
Maja L, Zeljko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids 2020;165:104984. https://doi.org/10.1016/J.SUPFLU.2020.104984.
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems - the current state. Adv Colloid Interface Sci 2022;309:102757. https://doi.org/10.1016/J.CIS.2022.102757.
Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N. Liposome : classification , preparation , and applications. Nanoscale Res Lett 2013;8:1-9. https://doi.org/10.1186/1556-276X-8-102.
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014;177:8-18. https://doi.org/10.1016/J.CHEMPHYSLIP.2013.10.011.
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995;70:95-111. https://doi.org/10.1016/0031-6865(95)00010-7.
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997;154:123-140. https://doi.org/10.1016/S0378-5173(97)00135-X.
Jesorka A, Orwar O. Liposomes: Technologies and analytical applications. Annu Rev Anal Chem 2008;1:801-832. https://doi.org/10.1146/ANNUREV.ANCHEM.1.031207.112747.
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2020;30:336-365. https://doi.org/10.1080/08982104.2019.1668010.
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv 2011;2011:1-9. https://doi.org/10.1155/2011/591325.
Maherani B, Arab-Tehrany E, R. Mozafari M, Gaiani C, Linder M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr Nanosci 2011;7:436-452. https://doi.org/10.2174/157341311795542453.
Perrie Y, Webb C, Khadke S, Schmidt ST, Roces CB, Forbes N, et al. The impact of solvent selection: Strategies to guide the manufacturing of liposomes using microfluidics. Pharmaceutics 2019;11. https://doi.org/10.3390/PHARMACEUTICS11120653.
Tureli NG, Tureli AE. Upscaling and GMP production of pharmaceutical drug delivery systems. Drug Deliv Trends 2020;3:215-229. https://doi.org/10.1016/b978-0-12-817870-6.00011-0.
Toh MR, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci 2013;8:88-95. https://doi.org/10.1016/J.AJPS.2013.07.011.
Araki R, Matsuzaki T, Nakamura A, Nakatani D, Sanada S, Fu HY, et al. Development of a novel one-step production system for injectable liposomes under GMP. Pharm Dev Technol 2018;23:602-607. https://doi.org/10.1080/10837450.2017.1290106.
El-Salamouni NS, Farid RM, El-Kamel AH, El-Gamal SS. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2015;496:976-983. https://doi.org/10.1016/j.ijpharm.2015.10.043.
Galante R, Rediguieri CF, Kikuchi IS, Vasquez PAS, Colaco R, Serro AP, et al. About the sterilization of chitosan hydrogel nanoparticles. PLoS One 2016;11:e0168862. https://doi.org/10.1371/JOURNAL.PONE.0168862.
Delma KL, Lechanteur A, Evrard B, Semde R, Piel G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int J Pharm 2021;597. https://doi.org/10.1016/j.ijpharm.2021.120271.
Darr JA, Poliakoff M. New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids. Chem Rev 1999;99:495-542. https://doi.org/10.1021/CR970036I.
Weidner E. High pressure micronization for food applications. J Supercrit Fluids 2009;47:556-565. https://doi.org/10.1016/j.supflu.2008.11.009.
Kankala RK, Zhang YS, Wang S Bin, Lee CH, Chen AZ. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 2017;6. https://doi.org/10.1002/adhm.201700433.
Delattre L. [Pharmaceutical applications of supercritical carbon dioxide]. Ann Pharm Fr 2007;65:58-67. https://doi.org/10.1016/S0003-4509(07)90017-6.
Kadimi US, Balasubramanian DR, Ganni UR, Balaraman M, Govindarajulu V. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide - mediated process. Nanomed Nanotechnol Biol Med 2007; 3:273-280. https://doi.org/10.1016/j.nano.2007.08.003.
Burns DC, Brown RJ, Eisenhut AR. Patent Application Publication US 2009 / 0312954 A1 Sterilization of drugs using supercritical carbon dioxide sterilisant 2009;1:1-6.
Ellis JL, Titone JC, Tomasko DL, Annabi N, Dehghani F. Supercritical CO2 sterilization of ultra-high molecular weight polyethylene. J Supercrit Fluids 2010;52:235-240. https://doi.org/10.1016/J.SUPFLU.2010.01.002.
Donati I, Benincasa M, Foulc MP, Turco G, Toppazzini M, Solinas D, et al. Terminal sterilization of BisGMA-TEGDMA thermoset materials and their bioactive surfaces by supercritical CO2. Biomacromolecules 2012;13:1152-1160. https://doi.org/10.1021/BM300053D/ASSET/IMAGES/LARGE/BM-2012-00053D_0008.JPEG.
Karajanagi SS, Yoganathan R, Mammucari R, Park H, Cox J, Zeitels SM, et al. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol Bioeng 2011;108:1716-1725. https://doi.org/10.1002/BIT.23105.
Herdegen V, Felix A, Haseneder R, Repke JU, Leppchen-Frohlich K, Prade I, et al. Sterilization of medical products from collagen by means of supercritical CO2. Chem Eng Technol 2014;37:1891-5. https://doi.org/10.1002/CEAT.201300679.
Zani F, Veneziani C, Bazzoni E, Maggi L, Caponetti G, Bettini R. Sterilization of corticosteroids for ocular and pulmonary delivery with supercritical carbon dioxide. Int J Pharm 2013;450:218-224. https://doi.org/10.1016/J.IJPHARM.2013.04.055.
Bernhardt A, Wehrl M, Paul B, Hochmuth T, Schumacher M, Schutz K, et al. Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS One 2015;10:129205. https://doi.org/10.1371/JOURNAL.PONE.0129205.
Meyer M, Prade I, Leppchen-Frohlich K, Felix A, Herdegen V, Haseneder R, et al. Sterilisation of collagen materials using hydrogen peroxide doted supercritical carbon dioxide and its effects on the materials properties. J Supercrit Fluids 2015;102:32-39. https://doi.org/10.1016/J.SUPFLU.2015.04.006.
Ribeiro N, Soares GC, Santos-Rosales V, Concheiro A, Alvarez-Lorenzo C, Garcia-Gonzalez CA, et al. A new era for sterilization based on supercritical CO2 technology. J Biomed Mater Res B Appl Biomater 2020;108:399-428. https://doi.org/10.1002/JBM.B.34398.
Soares GC, Learmonth DA, Vallejo MC, Davila SP, Gonzalez P, Sousa RA, et al. Supercritical CO2 technology: The next standard sterilization technique? Mater Sci Eng C 2019;99:520-540. https://doi.org/10.1016/J.MSEC.2019.01.121.
Lesoin L, Boutin O, Crampon C, Badens E. CO2/water/surfactant ternary systems and liposome formation using supercritical CO2: A review. Colloids Surfaces A Physicochem Eng Asp 2011;377:1-14. https://doi.org/10.1016/J.COLSURFA.2011.01.027.
Otake K, Imura T, Sakai H, Abe M. Development of a New Preparation Method of Liposomes Using Supercritical Carbon Dioxide. Langmuir 2001;17:3898-3901. https://doi.org/10.1021/la010122k.
J. Sun, S. Liu XR. Febrifugine liposome and preparation method thereof, CN106727327A 2017.
Tsai WC, Rizvi SSH. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process. Food Res Int 2017;99:256-262. https://doi.org/10.1016/j.foodres.2017.05.029.
Frederiksen L, Anton K, Van Hoogevest P, Keller HR, Leuenberger H. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. J Pharm Sci 1997;86:921-928. https://doi.org/10.1021/js960403q.
Mohammad I. Nasir †, Mark A. Bernards ‡, and Paul A. Charpentier∗ †. Acetylation of Soybean Lecithin and Identification of Components for Solubility in Supercritical Carbon Dioxide. J Agric Food Chem 2007;55:1961-9. https://doi.org/10.1021/jf0618832.
Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids 2011;57:162-174. https://doi.org/10.1016/j.supflu.2011.01.006.
Lesoin L, Crampon C, Boutin O, Badens E. Development of a continuous dense gas process for the production of liposomes. J Supercrit Fluids 2011;60:51-62. https://doi.org/10.1016/j.supflu.2011.04.018.
Penoy N, Grignard B, Evrard B, Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int J Pharm 2021;592. https://doi.org/10.1016/J.IJPHARM.2020.120093.
Zhao L, Temelli F. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. J Supercrit Fluids 2015;100:110-120. https://doi.org/10.1016/j.supflu.2015.02.022.
Delma KL, Penoy N, Sakira AK, Egrek S, Sacheli R, Grignard B, et al. Use of supercritical CO2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes. Eur J Pharm Biopharm 2023;183:112-118. https://doi.org/10.1016/J.EJPB.2023.01.002.
Penoy N, Delma KL, Tonakpon HA, Grignard B, Evrard B, Piel G. An innovative one step green supercritical CO2 process for the production of liposomes co-encapsulating both a hydrophobic and a hydrophilic compound for pulmonary administration. Int J Pharm 2022;627:122212. https://doi.org/10.1016/J.IJPHARM.2022.122212.
Han Y, Cheng J, Ruan N, Jiao Z. Preparation of liposomes composed of supercritical carbon dioxide-philic phospholipids using the rapid expansion of supercritical solution process. J Drug Deliv Sci Technol 2021;64:102568. https://doi.org/10.1016/J.JDDST.2021.102568.
Jash A, Krueger A, H Rizvi SS. Venturi-based rapid expansion of supercritical solution (Vent-RESS): synthesis of liposomes for pH-triggered delivery of hydrophilic and lipophilic bioactives. Green Chem 2022;24:5326-5337. https://doi.org/10.1039/d2gc00877g.
Santo IE, Campardelli R, Albuquerque EC, de Melo SV, Della Porta G, Reverchon E. Liposomes preparation using a supercritical fluid assisted continuous process. Chem Eng J 2014;249:153-159. https://doi.org/10.1016/j.cej.2014.03.099.
Campardelli R, Trucillo P, Reverchon E. Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery. J CO2 Util 2018;25:235-241. https://doi.org/10.1016/j.jcou.2018.04.006.
Ahmad I, Akhter S, Anwar M, Zafar S, Sharma RK, Ali A, et al. Supercritical anti-solvent technique assisted synthesis of thymoquinone liposomes for radioprotection: Formulation optimization, in-vitro and in-vivo studies. Int J Pharm 2017;523:398-409. https://doi.org/10.1016/J.IJPHARM.2017.03.052.
Villanueva-Bermejo D, Temelli F. Optimization of coenzyme Q10 encapsulation in liposomes using supercritical carbon dioxide. J CO2 Util 2020;38:68-76. https://doi.org/10.1016/J.JCOU.2020.01.011.
European Medicines Agency (EMA). Guideline on the sterilisation of the medicinal product, active substance, excipient and primary container (EMA/CHMP/CVMP/QWP/BWP/850374/2015). Eur Med Agency 2015:1-25.
Food and Drug Administration. Liposome Drug Products - Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation - Guidance for Industry. US Dep Heal Hum Serv Food Drug Adm 2018:1-13.
Fages J, Poirier B, Barbier Y, Frayssinet P, Joffret M, Majewski W, et al. Viral inactivation of human bone tissue using supercritical fluid extraction. ASAIO J 1998;44:289-293. https://doi.org/10.1097/00002480-199807000-00009.
Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci U S A 1999;96:10344-10348. https://doi.org/10.1073/PNAS.96.18.10344/ASSET/3E7568F8-BA10-436F-8C2B-E614D891E39A/ASSETS/GRAPHIC/PQ1792535004.JPEG.
Spilimbergo S, Bertucco A. Non-thermal bacterial inactivation with dense CO2. Biotechnol Bioeng 2003;84:627-638. https://doi.org/10.1002/BIT.10783.
White A, Burns D, Christensen TW. Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol 2006;123:504-515. https://doi.org/10.1016/J.JBIOTEC.2005.12.033.
Zhang J, Davis TA, Matthews MA, Drews MJ, LaBerge M, An YH. Sterilization using high-pressure carbon dioxide. J Supercrit Fluids 2006;38:354-372. https://doi.org/10.1016/J.SUPFLU.2005.05.005.
Hemmer JD, Drews MJ, LaBerge M, Matthews MA. Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide. J Biomed Mater Res Part B Appl Biomater 2007;80B:511-518. https://doi.org/10.1002/JBM.B.30625.
Qiu QQ, Leamy P, Brittingham J, Pomerleau J, Kabaria N, Connor J. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J Biomed Mater Res Part B Appl Biomater 2009;91B:572-578. https://doi.org/10.1002/JBM.B.31431.
Bae YY, Lee HJ, Kim SA, Rhee MS. Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int J Food Microbiol 2009;136:95-100. https://doi.org/10.1016/J.IJFOODMICRO.2009.09.015.
Shieh E, Paszczynski A, Wai CM, Lang Q, Crawford RL. Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions. J Microbiol Methods 2009;76:247-252. https://doi.org/10.1016/J.MIMET.2008.11.005.
Reverchon E, della Porta G, Adami R. Medical device sterilization using supercritical CO2 based mixtures. Recent Patents Chem Eng 2010;3:142-148. https://doi.org/10.2174/1874478811003020142.
Checinska A, Fruth IA, Green TL, Crawford RL, Paszczynski AJ. Sterilization of biological pathogens using supercritical fluid carbon dioxide containing water and hydrogen peroxide. J Microbiol Methods 2011;87:70-75. https://doi.org/10.1016/J.MIMET.2011.07.008.
Hossain MS, Nik Ab Rahman NN, Balakrishnan V, F.M. Alkarkhi A, Ahmad Rajion Z, Ab Kadir MO. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Manag 2015;38:462-473. https://doi.org/10.1016/J.WASMAN.2015.01.003.
Da Silva MA, De Araujo AP, De Souza Ferreira J, Kieckbusch TG. Inactivation of Bacillus subtilis and Geobacillus stearothermophilus inoculated over metal surfaces using supercritical CO2 process and nisin. J Supercrit Fluids 2016;109:87-94. https://doi.org/10.1016/J.SUPFLU.2015.11.013.
Noman EA, Rahman NNNA, Shahadat M, Nagao H, Al-Karkhi AFM, Al-Gheethi A, et al. Supercritical fluid CO2 technique for destruction of pathogenic fungal spores in solid clinical wastes. Clean - Soil, Air, Water 2016;44:1700-1708. https://doi.org/10.1002/CLEN.201500538.
Efaq AN, Norulaini Nik Ab Rahman N, Nagao H, Al-Gheethi AA, Ab Kadir MO, Nik Norulaini Nik Ab Rahman norulain B, et al. Inactivation of Aspergillus spores in clinical wastes by supercritical carbon dioxide. Arab J Sci Eng 2016 421 2016;42:39-51. https://doi.org/10.1007/S13369-016-2087-5.
Calvo L, Casas J. Sterilization of biological weapons in technical clothing and sensitive material by high-pressure CO2 and water. Ind Eng Chem Res 2018;57:4680-4687. https://doi.org/10.1021/ACS.IECR.7B04794/ASSET/IMAGES/LARGE/IE-2017-047944_0005.JPEG.
Bennet D, Harris AF, Lacombe J, Brooks C, Bionda N, Strickland AD, et al. Evaluation of supercritical CO2 sterilization efficacy for sanitizing personal protective equipment from the coronavirus SARS-CoV-2. Sci Total Environ 2021;780. https://doi.org/10.1016/J.SCITOTENV.2021.146519.
Allafi FA, Hossain MS, Shaah M, Lalung J, Ab Kadir MO, Ahmad MI. Optimizing supercritical carbon dioxide in the bacterial inactivation and cleaning of sheep wool fiber by using response surface methodology. J Nat Fibers ISSN 2021;19:8399-8414. https://doi.org/10.1080/15440478.2021.1964131.
Feng J, Zheng Y, Zhang X, Zhou R, Ma M. Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control 2023;143:109225. https://doi.org/10.1016/J.FOODCONT.2022.109225.
Hong SI, Pyun YR. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J Food Sci 1999;64:728-733. https://doi.org/10.1111/J.1365-2621.1999.TB15120.X.
Spilimbergo S, Bertucco A, Basso G, Bertoloni G. Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnol Bioeng 2005;92:447-451. https://doi.org/10.1002/BIT.20606.
Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, et al. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int J Food Microbiol 2007;117:1-28. https://doi.org/10.1016/J.IJFOODMICRO.2007.02.018.
Andras CD, Csajagi C, Orban CK, Albert C, Abraham B, Miklossy I. A possible explanation of the germicide effect of carbon dioxide in supercritical state based on molecular-biological evidence. Med Hypotheses 2010;74:325-329. https://doi.org/10.1016/J.MEHY.2009.08.043.
Isenschmid A, Marison IW, von Stockar U. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. J Biotechnol 1995;39:229-237. https://doi.org/10.1016/0168-1656(95)00018-L.
Li J, Wang A, Zhu F, Xu R, Hu XS. Membrane Damage Induced by Supercritical Carbon Dioxide in Rhodotorula mucilaginosa. Indian J Microbiol 2013;53:352. https://doi.org/10.1007/S12088-013-0373-4.
Yao C, Li X, Bi W, Jiang C. Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2. J Basic Microbiol 2014;54:858-865. https://doi.org/10.1002/JOBM.201200640.
Ishikawa H, Shimoda M, Osajima Y, Kawano T. Inactivation of enzymes in an aqueous solution by micro-bubbles of supercritical carbon dioxide. Biosci Biotechnol Biochem 2014;59:628-631. https://doi.org/10.1271/BBB.59.628.
Hong SI, Pyun YR. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Int J Food Microbiol 2001;63:19-28. https://doi.org/10.1016/S0168-1605(00)00393-7.
Bertoloni G, Bertucco A, De Cian V, Parton T. A study on the inactivation of micro-organisms and enzymes by high pressure CO2. Biotechnol Bioeng 2006;95:155-160. https://doi.org/10.1002/BIT.21006.
Wimmer Z, Zarevucka M. A review on the effects of supercritical carbon dioxide on enzyme activity. Int J Mol Sci 2010;11:233. https://doi.org/10.3390/IJMS11010233.
Zhang J, Dalal N, Gleason C, Matthews MA, Waller LN, Fox KF, et al. On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J Supercrit Fluids 2006;38:268-273. https://doi.org/10.1016/J.SUPFLU.2006.02.015.
Zhang J, Dalal N, Matthews MA, Waller LN, Saunders C, Fox KF, et al. Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis. J Microbiol Methods 2007;70:442-451. https://doi.org/10.1016/J.MIMET.2007.05.019.
Rao L, Zhao F, Wang Y, Chen F, Hu X, Liao X. Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2. Front Microbiol 2016;7:1411. https://doi.org/10.3389/FMICB.2016.01411/BIBTEX.
Setlow B, Korza G, Blatt KMS, Fey JP, Setlow P. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. J Appl Microbiol 2016;120:57-69. https://doi.org/10.1111/JAM.12995.
Enomoto A, Nakamura K, Nagai K, Hashimoto T, Hakoda M. Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Biosci Biotechnol Biochem 1997;61:1133-1137. https://doi.org/10.1271/BBB.61.1133.
Tabernero A, Cardea S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mater Sci Eng C 2020;112:110940. https://doi.org/10.1016/J.MSEC.2020.110940.
Cario A, Aubert G, Alcaraz JP, Borra JP, Jidenko N, Barrault M, et al. Supercritical carbon dioxide-based cleaning and sterilization treatments for the reuse of filtering facepiece respirators FFP2 in the context of COVID-19 pandemic. J Supercrit Fluids 2022;180:105428. https://doi.org/10.1016/J.SUPFLU.2021.105428.
Delma KL, Penoy N, Grignard B, Semde R, Evrard B, Piel G. Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin. J Supercrit Fluids 2022;179:105418. https://doi.org/10.1016/J.SUPFLU.2021.105418.
Santos-Rosales V, Magarinos B, Alvarez-Lorenzo C, Garcia-Gonzalez CA. Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology. Int J Pharm 2022;612:121362. https://doi.org/10.1016/J.IJPHARM.2021.121362.
Meure LA, Foster NR, Dehghani F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008;9:798-809. https://doi.org/10.1208/s12249-008-9097-x.
Pattni BS, Chupin V V., Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015;115:10938-10966. https://doi.org/10.1021/ACS.CHEMREV.5B00046/ASSET/IMAGES/LARGE/CR-2015-00046S_0003.JPEG.
Suthar SM, Rathva BA. Development of liposomal formulation: from formulation to sterilization. World J Pharm Res 2014;8:5041-5048. https://doi.org/10.20959/wjpr20193-14456.
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014;103:29-52. https://doi.org/10.1002/JPS.23773.
IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R7). Int Counc Harmon Tech Requir Pharm Hum USE 2018.
Berger M, Lechanteur A, Evrard B, Piel G. Innovative lipoplexes formulations with enhanced siRNA efficacy for cancer treatment: Where are we now? Int J Pharm 2021;605:120851. https://doi.org/10.1016/J.IJPHARM.2021.120851.
Kulkarni JA, Darjuan MM, Mercer JE, Chen S, Van Der Meel R, Thewalt JL, et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 2018;12:4787-4795. https://doi.org/10.1021/acsnano.8b01516.
Rietwyk S, Peer D. Next-generation lipids in RNA interference therapeutics. ACS Nano 2017;11:7572-7586. https://doi.org/10.1021/acsnano.7b04734.
Han X, Zhang H, Butowska K, Swingle KL, Alameh MG, Weissman D, et al. An ionizable lipid toolbox for RNA delivery. Nat Commun 2021;12:8-13. https://doi.org/10.1038/s41467-021-27493-0.
W Evers MJ, Kulkarni JA, van der Meel R, Cullis PR, Vader P, Schiffelers RM, et al. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2018;2:1700375. https://doi.org/10.1002/SMTD.201700375.
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mrna vaccines. Vaccines 2021;9:1-30. https://doi.org/10.3390/vaccines9010065.
Murakami Y, Inoue K, Akiyama R, Orita Y, Shimoyama Y. LipTube: Liposome formation in the tube process using supercritical CO2. Ind Eng Chem Res 2022;61:14598-14608. https://doi.org/10.1021/acs.iecr.2c02095.
Jaouhari T, Zhang F, Tassaing T, Fery-Forgues S, Aymonier C, Marre S, et al. Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system. Chem Eng J 2020;397. https://doi.org/10.1016/J.CEJ.2020.125333.