cell lysis; centrifugal microfluidics; disk; DNA extraction; lab-on-a-chip; medical diagnostics; micromixer; nucleic acid; rotor; Cell lysis; Centrifugal microfluidics; Disk; Integrated microfluidic systems; Lab-on-chip devices; Magnetic stirrers; Medical diagnostics; Micro mixers; Nucleic acid; Electronic, Optical and Magnetic Materials; Instrumentation; Condensed Matter Physics; Surfaces, Coatings and Films; Metals and Alloys; Electrical and Electronic Engineering; Materials Chemistry
Abstract :
[en] Micromixers are essential microfluidic modules for fabricating integrated lab-on-chip devices for point-of-care applications. Ease of fabrication and integration with other fluidic modules, practicability for different viscosities of the solutions, and high mixing efficiencies are the most important characteristics of a suitable micromixer. In this study, a magnetic stirrer on a rotating micro-structured disk is presented to mix liquids of a wide range of viscosities (up to 42 mPa.s) in low rotational velocities (less than 600 rpm). The concept relies on implementing a small stainless steel rotor aligned on a circular chamber and actuating that by stationary magnets located on the lab frame. The on-disk magnetic stirrer can be implemented in integrated microfluidic platforms without affecting other modules, e.g., valves, to rapidly prepare a homogenous solution in less than 2 s. Moreover, high mixing indexes and the considerable viscous stresses generated in solutions make this approach a convenient choice for the cell lysis process. Observations show that DNA yields in the order of 100 ± 15% relative to conventional lysis protocols can be achieved when the stirrer spins at 200 rpm for 1 min
Disciplines :
Mechanical engineering
Author, co-author :
Dehghan, Amin; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Gholizadeh, Ali ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Navidbakhsh, Mahdi; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Sadeghi, Hossein; Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Pishbin, Esmail; Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
Language :
English
Title :
Integrated Microfluidic System for Efficient DNA Extraction Using On-Disk Magnetic Stirrer Micromixer
Hess, J.F., Kotrová, M., Calabrese, S., Darzentas, N., Hutzenlaub, T., Zengerle, R., Brüggemann, M., Paust, N., Automation of amplicon-based library preparation for next-generation sequencing by centrifugal microfluidics. Anal. Chem. 92 (2020), 12833–12841, 10.1021/acs.analchem.0c01202.
Strohmeier, O., Keller, M., Schwemmer, F., Zehnle, S., Mark, D., von Stetten, F., Zengerle, R., Paust, N., Centrifugal microfluidic platforms: advanced unit operations and applications. Chem. Soc. Rev. 44 (2015), 6187–6229, 10.1039/c4cs00371c.
Xiong, H., Ye, X., Li, Y., Wang, L., Zhang, J., Fang, X., Kong, J., Rapid differential diagnosis of seven human respiratory coronaviruses based on centrifugal microfluidic nucleic acid assay. Anal. Chem. 92 (2020), 14297–14302, 10.1021/acs.analchem.0c03364.
Serioli, L., Laksafoss, T.Z., Haagensen, J.A.J., Sternberg, C., Soerensen, M.P., Molin, S., Zór, K., Boisen, A., Bacterial cell cultures in a lab-on-a-disc: a simple and versatile tool for quantification of antibiotic treatment efficacy. Anal. Chem. 92 (2020), 13871–13879, 10.1021/acs.analchem.0c02582.
Pishbin, E., Navidbakhsh, M., Eghbal, M., A centrifugal microfluidic platform for determination of blood hematocrit level. 2015 22nd Iran. Conf. Biomed. Eng., 2015, 2016, ICBME, 60–64, 10.1109/ICBME.2015.7404117.
Rajendran, S.T., Scarano, E., Bergkamp, M.H., Capria, A.M., Cheng, C.H., Sanger, K., Ferrari, G., Nielsen, L.H., Te Hwu, E., Zór, K., Boisen, A., Modular, lightweight, wireless potentiostat-on-a-disc for electrochemical detection in centrifugal microfluidics. Anal. Chem. 91 (2019), 11620–11628, 10.1021/acs.analchem.9b02026.
Zhao, Y., Hou, Y., Ji, J., Khan, F., Thundat, T., Harrison, D.J., Sample preparation in centrifugal microfluidic discs for human serum metabolite analysis by surface assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2019, 10.1021/acs.analchem.8b05756.
Maejima, K., Hiruta, Y., Citterio, D., Centrifugal paperfluidic platform for accelerated distance-based colorimetric signal readout. Anal. Chem. 92 (2020), 4749–4754, 10.1021/acs.analchem.9b05782.
Michael, I., Kim, D., Gulenko, O., Kumar, S., Kumar, S., Clara, J., Ki, D.Y., Park, J., Jeong, H.Y., Kim, T.S., Kwon, S., Cho, Y.K., A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nat. Biomed. Eng. 4 (2020), 591–600, 10.1038/s41551-020-0557-2.
Zohrehvandi, D., Pishbin, E., Navidbakhsh, M., Eghbal, M., A new mechanism for the plasma separation from whole blood on the lab-on-a-disk systems based on moment of inertia method. 2017 24th Iran. Conf. Biomed. Eng. 2017 2nd Int. Iran. Conf. Biomed. Eng, 2017, 2018, ICBME, 10.1109/ICBME.2017.8430258.
Ducrée, J., Efficient development of integrated lab-on-a-chip systems featuring operational robustness and manufacturability. Micromachines, 10, 2019, 10.3390/mi10120886.
Ouyang, Y., Li, J., Haverstick, D.M., Landers, J.P., Rotation-driven microfluidic disc for white blood cell enumeration using magnetic bead aggregation. Anal. Chem. 88 (2016), 11046–11054, 10.1021/acs.analchem.6b02903.
Krauss, S.T., Woolf, M.S., Hadley, K.C., Collins, N.M., Nauman, A.Q., Landers, J.P., Centrifugal microfluidic devices using low-volume reagent storage and inward fluid displacement for presumptive drug detection. Sens. Actuators B Chem. 284 (2019), 704–710, 10.1016/j.snb.2018.12.113.
Burger, R., Kinahan, D.J., Cayron, H., Reis, N., Fonseca, J., Ducrée, J., Siphon-induced droplet break-off for enhanced mixing on a centrifugal platform. Inventions, 2020, 10.3390/inventions5010001.
Naghdloo, A., Ghazimirsaeed, E., Shamloo, A., Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection. Sens. Actuators B Chem. 283 (2019), 831–841, 10.1016/j.snb.2018.12.084.
Fakhari, S., Pishbin, E., Navibakhsh, M., Maghazeh, M., Eghbal, M., Implementing series of dual-chamber units for sequential loading of the liquids in centrifugal microfluidic platforms. Microfluidics Nanofluidics, 23, 2019, 53, 10.1007/s10404-019-2222-1.
Asiaei, S., Fakhari, S., Pishbin, E., Ghorbani-Bidkorbeh, F., Eghbal, M., Navidbakhsh, M., Demonstration of an efficient, compact and precise pumping method by centrifugal inertia for lab on disk platforms. J. Micromech. Microeng., 29, 2019, 075001, 10.1088/1361-6439/ab1afe.
Burger, S., Schulz, M., Von Stetten, F., Zengerle, R., Paust, N., Rigorous buoyancy driven bubble mixing for centrifugal microfluidics. Lab Chip 16 (2016), 261–268, 10.1039/c5lc01280e.
Leung, W.W.F., Ren, Y., Crossflow and mixing in obstructed and width-constricted rotating radial microchannel. Int. J. Heat. Mass Transf. 64 (2013), 457–467, 10.1016/j.ijheatmasstransfer.2013.04.064.
Abdi, M., Pishbin, E., Karimi, A., Navidbakhsh, M., A comparative investigation on the performance of different micro mixers: toward cerebral microvascular analysis. J. Multiscale Model., 8, 2017, 1650008, 10.1142/s1756973716500086.
Ren, Y., Leung, W.W.F., Flow and mixing in rotating zigzag microchannel. Chem. Eng. J. 215–216 (2013), 561–578, 10.1016/j.cej.2012.09.136.
Shamloo, A., Madadelahi, M., Akbari, A., Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters. Chem. Eng. Process. Process. Intensif. 104 (2016), 243–252, 10.1016/j.cep.2016.03.017.
Pishbin, E., Kazemzadeh, A., Chimerad, M., Asiaei, S., Navidbakhsh, M., Russom, A., Frequency dependent multiphase flows on centrifugal microfluidics. Lab Chip 20 (2020), 514–524, 10.1039/c9lc00924h.
Grumann, M., Geipel, A., Riegger, L., Zengerle, R., Ducrée, J., Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5 (2005), 560–565, 10.1039/b418253g.
Noroozi, Z., Kido, H., Micic, M., Pan, H., Bartolome, C., Princevac, M., Zoval, J., Madou, M., Reciprocating flow-based centrifugal microfluidics mixer. Rev. Sci. Instrum., 80, 2009, 075102, 10.1063/1.3169508.
Pishbin, E., Eghbal, M., Fakhari, S., Kazemzadeh, A., Navidbakhsh, M., The effect of moment of inertia on the liquids in centrifugal microfluidics. Micromachines, 7, 2016, 10.3390/mi7120215.
Cai, Z., Xiang, J., Chen, H., Wang, W., A rapid micromixer for centrifugal microfluidic platforms. Micromachines, 7, 2016, 10.3390/mi7050089.
Kido, H., Micic, M., Smith, D., Zoval, J., Norton, J., Madou, M., A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf. B Biointerfaces 58 (2007), 44–51, 10.1016/j.colsurfb.2007.03.015.
Siegrist, J., Gorkin, R., Bastien, M., Stewart, G., Peytavi, R., Kido, H., Bergeron, M., Madou, M., Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10 (2010), 363–371, 10.1039/b913219h.
Shamloo, A., Hassani-Gangaraj, M., Investigating the effect of reagent parameters on the efficiency of cell lysis within droplets. Phys. Fluids, 32, 2020, 062002, 10.1063/5.0009840.
Nasiri, R., Shamloo, A., Akbari, J., Tebon, P., Dokmeci, M.R., Ahadian, S., Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis. Micromachines, 11, 2020, 10.3390/mi11070699.
Jahromi, A.K., Saadatmand, M., Eghbal, M., Yeganeh, L.P., Development of simple and efficient Lab-on-a-Disc platforms for automated chemical cell lysis. Sci. Rep., 10, 2020, 11039, 10.1038/s41598-020-67995-3.
K.S. Ryu, K. Shaikh, E. Goluch, Z. Fan, C. Liu, Micro magnetic stir-bar mixer integrated with parylene microfluidic channels, Micro magnetic stir-bar mixer integrated with parylene microfluidic channels, 4, 2004, 608–613.
Lu, L.H., Ryu, K.S., Liu, C., A magnetic microstirrer and array for microfluidic mixing. J. Micro Syst., 2002, 10.1109/JMEMS.2002.802899.
Agarwal, A.K., Sridharamurthy, S.S., Beebe, D.J., Jiang, H., Programmable autonomous micromixers and micropumps. J. Micro Syst. 14 (2005), 1409–1421, 10.1109/JMEMS.2005.859101.
Wang, Y., Zhe, J., Chung, B.T.F., Dutta, P., A rapid magnetic particle driven micromixer. Microfluidics Nanofluidics 4 (2008), 375–389, 10.1007/s10404-007-0188-x.
Le, T.N., Suh, Y.K., Kang, S., A numerical study on the flow and mixing in a microchannel using magnetic particles. J. Mech. Sci. Technol. 24 (2010), 441–450, 10.1007/s12206-009-1107-8.
Shanko, E.S., van de Burgt, Y., Anderson, P.D., den Toonder, J.M.J., Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines, 10, 2019, 10.3390/mi10110731.
Strohmeier, O., Emperle, A., Roth, G., Mark, D., Zengerle, R., Von Stetten, F., Centrifugal gas-phase transition magnetophoresis (GTM) – a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification. Lab Chip 13 (2013), 146–155, 10.1039/c2lc40866j.
Strohmeier, O., Keil, S., Kanat, B., Patel, P., Niedrig, M., Weidmann, M., Hufert, F., Drexler, J., Zengerle, R., Von Stetten, F., Automated nucleic acid extraction from whole blood, B. subtilis, E. coli, and Rift Valley fever virus on a centrifugal microfluidic LabDisk. RSC Adv. 5 (2015), 32144–32150, 10.1039/c5ra03399c.
Cho, Y.K., Lee, J.G., Park, J.M., Lee, B.S., Lee, Y., Ko, C., One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip, 7, 2007, 565, 10.1039/b616115d.
Pishbin, E., Eghbal, M., Navidbakhsh, M., Zandi, M., Localized air-mediated heating method for isothermal and rapid thermal processing on lab-on-a-disk platforms. Sens. Actuators B Chem. 294 (2019), 270–282, 10.1016/j.snb.2019.05.039.