[en] The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Ghanavatinejad, Fatemeh ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
Fard Tabrizi, Zahra Pourteymour; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
Omidghaemi, Shadi; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
Sharifi, Esmaeel; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
Møller, Simon Geir; Department of Biological Sciences, St John's University, New York, NY, USA ; The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Norway
Jami, Mohammad-Saeid; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran ; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095, USA
Language :
English
Title :
Protein biomarkers of neural system.
Publication date :
September 2019
Journal title :
Journal of Otology
ISSN :
1672-2930
Publisher :
PLA General Hospital Department of Otolaryngology Head and Neck Surgery, China
Ahmadinejad, F., Geir Moller, S., Hashemzadeh-Chaleshtori, M., Bidkhori, G., Jami, M.-S., Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress, vol. 6, 2017, Antioxidants, Basel, Switzerland https://doi.org/10.3390/antiox6030051.
Ahmed, M., Wong, E.Y.M., Sun, J., Xu, J., Wang, F., Xu, P., Article eya1-six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell 22 (2012), 377–390 https://doi.org/10.1016/j.devcel.2011.12.006.
Alvarez, R., Lee, H.-L., Hong, C., Wang, C.-Y., Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int. J. Oral Sci., 2015, 205–212 https://doi.org/10.1038/ijos.2015.29.
Anbuhl, K.L., Uhler, K.M., Werner, L.A., Tollin, D.J., Early Development of the Human Auditory System. 2016 https://doi.org/10.1016/B978-0-323-35214-7.00138-4.
Anlauf, E., Derouiche, A., Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front. Endocrinol. 4 (2013), 1–5 https://doi.org/10.3389/fendo.2013.00144.
Bear, F Mark, Connors, W Barry, Paradiso, M.A., Neuroscience Exploring the Brain. third. ed., 2007, Lippincott Williams Wilkins.
Bifari, F., Berton, V., Pino, A., Kusalo, M., Malpeli, G., Di Chio, M., Bersan, E., Amato, E., Scarpa, A., Krampera, M., Fumagalli, G., Decimo, I., Meninges harbor cells expressing neural precursor markers during development and adulthood. Front. Cell. Neurosci., 9, 2015, 383 https://doi.org/10.3389/fncel.2015.00383.
Bingham, E.L., Cheng, S.P., Woods Ignatoski, K.M., Doherty, G.M., Differentiation of human embryonic stem cells to a parathyroid-like phenotype. Stem Cell. Dev. 18 (2009), 1071–1080 https://doi.org/10.1089/scd.2008.0337.
Biology, N.R.C. (US) C. on R.O, The Nervous System and Behavior, sixth ed., 1989.
Bonito, M. Di, Studer, M., Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development 11. 2017, 1–25 https://doi.org/10.3389/fncir.2017.00018.
Brøchner, C.B., Holst, C.B., Møllgård, K., Outer brain barriers in rat and human development. Front. Neurosci. 9 (2015), 1–16 https://doi.org/10.3389/fnins.2015.00075.
Decimo, I., Fumagalli, G., Berton, V., Krampera, M., Bifari, F., Meninges: from protective membrane to stem cell niche. Am. J. Stem Cells 1 (2012), 92–105.
Devarajan, K., Staecker, H., Detamore, M.S., A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells 249–270. 2011 https://doi.org/10.3390/jfb2030249.
Disc, E., View, D., Aspect, D., Embryo, O.F., Medical Embryology. twelfth ed., 2012, Wolters Kluwer.
Dogan, M., Sahin, M., Cetin, N., Yilmaz, M., Demirci, B., Am J Otolaryngol Utilizing prestin as a predictive marker for the early detection of outer hair cell damage. Am. J. Otolaryngol. 39 (2018), 594–598 https://doi.org/10.1016/j.amjoto.2018.07.007.
Eckert, L., Rorket, E.A., Molecular biology of keratinocyte differentiation. Environ. Health Perspect. 80 (1989), 109–116.
Fancy, S.P.J., Harrington, E.P., Baranzini, S.E., Silbereis, J.C., Shiow, L.R., Yuen, T.J., Huang, E.J., Lomvardas, S., Rowitch, D.H., Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat. Neurosci. 17 (2014), 506–512 https://doi.org/10.1038/nn.3676.
Fields, K.L., Brockes, J.P., Mirsky, R., Wendon, L.M.B., Cell surface markers for distinguishing different types of rat dorsal root ganglion in culture. Cell 14 (1978), 43–51 https://doi.org/10.1016/0092-8674(78)90299-4.
García-Estrada, C., Barreiro, C., Jami, M.-S., Martín-González, J., Martín, J.-F., The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J. Proteom. 85 (2013), 129–159 https://doi.org/https://doi.org/10.1016/j.jprot.2013.04.028.
Gennet, N., Tamburini, C., Nan, X., Li, M., FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons. Sci. Rep., 6, 2016, 32488 https://doi.org/10.1038/srep32488.
Ghasemi-Dehkordi, P., Allahbakhshian-Farsani, M., Abdian, N., Mirzaeian, A., Saffari-Chaleshtori, J., Heybati, F., Mardani, G., Karimi-Taghanaki, A., Doosti, A., Jami, M.-S., Abolhasani, M., Hashemzadeh-Chaleshtori, M., Comparison between the cultures of human induced pluripotent stem cells (hiPSCs) on feeder-and serum-free system (Matrigel matrix), MEF and HDF feeder cell lines. J. Cell. Commun. Signal. 9 (2015), 233–246 https://doi.org/10.1007/s12079-015-0289-3.
Gonzalez Campos, A., Isolation of Human Parathyroid Cell Type as a Tool for Investigating the Mechanisms of Human Primary Aldosteronism. 2014.
Graven, S.N., Browne, J.V., Auditory development in the fetus and infant. Newborn infant nurs Rev. 8:4 (2008), 187–193 https://doi.org/10.1053/j.nainr.2008.10.010.
Green, H., Easley, K., Iuchi, S., Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 15625–15630 https://doi.org/10.1073/pnas.0307226100.
Gunewardene, N., Bergen, N. Van, Crombie, D., Needham, K., Dottori, M., Nayagam, B.A., Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. BioResearch Open Access 3 (2014), 162–175 https://doi.org/10.1089/biores.2014.0019.
Hanani, M., Satellite glial cells in sensory ganglia: from form to function. Brain Res. Rev. 48 (2005), 457–476 https://doi.org/10.1016/j.brainresrev.2004.09.001.
Heanue, T. a, Pachnis, V., Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 6919–6924 https://doi.org/10.1073/pnas.0602152103.
Hegarty, S.V., Sullivan, A.M., O'Keeffe, G.W., Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev. Biol. 379 (2013), 123–138 https://doi.org/10.1016/j.ydbio.2013.04.014.
Young, Henry E., Black, Asa C., Pluripotent stem cells, endogenous versus reprogrammed. Review 1 (2014), 1–20 https://doi.org/10.15406/mojor.2014.01.00019.
Honardoost, M.A., Naghavian, R., Ahmadinejad, F., Hosseini, A., Ghaedi, K., Integrative computational mRNA–miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: an attempt to discover new potential miRNAs involved in Th17 differentiation. Gene 572 (2015), 153–162 https://doi.org/https://doi.org/10.1016/j.gene.2015.08.043.
Houghton, Alan N., Eisinger, Magdalena, Albino, Anthony P., Cairncross, J Gregory, Old, L.J., SURFACE ANTIGENS of MELANOCYTES and MELANOMAS Markers of Melanocyte Differentiation and Melanoma Subsets, vol. 156, 1982, 1755–1766.
Howard, B., Mo, Z., Filipovic, R., Radial glia cells in the developing human brain. Scientist 14 (2008), 459–473 https://doi.org/10.1177/1073858407313512.Radial.
Huber, K., The Sympathoadrenal Cell Lineage : Specification, Diversification, and New Perspectives, vol. 298, 2006, 335–343 https://doi.org/10.1016/j.ydbio.2006.07.010.
Jami, M.-S., Hou, J., Liu, M., Varney, M.L., Hassan, H., Dong, J., Geng, L., Wang, J., Yu, F., Huang, X., Peng, H., Fu, K., Li, Y., Singh, R.K., Ding, S.-J., Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness. BMC Canc., 14, 2014, 194 https://doi.org/10.1186/1471-2407-14-194.
Jami, M.-S., Salehi-Najafabadi, Z., Ahmadinejad, F., Hoedt, E., Chaleshtori, M.H., Ghatrehsamani, M., Neubert, T.A., Larsen, J.P., Møller, S.G., Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress. Neurochem. Int. 90 (2015), 134–141 https://doi.org/https://doi.org/10.1016/j.neuint.2015.07.024.
Jami, M., Pal, R., Hoedt, E., Neubert, T.A., Larsen, J.P., Møller, S.G., Proteome Analysis Reveals Roles of L-DOPA in Response to Oxidative Stress in Neurons 1–11. 2014.
Janig, W., Habler, H.J., Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions. Prog. Brain Res. 122 (2000), 351–367.
Jessen, K.R., Morgan, L., Stewart, H.J., Mirsky, R., Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109 (1990), 91–103.
Jesuraj, N.J., Nguyen, P.K., Wood, M.D., Moore, A.M., Gregory, H., Mackinnon, S.E., Sakiyama-elbert, S.E., Differential gene expression in motor and sensory Schwann cells in the rat femoral nerve. NIH Public access 90 (2013), 96–104 https://doi.org/10.1002/jnr.22752.Differential.
Kameda, Y., Mash1 is required for glomus cell formation in the mouse carotid body. Dev. Biol. 283 (2005), 128–139 https://doi.org/10.1016/j.ydbio.2005.04.004.
Keshavarzi, M., Sorayayi, S., Jafar Rezaei, M., Mohammadi, M., Ghaderi, A., Rostamzadeh, A., Masoudifar, A., Mirzaei, H., MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J. Cell. Biochem., 2017 https://doi.org/10.1002/jcb.26012.
Kirsch, F., Krüger, C., Schneider, A., The receptor for Granulocyte-colony stimulating factor (G-CSF) is expressed in radial glia during development of the nervous system. BMC Dev. Biol., 8, 2008, 32 https://doi.org/10.1186/1471-213X-8-32.
Kosalková, K., García-Estrada, C., Barreiro, C., Flórez, M.G., Jami, M.S., Paniagua, M.A., Martín, J.F., Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway. Microb. Cell Factories, 11, 2012, 5 https://doi.org/10.1186/1475-2859-11-5.
Kumar, P., Prabhakar, N.R., Peripheral chemoreceptors: function and plasticity of the carotid body. Comp. Physiol. 2 (2012), 141–219 https://doi.org/10.1002/cphy.c100069.
Lavker, R.M., Sun, T.-T., Epidermal stem cells: properties, markers, and location. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 13473–13475.
Li, H., Liu, H., Sage, C., Huang, M., Chen, Z.-Y., Heller, S., Islet-1 expression in the developing chicken inner ear. J. Comp. Neurol. 477 (2004), 1–10 https://doi.org/10.1002/cne.20190.
Li, H., Roblin, G., Liu, H., Heller, S., Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 13495–13500 https://doi.org/10.1073/pnas.2334503100.
Li, Y., Liu, H., Giffen, K.P., Chen, L., Beisel, K.W., He, D.Z.Z., Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci. Data, 5, 2018, 180199.
Liberman, M.C., Gao, J., He, D.Z.Z., Wu, X., Jia, S., Zuo, J., Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419 (2002), 300–304 https://doi.org/10.1038/nature01059.
Liu, Q., Chen, J., Gao, X., Ding, J., Tang, Z., Zhang, C., Chen, J., Li, L., Chen, P., Wang, J., Identification of stage-specific markers during differentiation of hair cells from mouse inner ear stem cells or progenitor cells in vitro. Int. J. Biochem. Cell Biol. 60 (2015), 99–111 https://doi.org/10.1016/j.biocel.2014.12.024.
Liu, Q., Chen, P., Wang, J., Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells. Dev. Biol. 390 (2014), 93–101 https://doi.org/10.1016/j.ydbio.2014.03.010.
Liu, Z., Jin, Y.-Q., Chen, L., Wang, Y., Yang, X., Cheng, J., Wu, W., Qi, Z., Shen, Z., Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS One, 10, 2015, e0123278 https://doi.org/10.1371/journal.pone.0123278.
Mahmood, T., Yang, P.-C., Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 4 (2012), 429–434 https://doi.org/10.4103/1947-2714.100998.
Mahmoodian sani, M.R., Hashemzadeh-Chaleshtori, M., Mehri-Ghahfarrokhi, A., Ghasemi-Dehkordi, P., Saidijam, M., Jami, M.-S., MicroRNA-183 family in inner ear: hair cell development and deafness. J. Audiol. Otol. 20 (2016), 131–138.
Mahmoudian-Sani, M.-R., Jami, M.-S., Mahdavinezhad, A., Amini, R., Farnoosh, G., Saidijam, M., The effect of the MicroRNA-183 family on hair cell-specific markers of human bone marrow-derived mesenchymal stem cells. Audiol. Neuro. Otol. 23 (2018), 208–215 https://doi.org/10.1159/000493557.
Mahmoudian-Sani, M.-R., Mehri-Ghahfarrokhi, A., Ahmadinejad, F., Hashemzadeh-Chaleshtori, M., Saidijam, M., Jami, M.-S., MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 274 (2017), 2373–2380 https://doi.org/10.1007/s00405-017-4470-6.
Matsui, J.I., Parker, M.A., Ryals, B.M., Cotanche, D.A., Regeneration and replacement in the vertebrate inner ear. Drug Discov. Today 10 (2005), 1307–1312 https://doi.org/10.1016/S1359-6446(05)03577-4.
Matsui, J.I., Ryals, B.M., Hair cell regeneration: an exciting phenomenon…but will restoring hearing and balance be possible?. J. Rehabil. Res. Dev. 42 (2005), 187–198.
Matter, W., Tissue, N., Special, H., Requirements, M., Cerebellum, T., Movement, C., Cord, T.S., Integrate, B., Information, S., The Central Nervous System. 1991, 304–342.
Mayeux, R., Biomarkers: potential uses and limitations. NeuroRx 1 (2004), 182–188 https://doi.org/10.1602/neurorx.1.2.182.
McCorry, L.K., Physiology of the autonomic nervous system. Am. J. Pharmaceut. Educ., 71, 2007, 78.
Miron, V.E., Kuhlmann, T., Antel, Jack P., J.P., Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim. Biophys. Acta - Mol. Basis Dis. 1812 (2011), 184–193 https://doi.org/10.1016/j.bbadis.2010.09.010.
Misawa, H., Hara, M., Tanabe, S., Niikura, M., Moriwaki, Y., Okuda, T., Osteopontin is an alpha motor neuron marker in the mouse spinal cord. J. Neurosci. Res. 90 (2012), 732–742 https://doi.org/10.1002/jnr.22813.
Mladinic, M., Bianchetti, E., Dekanic, A., Mazzone, G.L., Nistri, A., ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord. Stem Cell Res. 12 (2014), 815–827 https://doi.org/10.1016/j.scr.2014.03.006.
Molina, P.E., Endocrine Physiology. third ed., 2010, Mc Graw Hill.
Nezami, B.G., Srinivasan, S., Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr. Gastroenterol. Rep. 12 (2010), 358–365 https://doi.org/10.1007/s11894-010-0129-9.
Patterson, P., The generationofantibodiesofchromaffincellsandembryonicsympatheticganglia-Carnahan1991-jofneuro. J. Neurosci. 7 (1991), 3493–3506.
Peng, T., Zhu, G., Dong, Y., Zeng, J., Li, W., Guo, W., Chen, Y., Duan, M., Hocher, B., Xie, D., BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells. Clin. Lab. 61 (2015), 1171–1178.
Polakovicova, S., et al. Merkel cells – review on developmental, functional and clinical. Bratisl. Lek. Listy, 112, 2011.
Purves, D., Augustine, G.J., Fitzpatrick, D., et al. Neuroscience, second ed., 2001 https://doi.org/NBK10869.
Qu, Y., Zhou, B., Yang, W., Han, B., Yu-Rice, Y., Gao, B., Johnson, J., Svendsen, C.N., Freeman, M.R., Giuliano, A.E., Sareen, D., Cui, X., Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs. Sci. Rep., 6, 2016, 32007 https://doi.org/10.1038/srep32007.
Rakic, P., Evolution of the neocortex: perspective from developmental biology. Nat. Rev. Neurosci. 10 (2009), 724–735 https://doi.org/10.1038/nrn2719.
Rallu, M., Corbin, J.G., Fishell, G., Parsing the prosencephalon. Nat. Rev. Neurosci. 3 (2002), 943–951 https://doi.org/10.1038/nrn989.
Reano, A., Faure, M., Jacques, Y., Reichert, U., Schaefer, H., Thivolet, J., Lectins as markers of human epidermal cell differentiation. Differentiation 22 (1982), 205–210 https://doi.org/10.1111/j.1432-0436.1982.tb01252.x.
Reza, M., Ghahfarrokhi, A.M., MicroRNAs : effective elements in ear-related diseases and hearing loss. Eur. Arch. Oto-Rhino-Laryngol., 2017 0, 0 https://doi.org/10.1007/s00405-017-4470-6.
Ritzmann, R.E., Zill, S.N., Chapter 265 - walking and jumping A2 - resh. Vincent, H., (eds.) Cardé, R.T.B.T.-E. Of I, Second E, 2009, Academic Press, San Diego, 1044–1048 https://doi.org/https://doi.org/10.1016/B978-0-12-374144-8.00274-5.
Schneider, S., Bosse, F., D'Urso, D., Muller, H., Sereda, M.W., Nave, K., Niehaus, a, Kempf, T., Schnolzer, M., Trotter, J., The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J. Neurosci. 21 (2001), 920–933 https://doi.org/21/3/920 ([pii]).
Steel, K.P., Davidson, D.R., Jackson, I.J., TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115 (1992), 1111–1119.
Strimbu, K., Tavel, J.A., What are Biomarkers?. Curr. Opin. HIV AIDS 5 (2010), 463–466 https://doi.org/10.1097/COH.0b013e32833ed177.
Tanha, R.R., Ghaderi, O., Gharib, A., Anzab, M.A., Ahmadi, R., Mahmoodi, A., Mojtahedzadeh, M., Rostamzadeh, A., Increasing prevalence of multiple sclerosis: biomarkers theranostic strategy from bench to bedside- a review., 9, 2016, 753–764.
Taylor, R.R., Filia, A., Paredes, U., Asai, Y., Holt, J.R., Lovett, M., Forge, A., Regenerating Hair Cells in Vestibular Sensory Epithelia from Humans 1–20. 2018.
Thomas, S., Thomas, M., Wincker, P., Babarit, C., Xu, P., Speer, M.C., Munnich, A., Lyonnet, S., Vekemans, M., Etchevers, H.C., Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum. Mol. Genet. 17 (2008), 3411–3425 https://doi.org/10.1093/hmg/ddn235.
Torres, M., Giraldez, F., The development of the vertebrate inner ear. Mech. Dev. 71 (1998), 5–21.
Ueda, M., Fujisawa, T., Ono, M., A short-term treatment with tumor necrosis factor-alpha enhances stem cell phenotype of human dental pulp cells. Stem Cell Res. Ther. 5 (2014), 1–10 https://doi.org/10.1186/scrt420.
Wang, G.-P., Chatterjee, I., Batts, S.A., Wong, H.T., Gong, T.-W., Gong, S.-S., Raphael, Y., Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear. Res. 267 (2010), 61–70 https://doi.org/10.1016/j.heares.2010.03.085.
Watt, F.M., Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353 (1998), 831–837.
Wei, X., Ling, J., Wu, L., Liu, L., Xiao, Y., Expression of mineralization markers in dental pulp cells. J. Endod. 33 (2007), 703–708 https://doi.org/10.1016/j.joen.2007.02.009.
White, P.M., Doetzlhofer, A., Lee, Y.S., Groves, A.K., Segil, N., Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441 (2006), 984–987 https://doi.org/10.1038/nature04849.
Whitfield, T.T., Development of the inner ear. Curr. Opin. Genet. Dev. 32 (2015), 112–118 https://doi.org/10.1016/J.GDE.2015.02.006.
Xia, A., Song, Y., Wang, R., Gao, S.S., Clifton, W., Raphael, P., Chao, S., Pereira, F.A., Groves, A.K., Oghalai, J.S., Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One, 8, 2013 e82602–e82602 https://doi.org/10.1371/journal.pone.0082602.
Xiang, M., Gao, W.Q., Hasson, T., Shin, J.J., Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125 (1998), 3935–3946.
Yamaguchi, Y., Hearing, V.J., Melanocytes and their diseases. Cold Spring Harbor Perspect. Med., 4, 2014, a017046 https://doi.org/10.1101/cshperspect.a017046.
Zine, A., Van De Water, T.R., de Ribaupierre, F., Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127 (2000), 3373–3383.