[en] An ideal tissue-engineered dermal substitute should possess angiogenesis potential to promote wound healing, antibacterial activity to relieve the bacterial burden on skin, as well as sufficient porosity for air and moisture exchange. In light of this, a glass-ceramic (GC) has been incorporated into chitosan and gelatin electrospun nanofibers (240-360 nm), which MEFs were loaded on it for healing acceleration. The GC was doped with silver to improve the antibacterial activity. The bioactive nanofibrous scaffolds demonstrated antibacterial and superior antibiofilm activities against Gram-negative and Gram-positive bacteria. The nanofibrous scaffolds were biocompatible, hemocompatible, and promoted cell attachment and proliferation. Nanofibrous skin substitutes with or without Ag-doped GC nanoparticles did not induce an inflammatory response and attenuated LPS-induced interleukin-6 release by dendritic cells. The rate of biodegradation of the nanocomposite was similar to the rate of skin regeneration under in vivo conditions. Histopathological evaluation of full-thickness excisional wounds in BALB/c mice treated with mouse embryonic fibroblasts-loaded nanofibrous scaffolds showed enhanced angiogenesis, and collagen synthesis as well as regeneration of the sebaceous glands and hair follicles in vivo.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sharifi, Esmaeel ; Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Science Shahrekord Iran ; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies Hamadan University of Medical Sciences Hamadan Iran
Sadati, Seyede Athar; Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Science Shahrekord Iran
Yousefiasl, Satar ; School of Dentistry Hamadan University of Medical Sciences Hamadan Iran
Sartorius, Rossella; Institute of Biochemistry and Cell Biology (IBBC) National Research Council (CNR) Naples Italy
Zafari, Mahdi; National Cell Bank, Pasteur Institute of Iran Tehran Iran
Rezakhani, Leila; Fertility and Infertility Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
Alizadeh, Morteza; Department of Tissue Engineering, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
Nazarzadeh Zare, Ehsan ; School of Chemistry Damghan University Damghan Iran
Omidghaemi, Shadi; Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Science Shahrekord Iran
Ghanavatinejad, Fatemeh ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Science Shahrekord Iran
Jami, Mohammad-Saeid; Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Science Shahrekord Iran
Salahinejad, Erfan; Faculty of Materials Science and Engineering K. N. Toosi University of Technology Tehran Iran
Samadian, Hadi ; Dental Implants Research Center Hamadan University of Medical Sciences Hamadan Iran
Paiva-Santos, Ana Cláudia ; Department of Pharmaceutical Technology, Faculty of Pharmacy University of Coimbra Coimbra Portugal ; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy University of Coimbra Coimbra Portugal
De Berardinis, Piergiuseppe; Institute of Biochemistry and Cell Biology (IBBC) National Research Council (CNR) Naples Italy
Shafiee, Abbas ; UQ Diamantina Institute, Translational Research Institute, The University of Queensland Brisbane Queensland Australia
Tay, Franklin R; The Graduate School, Augusta University Augusta Georgia USA
Pourmotabed, Samiramis ; Department of Emergency Medicine, School of Medicine Hamadan University of Medical Sciences Hamadan Iran
Makvandi, Pooyan ; School of Chemistry Damghan University Damghan Iran ; Istituto Italiano di Tecnologia, Centre for Materials Interfaces Pontedera Pisa Italy
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512. doi:10.4155/fmc.15.6
Schuhladen K, Stich L, Schmidt J, Steinkasserer A, Boccaccini AR, Zinser E. Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater Sci. 2020;8(8):2143-2155.
Nikfarjam N, Ghomi M, Agarwal T, et al. Antimicrobial ionic liquid-based materials for biomedical applications. Adv Funct Mater. 2021;31(42):2104148. doi:10.1002/adfm.202104148
Hosseini M, Shafiee A. Engineering bioactive scaffolds for skin regeneration. Small. 2021;17:2101384. doi:10.1002/smll.202101384
Vyas KS, Vasconez HC. Wound healing: biologics, skin substitutes, biomembranes and scaffolds. Healthcare. Vol 2. Multidisciplinary Digital Publishing Institute; 2014:356-400.
Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat. 2020;31(6):639-648.
Graça MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-based wound dressings: a review. Carbohydr Polym. 2020;241:116364.
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Trends Biotechnol. 2018;36(9):907-922.
Islamipour Z, Zare EN, Salimi F, Ghomi M, Makvandi P. Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging. J Nanostruct Chem. 2022;1-16. doi:10.1007/s40097-022-00491-4
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr Polym. 2018;189:379-398.
Abadehie FS, Dehkordi AH, Zafari M, et al. Lawsone-encapsulated chitosan/polyethylene oxide nanofibrous mat as a potential antibacterial biobased wound dressing. Eng Regen. 2021;2:219-226.
Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance. Acta Biomater. 2017;50:41-55. doi:10.1016/j.actbio.2016.12.034
Nikbakht M, Karbasi S, Rezayat SM, Tavakol S, Sharifi E. Evaluation of the effects of hyaluronic acid on poly (3-hydroxybutyrate)/chitosan/carbon nanotubes electrospun scaffold: structure and mechanical properties. Polym Technol Mater. 2019;58(18):2031-2040. doi:10.1080/25740881.2019.1602645
Shafiee A, Cavalcanti AS, Saidy NT, et al. Biomaterials convergence of 3D printed biomimetic wound dressings and adult stem cell therapy. Biomaterials. 2021;268:120558. doi:10.1016/j.biomaterials.2020.120558
Kenry LCT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1-17. doi:10.1016/j.progpolymsci.2017.03.002
Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomater. 2018;9(1):1-26. doi:10.3390/jfb9010025
Yu H, Peng J, Xu Y, Chang J, Li H. Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interfaces. 2015;8(1):703-715. doi:10.1021/acsami.5b09853
Schuhladen K, Boccaccini AR. 15 - Bioactive glass variants for tissue engineering: from the macro- to the nanoscale. In: Osaka A, Narayan RBT-B, eds. Elsevier Series on Advanced Ceramic Materials. Elsevier; 2021:353-373. doi:10.1016/B978-0-08-102999-2.00015-6
Shamosi A, Farokhi M, Ai J, Sharifi E. Induction of spontaneous neo-angiogenesis and tube formation in human endometrial stem cells by bioglass. J Med Hypotheses Ideas. 2015;9(2):94-98. doi:10.1016/j.jmhi.2015.09.004
Sharifi E, Ebrahimi-Barough S, Panahi M, et al. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds. J Biomed Mater Res Part A. 2016;104(9):2210-2219. doi:10.1002/jbm.a.35748
Jin Y, Li B, Saravanakumar K, Hu X, Mariadoss AVA, Wang M-H. Cytotoxic and antibacterial activities of starch encapsulated photo-catalyzed phytogenic silver nanoparticles from Paeonia lactiflora flowers. J Nanostruct Chem. 2021;12:1-13.
Pirayesh H, Nychka JA. Sol-gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc. 2013;96(5):1643-1650. doi:10.1111/jace.12190
Singh R, Shitiz K, Singh S, Jha S, Singh A. Evaluation of wound dressing properties of chitin membranes containing nanosilver. Biomed Phys Eng Express. 2018;4(2):25030. doi:10.1088/2057-1976/aaa9ca
Aguilar-Reyes EA, León-Patiño CA, Villicaña-Molina E, Macías-Andrés VI, Lefebvre L-P. Processing and in vitro bioactivity of high-strength 45S5 glass-ceramic scaffolds for bone regeneration. Ceram Int. 2017;43(9):6868-6875. doi:10.1016/j.ceramint.2017.02.107
Bahuguni NM. Synthesis and characterization of (Z)-N'1-(E)-2- and its Co(II), Ni(II), Cu (II) and Pd(II). Metal Complexes. 2017;7(June):435-442.
Xie Y, Xu L, Wang Y, et al. Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy. Anal Methods. 2013;5(4):946-952. doi:10.1039/C2AY26107C
Sergi R, Cannillo V, Boccaccini AR, Liverani L. A new generation of electrospun fibers containing bioactive glass particles for wound healing. Materials (Basel). 2020;13(24):5651.
An J, Zhang H, Zhang J, Zhao Y, Yuan X. Preparation and antibacterial activity of electrospun chitosan/poly (ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci. 2009;287(12):1425-1434.
Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19(1):41-52.
Dittrich A, Hessenkemper W, Schaper F. Systems biology of IL-6, IL-12 family cytokines. Cytokine Growth Factor Rev. 2015;26(5):595-602.
Desjardins-Park HE, Foster DS, Longaker MT. Fibroblasts and wound healing: An update. Regen Med. 2018;13(5):491-495. doi:10.2217/rme-2018-0073
Rognoni E, Gomez C, Pisco AO, et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development. 2016;143(14):2522-2535. doi:10.1242/dev.131797
Deka Dey A, Yousefiasl S, Kumar A, et al. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med. 2022;e10343. doi:10.1002/btm2.10343
Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Adv Healthc Mater. 2021;10(16):e2100477. doi:10.1002/adhm.202100477
Garg K, Sell SA, Madurantakam P, Bowlin GL. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed Mater. 2009;4(3):31001. doi:10.1088/1748-6041/4/3/031001
Clupper DC, Mecholsky JJ, LaTorre GP, Greenspan DC. Sintering temperature effects on the in vitro bioactive response of tape cast and sintered bioactive glass-ceramic in Tris buffer. J Biomed Mater Res. 2001;57(4):532-540. doi:10.1002/1097-4636(20011215)57:4<532::aid-jbm1199>3.0.co;2-3
Lefebvre L, Chevalier J, Gremillard L, et al. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55(10):3305-3313. doi:10.1016/j.actamat.2007.01.029
Sola A, Bellucci D, Raucci MG, Zeppetelli S, Ambrosio L, Cannillo V. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. J Biomed Mater Res Part A. 2011;100A(2):305-322. doi:10.1002/jbm.a.33276
Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm. 2021;596:120213.
Safaee-Ardakani MR, Hatamian-Zarmi A, Sadat SM, et al. In situ preparation of PVA/schizophyllan-AgNPs nanofiber as potential of wound healing: characterization and cytotoxicity. Fibers Polym. 2019;20(12):2493-2502.
Caridade SG, Merino EG, Alves NM, de Zea Bermudez V, Boccaccini AR, Mano JF. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater. 2013;20:173-183.
Talebian S, Mehrali M, Mohan S, et al. Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Adv. 2014;4(90):49144-49152.
Agnes Mary S, Giri Dev VR. Electrospun herbal nanofibrous wound dressings for skin tissue engineering. J Text Inst. 2015;106(8):886-895. doi:10.1080/00405000.2014.951247
Drago L, Vassena C, Fenu S, et al. In vitro antibiofilm activity of bioactive glass S53P4. Future Microbiol. 2014;9(5):593-601. doi:10.2217/fmb.14.20
Sharifi E, Bigham A, Yousefiasl S, et al. Mesoporous bioactive glasses in cancer diagnosis and therapy: stimuli-responsive, toxicity, immunogenicity, and clinical translation. Adv Sci. 2021;9:2102678. doi:10.1002/advs.202102678
Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostruct Chem. 2021;1-14. doi:10.1007/s40097-021-00446-1
Rameshbabu AP, Bankoti K, Datta S, et al. Silk sponges ornamented with a placenta-derived extracellular matrix augment full-thickness cutaneous wound healing by stimulating neovascularization and cellular migration. ACS Appl Mater Interfaces. 2018;10(20):16977-16991. doi:10.1021/acsami.7b19007
Pezeshki-Modaress M, Zandi M, Rajabi S. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study. Prog Biomater. 2018;7(3):207-218. doi:10.1007/s40204-018-0094-1
Elahi MF, Guan G, Wang L. Hemocompatibility of surface modified silk fibroin materials: a review. Rev Adv Mater Sci. 2014;38(2):148-159.
Stynes G, Kiroff GK, Morrison WAJ, Kirkland MA. Tissue compatibility of biomaterials: benefits and problems of skin biointegration. ANZ J Surg. 2008;78(8):654-659.
Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015;5(1):a023267.
Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clinic Proceedings. Vol 88, 88. Elsevier; 2013:1022-1031.
Barabadi Z, Azami M, Sharifi E, et al. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. Mater Sci Eng C. 2016;69:1137-1146. doi:10.1016/j.msec.2016.08.012
Zafari M, Mansouri M, Omidghaemi S, et al. Physical and biological properties of blend-electrospun polycaprolactone/chitosan-based wound dressings loaded with N-decyl-N, N -dimethyl-1-decanaminium chloride: An in vitro and in vivo study. J Biomed Mater Res Part B Appl Biomater. 2020;108(8):3084-3098. doi:10.1002/jbm.b.34636
Zafari M, Adibi M, Chiani M, et al. Effects of cefazolin-containing niosome nanoparticles against methicillin-resistant Staphylococcus aureus biofilm formed on chronic wounds. Biomed Mater. 2020;16:035001. doi:10.1088/1748-605X/abc7f2
Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134-140. doi:10.1016/j.mimet.2014.07.024
Alizadeh M, Rezakhani L, Khodaei M, Soleimannejad M, Alizadeh A. Evaluating the effects of vacuum on the microstructure and biocompatibility of bovine decellularized pericardium. J Tissue Eng Regen Med. 2021;15(2):116-128.
Wang X, Ge J, Tredget EE, Wu Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013;8(2):302-309.
Rezakhani L, Alizadeh M, Alizadeh A. A three dimensional in vivo model of breast cancer using a thermosensitive chitosan-based hydrogel and 4 T1 cell line in Balb/c. J Biomed Mater Res - Part A. 2021;109(7):1275-1285. doi:10.1002/jbm.a.37121
Alizadeh M, Rezakhani L, Soleimannejad M, Sharifi E, Anjomshoa M, Alizadeh A. Evaluation of vacuum washing in the removal of SDS from decellularized bovine pericardium: method and device description. Heliyon. 2019;5(8):e02253.