[en] The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Heurtaux, Tony ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg ; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
Bouvier, David S ; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg ; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg ; Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
Benani, Alexandre ; Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
Helgueta Romero, Sergio ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg ; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
Frauenknecht, Katrin B M ; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg ; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
Mittelbronn, Michel; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg ; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg ; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg ; Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg ; Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
Sinkkonen, Lasse ; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg
Language :
English
Title :
Normal and Pathological NRF2 Signalling in the Central Nervous System.
S.H.R. is supported by Fonds National de Recherche de Luxembourg (FNR)-PRIDE (PRIDE17/12244779/PARK-Q); L.S. has received funding from FNR, Fondation du Pélican de Mie et Pierre Hippert-Faber, Luxembourg Rotary Foundation, Luxembourg Personalized Medicine Consortium, and University of Luxembourg Internal Research Project grants; M.M. would like to thank the FNR for the support (PEARL P16/BM/11192868 grant).
Di Meo S. Napolitano G. Venditti P. Physiological and Pathological Role of ROS: Benefits and Limitations of Antioxidant Treatment Int. J. Mol. Sci. 2019 20 4810 10.3390/ijms20194810 31569717
Brand M.D. The sites and topology of mitochondrial superoxide production Exp. Gerontol. 2010 45 466 472 10.1016/j.exger.2010.01.003 20064600
Snezhkina A.V. Kudryavtseva A.V. Kardymon O.L. Savvateeva M.V. Melnikova N.V. Krasnov G.S. Dmitriev A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells Oxid. Med. Cell. Longev. 2019 2019 6175804 10.1155/2019/6175804
Panday A. Sahoo M.K. Osorio D. Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies Cell. Mol. Immunol. 2015 12 5 23 10.1038/cmi.2014.89
Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal Oxid. Med. Cell. Longev. 2014 2014 360438 10.1155/2014/360438
Yin H. Xu L. Porter N.A. Free radical lipid peroxidation: Mechanisms and analysis Chem. Rev. 2011 111 5944 5972 10.1021/cr200084z
Pacher P. Beckman J.S. Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease Physiol. Rev. 2007 87 315 424 10.1152/physrev.00029.2006
Carraro E. Schilirò T. Biorci F. Romanazzi V. Degan R. Buonocore D. Verri M. Dossena M. Bonetta S. Gilli G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects Int. J. Environ. Res. Public. Health 2018 15 1152 10.3390/ijerph15061152
Di Meo S. Reed T.T. Venditti P. Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions Oxid. Med. Cell. Longev. 2016 2016 1245049 10.1155/2016/1245049
Al-Gubory K.H. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development Reprod. Biomed. Online 2014 29 17 31 10.1016/j.rbmo.2014.03.002
Aseervatham G.S.B. Sivasudha T. Jeyadevi R. Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans—An overview Environ. Sci. Pollut. Res. 2013 20 4356 4369 10.1007/s11356-013-1748-0
Bienert G.P. Schjoerring J.K. Jahn T.P. Membrane transport of hydrogen peroxide Biochim. Biophys. Acta Biomembr. 2006 1758 994 1003 10.1016/j.bbamem.2006.02.015
Jamil M. Debbarh H. Aboulmaouahib S. Aniq Filali O. Mounaji K. Zarqaoui M. Saadani B. Louanjli N. Cadi R. Reactive oxygen species in reproduction: Harmful, essential or both? Zygote 2020 28 255 269 10.1017/S0967199420000179
Dennery P.A. Oxidative stress in development: Nature or nurture? Free Radic. Biol. Med. 2010 49 1147 1151 10.1016/j.freeradbiomed.2010.07.011
Oswald M.C.W. Garnham N. Sweeney S.T. Landgraf M. Regulation of neuronal development and function by ROS FEBS Lett. 2018 592 679 691 10.1002/1873-3468.12972
Chaudhari P. Ye Z. Jang Y.-Y. Roles of reactive oxygen species in the fate of stem cells Antioxid. Redox Signal. 2014 20 1881 1890 10.1089/ars.2012.4963
Morimoto H. Iwata K. Ogonuki N. Inoue K. Atsuo O. Kanatsu-Shinohara M. Morimoto T. Yabe-Nishimura C. Shinohara T. ROS are required for mouse spermatogonial stem cell self-renewal Cell Stem Cell 2013 12 774 786 10.1016/j.stem.2013.04.001
Sart S. Song L. Li Y. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation Oxid. Med. Cell. Longev. 2015 2015 105135 10.1155/2015/105135
Bassoy E.Y. Walch M. Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front. Immunol. 2021 12 755856 10.3389/fimmu.2021.755856
Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 2977 2992 10.1016/j.bbamcr.2016.09.012
Santos A.L. Sinha S. Lindner A.B. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms Oxid. Med. Cell. Longev. 2018 2018 1941285 10.1155/2018/1941285
Dhoke N.R. Geesala R. Das A. Low Oxidative Stress-Mediated Proliferation Via JNK-FOXO3a-Catalase Signaling in Transplanted Adult Stem Cells Promotes Wound Tissue Regeneration Antioxid. Redox Signal. 2018 28 1047 1065 10.1089/ars.2016.6974
Lassègue B. Griendling K.K. Reactive oxygen species in hypertension: An update Am. J. Hypertens. 2004 17 852 860 10.1016/j.amjhyper.2004.02.004
Kröller-Schön S. Daiber A. Steven S. Oelze M. Frenis K. Kalinovic S. Heimann A. Schmidt F.P. Pinto A. Kvandova M. et al. Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation Eur. Heart J. 2018 39 3528 3539 10.1093/eurheartj/ehy333
Steven S. Frenis K. Kalinovic S. Kvandova M. Oelze M. Helmstädter J. Hahad O. Filippou K. Kus K. Trevisan C. et al. Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension Redox Biol. 2020 34 101515 10.1016/j.redox.2020.101515
Kong H. Chandel N.S. Regulation of redox balance in cancer and T cells J. Biol. Chem. 2018 293 7499 7507 10.1074/jbc.TM117.000257
Zhang R. Brennan M.-L. Shen Z. MacPherson J.C. Schmitt D. Molenda C.E. Hazen S.L. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation J. Biol. Chem. 2002 277 46116 46122 10.1074/jbc.M209124200
Funk C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology Science 2001 294 1871 1875 10.1126/science.294.5548.1871 11729303
Lands W.E. Marshall P.J. Kulmacz R.J. Hydroperoxide availability in the regulation of the arachidonate cascade Adv. Prostaglandin. Thromboxane. Leukot. Res. 1985 15 233 235 3004133
Bruegel M. Ceglarek U. Thiery J. Eicosanoids: Essential mediators in health and disease/Eicosanoide: Bedeutende Faktoren in der Homöostase und ihre Bedeutung in der Pathogenese multipler Erkrankungen Lab. Med. 2009 33 333 339 10.1515/JLM.2009.056
Yui K. Imataka G. Nakamura H. Ohara N. Naito Y. Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders Curr. Neuropharmacol. 2015 13 776 785 10.2174/1570159X13666151102103305 26521945
Tassoni D. Kaur G. Weisinger R.S. Sinclair A.J. The role of eicosanoids in the brain Asia Pac. J. Clin. Nutr. 2008 17 (Suppl. 1) 220 228
Wymann M.P. Schneiter R. Lipid signalling in disease Nat. Rev. Mol. Cell Biol. 2008 9 162 176 10.1038/nrm2335
Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid Alex. J. Med. 2018 54 287 293 10.1016/j.ajme.2017.09.001
Birben E. Sahiner U.M. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense World Allergy Organ. J. 2012 5 9 19 10.1097/WOX.0b013e3182439613
Liguori I. Russo G. Curcio F. Bulli G. Aran L. Della-Morte D. Gargiulo G. Testa G. Cacciatore F. Bonaduce D. et al. Oxidative stress, aging, and diseases Clin. Interv. Aging 2018 13 757 772 10.2147/CIA.S158513
Flatt T. A new definition of aging? Front. Genet. 2012 3 148 10.3389/fgene.2012.00148
Harman D. Aging: A theory based on free radical and radiation chemistry J. Gerontol. 1956 11 298 300 10.1093/geronj/11.3.298
Sanada F. Taniyama Y. Muratsu J. Otsu R. Shimizu H. Rakugi H. Morishita R. Source of Chronic Inflammation in Aging Front. Cardiovasc. Med. 2018 5 12 10.3389/fcvm.2018.00012
Tan B.L. Norhaizan M.E. Liew W.-P.-P. Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases Front. Pharmacol. 2018 9 1162 10.3389/fphar.2018.01162
Chung H.Y. Kim D.H. Lee E.K. Chung K.W. Chung S. Lee B. Seo A.Y. Chung J.H. Jung Y.S. Im E. et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept Aging Dis. 2019 10 367 10.14336/AD.2018.0324
Ferrucci L. Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty Nat. Rev. Cardiol. 2018 15 505 522 10.1038/s41569-018-0064-2
Papaconstantinou J. Wang C.Z. Zhang M. Yang S. Deford J. Bulavin D.V. Ansari N.H. Attenuation of p38α MAPK stress response signaling delays the in vivo aging of skeletal muscle myofibers and progenitor cells Aging 2015 7 718 733 10.18632/aging.100802
Akbari S. Amiri F.T. Naderi M. Shaki F. Seyedabadi M. Sodium arsenite accelerates D-galactose-induced aging in the testis of the rat: Evidence for mitochondrial oxidative damage, NF-kB, JNK, and apoptosis pathways Toxicology 2022 470 153148 10.1016/j.tox.2022.153148
Ng A. Tam W.W. Zhang M.W. Ho C.S. Husain S.F. McIntyre R.S. Ho R.C. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis Sci. Rep. 2018 8 12050 10.1038/s41598-018-30487-6
Chung H.Y. Sung B. Jung K.J. Zou Y. Yu B.P. The molecular inflammatory process in aging Antioxid. Redox Signal. 2006 8 572 581 10.1089/ars.2006.8.572
Zhu Y. Carvey P.M. Ling Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain Brain Res. 2006 1090 35 44 10.1016/j.brainres.2006.03.063
Maher P. The effects of stress and aging on glutathione metabolism Ageing Res. Rev. 2005 4 288 314 10.1016/j.arr.2005.02.005
Bellezza I. Giambanco I. Minelli A. Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 721 733 10.1016/j.bbamcr.2018.02.010
Tonelli C. Chio I.I.C. Tuveson D.A. Transcriptional Regulation by Nrf2 Antioxid. Redox Signal. 2018 29 1727 1745 10.1089/ars.2017.7342
Zhang X. Guo J. Wei X. Niu C. Jia M. Li Q. Meng D. Bach1: Function, Regulation, and Involvement in Disease Oxid. Med. Cell. Longev. 2018 2018 1347969 10.1155/2018/1347969
Davudian S. Mansoori B. Shajari N. Mohammadi A. Baradaran B. BACH1, the master regulator gene: A novel candidate target for cancer therapy Gene 2016 588 30 37 10.1016/j.gene.2016.04.040
Dhakshinamoorthy S. Jain A.K. Bloom D.A. Jaiswal A.K. Bach1 Competes with Nrf2 Leading to Negative Regulation of the Antioxidant Response Element (ARE)-mediated NAD(P)H:Quinone Oxidoreductase 1 Gene Expression and Induction in Response to Antioxidants * J. Biol. Chem. 2005 280 16891 16900 10.1074/jbc.M500166200
Yang L. Chen S. Zhao Q. Sun Y. Nie H. The Critical Role of Bach2 in Shaping the Balance between CD4+ T Cell Subsets in Immune-Mediated Diseases Mediators Inflamm. 2019 2019 2609737 10.1155/2019/2609737
Tsukumo S. Unno M. Muto A. Takeuchi A. Kometani K. Kurosaki T. Igarashi K. Saito T. Bach2 maintains T cells in a naive state by suppressing effector memory-related genes Proc. Natl. Acad. Sci. USA 2013 110 10735 10740 10.1073/pnas.1306691110
Hoshino H. Igarashi K. Expression of the oxidative stress-regulated transcription factor bach2 in differentiating neuronal cells J. Biochem. 2002 132 427 431 10.1093/oxfordjournals.jbchem.a003239
He X. Chen M.G. Lin G.X. Ma Q. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer J. Biol. Chem. 2006 281 23620 23631 10.1074/jbc.M604120200
He X. Ma Q. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2 J. Pharmacol. Exp. Ther. 2010 332 66 75 10.1124/jpet.109.160465 19808700
Yamamoto T. Suzuki T. Kobayashi A. Wakabayashi J. Maher J. Motohashi H. Yamamoto M. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity Mol. Cell. Biol. 2008 28 2758 2770 10.1128/MCB.01704-07 18268004
Zhang D.D. Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress Mol. Cell. Biol. 2003 23 8137 8151 10.1128/MCB.23.22.8137-8151.2003 14585973
Osama A. Zhang J. Yao J. Yao X. Fang J. Nrf2: A dark horse in Alzheimer’s disease treatment Ageing Res. Rev. 2020 64 101206 10.1016/j.arr.2020.101206
Yang S.-Y. Pyo M.C. Nam M.-H. Lee K.-W. ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress BMC Complement. Altern. Med. 2019 19 139 10.1186/s12906-019-2551-3
Hu Y.-R. Ma H. Zou Z.-Y. He K. Xiao Y.-B. Wang Y. Feng M. Ye X.-L. Li X.-G. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress Biomed. Pharmacother. 2017 85 313 322 10.1016/j.biopha.2016.11.031
Reddy N.M. Potteti H.R. Vegiraju S. Chen H.-J. Tamatam C.M. Reddy S.P. PI3K-AKT Signaling via Nrf2 Protects against Hyperoxia-Induced Acute Lung Injury, but Promotes Inflammation Post-Injury Independent of Nrf2 in Mice PLoS ONE 2015 10 e0129676 10.1371/journal.pone.0129676
Lee O.-H. Jain A.K. Papusha V. Jaiswal A.K. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance J. Biol. Chem. 2007 282 36412 36420 10.1074/jbc.M706517200
Culbreth M. Aschner M. GSK-3β, a double-edged sword in Nrf2 regulation: Implications for neurological dysfunction and disease F1000Res 2018 7 1043 10.12688/f1000research.15239.1
Chen X. Liu Y. Zhu J. Lei S. Dong Y. Li L. Jiang B. Tan L. Wu J. Yu S. et al. GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion Sci. Rep. 2016 6 20196 10.1038/srep20196
Huo L. Li C.-W. Huang T.-H. Lam Y.C. Xia W. Tu C. Chang W.-C. Hsu J.L. Lee D.-F. Nie L. et al. Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells Am. J. Transl. Res. 2014 6 649 663
Tebay L.E. Robertson H. Durant S.T. Vitale S.R. Penning T.M. Dinkova-Kostova A.T. Hayes J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease Free Radic. Biol. Med. 2015 88 108 146 10.1016/j.freeradbiomed.2015.06.021
Fu J. Xiong Z. Huang C. Li J. Yang W. Han Y. Paiboonrungruan C. Major M.B. Chen K.-N. Kang X. et al. Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus J. Biol. Chem. 2019 294 327 340 10.1074/jbc.RA118.005963
Zhao J. Lin X. Meng D. Zeng L. Zhuang R. Huang S. Lv W. Hu J. Nrf2 Mediates Metabolic Reprogramming in Non-Small Cell Lung Cancer Front. Oncol. 2020 10 578315 10.3389/fonc.2020.578315
Kasai S. Mimura J. Ozaki T. Itoh K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease Front. Vet. Sci. 2018 5 242 10.3389/fvets.2018.00242
Digaleh H. Kiaei M. Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: Implication for proteasomal degradation and autophagy Cell. Mol. Life Sci. 2013 70 4681 4694 10.1007/s00018-013-1409-y
Bendavit G. Aboulkassim T. Hilmi K. Shah S. Batist G. Nrf2 Transcription Factor Can Directly Regulate mTOR: Linking Cytoprotective Gene Expression To A Major Metabolic Regulator That Generates Redox Activity J. Biol. Chem. 2016 291 25476 25488 10.1074/jbc.M116.760249 27784786
Lau A. Wang X.-J. Zhao F. Villeneuve N.F. Wu T. Jiang T. Sun Z. White E. Zhang D.D. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62 Mol. Cell. Biol. 2010 30 3275 3285 10.1128/MCB.00248-10 20421418
Jiang T. Harder B. Rojo de la Vega M. Wong P.K. Chapman E. Zhang D.D. p62 links autophagy and Nrf2 signaling Free Radic. Biol. Med. 2015 88 199 204 10.1016/j.freeradbiomed.2015.06.014 26117325
Jain A. Lamark T. Sjøttem E. Larsen K.B. Awuh J.A. Øvervatn A. McMahon M. Hayes J.D. Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription J. Biol. Chem. 2010 285 22576 22591 10.1074/jbc.M110.118976
Park J.S. Oh S.Y. Lee D.H. Lee Y.S. Sung S.H. Ji H.W. Lee M.J. Lee Y.-H. Rhee S.G. Bae S.H. p62/SQSTM1 is required for the protection against endoplasmic reticulum stress-induced apoptotic cell death Free Radic. Res. 2016 50 1408 1421 10.1080/10715762.2016.1253073
Bian S. Zhao Y. Li F. Lu S. Yang S. Liu M. Wang S. Zhao D. Zhang W. Wang J. Knockdown of p62/sequestosome enhances ginsenoside Rh2-induced apoptosis in cervical cancer HeLa cells with no effect on autophagy Biosci. Biotechnol. Biochem. 2021 85 1097 1103 10.1093/bbb/zbab019
Dikovskaya D. Dinkova-Kostova A.T. Measuring Changes in Keap1-Nrf2 Protein Complex Conformation in Individual Cells by FLIM-FRET Curr. Protoc. Toxicol. 2020 85 e96 10.1002/cptx.96
Dikovskaya D. Appleton P.L. Bento-Pereira C. Dinkova-Kostova A.T. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis Chem. Res. Toxicol. 2019 32 500 512 10.1021/acs.chemrestox.8b00354
Baird L. Swift S. Llères D. Dinkova-Kostova A.T. Monitoring Keap1-Nrf2 interactions in single live cells Biotechnol. Adv. 2014 32 1133 1144 10.1016/j.biotechadv.2014.03.004
Heurtaux T. Kirchmeyer M. Koncina E. Felten P. Richart L. Uriarte Huarte O. Schohn H. Mittelbronn M. Apomorphine Reduces A53T α-Synuclein-Induced Microglial Reactivity Through Activation of NRF2 Signalling Pathway Cell. Mol. Neurobiol. 2021 10.1007/s10571-021-01131-1
Zheng Y. Li L. Chen B. Fang Y. Lin W. Zhang T. Feng X. Tao X. Wu Y. Fu X. et al. Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-κB signaling pathway Cell Commun. Signal. 2022 20 84 10.1186/s12964-022-00860-0
Zhou L. Zhou M. Tan H. Xiao M. Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway Pestic. Biochem. Physiol. 2020 165 104547 10.1016/j.pestbp.2020.02.013
Zhang S. Jin S. Zhang S. Li Y.-Y. Wang H. Chen Y. Lu H. Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via Wnt/β-catenin and Nrf2 signalling pathway Arch. Physiol. Biochem. 2022 1 10 10.1080/13813455.2022.2028845
Mutter F.E. Park B.K. Copple I.M. Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress Biochem. Soc. Trans. 2015 43 657 662 10.1042/BST20150044
Smirnova N.A. Haskew-Layton R.E. Basso M. Hushpulian D.M. Payappilly J.B. Speer R.E. Ahn Y.-H. Rakhman I. Cole P.A. Pinto J.T. et al. Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators Chem. Biol. 2011 18 752 765 10.1016/j.chembiol.2011.03.013
Wang Z. Chen G. Zhu W.-W. Zhou D. Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the basilar artery after subarachnoid hemorrhage in rats Ann. Clin. Lab. Sci. 2010 40 233 239
Zhong Q. Mishra M. Kowluru R.A. Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy Investig. Ophthalmol. Vis. Sci. 2013 54 3941 3948 10.1167/iovs.13-11598
Wang X.J. Hayes J.D. Wolf C.R. Generation of a Stable Antioxidant Response Element–Driven Reporter Gene Cell Line and Its Use to Show Redox-Dependent Activation of Nrf2 by Cancer Chemotherapeutic Agents Cancer Res. 2006 66 10983 10994 10.1158/0008-5472.CAN-06-2298
Bischoff L.J.M. Kuijper I.A. Schimming J.P. Wolters L. Braak B. Langenberg J.P. Noort D. Beltman J.B. van de Water B. A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure Arch. Toxicol. 2019 93 435 451 10.1007/s00204-018-2353-2
Rahman I. Kode A. Biswas S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method Nat. Protoc. 2006 1 3159 3165 10.1038/nprot.2006.378
Wang J. Zhu Q. Wang Y. Peng J. Shao L. Li X. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis Free Radic. Biol. Med. 2022 187 171 184 10.1016/j.freeradbiomed.2022.05.023
Hu Y. Wang P. Han K. Hydrogen Attenuated Inflammation Response and Oxidative in Hypoxic Ischemic Encephalopathy via Nrf2 Mediated the Inhibition of NLRP3 and NF-κB Neuroscience 2022 485 23 36 10.1016/j.neuroscience.2021.12.024
Oikawa D. Akai R. Tokuda M. Iwawaki T. A transgenic mouse model for monitoring oxidative stress Sci. Rep. 2012 2 229 10.1038/srep00229 22355743
Inoue Y. Uchiyama A. Sekiguchi A. Yamazaki S. Fujiwara C. Yokoyama Y. Ogino S. Torii R. Hosoi M. Akai R. et al. Protective effect of dimethyl fumarate for the development of pressure ulcers after cutaneous ischemia-reperfusion injury Wound Repair Regen. 2020 28 600 608 10.1111/wrr.12824 32356363
Bazinet R.P. Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease Nat. Rev. Neurosci. 2014 15 771 785 10.1038/nrn3820 25387473
Cobley J.N. Fiorello M.L. Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress Redox Biol. 2018 15 490 503 10.1016/j.redox.2018.01.008 29413961
Ren X. Zou L. Zhang X. Branco V. Wang J. Carvalho C. Holmgren A. Lu J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System Antioxid. Redox Signal. 2017 27 989 1010 10.1089/ars.2016.6925
Lee K.H. Cha M. Lee B.H. Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection Int. J. Mol. Sci. 2021 22 13315 10.3390/ijms222413315
Dringen R. Gutterer J.M. Hirrlinger J. Glutathione metabolism in brain: Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species Eur. J. Biochem. 2000 267 4912 4916 10.1046/j.1432-1327.2000.01597.x
Chen Y. Qin C. Huang J. Tang X. Liu C. Huang K. Xu J. Guo G. Tong A. Zhou L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing Cell Prolif. 2020 53 e12781 10.1111/cpr.12781
Simpson D.S.A. Oliver P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease Antioxidants 2020 9 743 10.3390/antiox9080743
Liddell J.R. Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants 2017 6 65 10.3390/antiox6030065
He F. Ru X. Wen T. NRF2, a Transcription Factor for Stress Response and Beyond Int. J. Mol. Sci. 2020 21 4777 10.3390/ijms21134777
Boas S.M. Joyce K.L. Cowell R.M. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention Antioxidants 2021 11 8 10.3390/antiox11010008
Asanuma M. Miyazaki I. Glutathione and Related Molecules in Parkinsonism Int. J. Mol. Sci. 2021 22 8689 10.3390/ijms22168689
Burton N.C. Kensler T.W. Guilarte T.R. In vivo modulation of the Parkinsonian phenotype by Nrf2 Neurotoxicology 2006 27 1094 1100 10.1016/j.neuro.2006.07.019
Hubbs A.F. Benkovic S.A. Miller D.B. O’Callaghan J.P. Battelli L. Schwegler-Berry D. Ma Q. Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2 Am. J. Pathol. 2007 170 2068 2076 10.2353/ajpath.2007.060898
Jakel R.J. Townsend J.A. Kraft A.D. Johnson J.A. Nrf2-mediated protection against 6-hydroxydopamine Brain Res. 2007 1144 192 201 10.1016/j.brainres.2007.01.131
Innamorato N.G. Jazwa A. Rojo A.I. García C. Fernández-Ruiz J. Grochot-Przeczek A. Stachurska A. Jozkowicz A. Dulak J. Cuadrado A. Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1 PLoS ONE 2010 5 e11838 10.1371/journal.pone.0011838
Boyanapalli S.S.S. Paredes-Gonzalez X. Fuentes F. Zhang C. Guo Y. Pung D. Saw C.L.L. Kong A.-N.T. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin Chem. Res. Toxicol. 2014 27 2036 2043 10.1021/tx500234h
Johnson D.A. Amirahmadi S. Ward C. Fabry Z. Johnson J.A. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis Toxicol. Sci. 2010 114 237 246 10.1093/toxsci/kfp274
Rojo A.I. Pajares M. García-Yagüe A.J. Buendia I. Van Leuven F. Yamamoto M. López M.G. Cuadrado A. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy Redox Biol. 2018 18 173 180 10.1016/j.redox.2018.07.006
Branca C. Ferreira E. Nguyen T.-V. Doyle K. Caccamo A. Oddo S. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease Hum. Mol. Genet. 2017 26 4823 4835 10.1093/hmg/ddx361
Zhu J. Wang H. Sun Q. Ji X. Zhu L. Cong Z. Zhou Y. Liu H. Zhou M. Nrf2 is required to maintain the self-renewal of glioma stem cells BMC Cancer 2013 13 380 10.1186/1471-2407-13-380
Tarantini S. Valcarcel-Ares M.N. Yabluchanskiy A. Tucsek Z. Hertelendy P. Kiss T. Gautam T. Zhang X.A. Sonntag W.E. de Cabo R. et al. Nrf2 Deficiency Exacerbates Obesity-Induced Oxidative Stress, Neurovascular Dysfunction, Blood-Brain Barrier Disruption, Neuroinflammation, Amyloidogenic Gene Expression, and Cognitive Decline in Mice, Mimicking the Aging Phenotype J. Gerontol. A Biol. Sci. Med. Sci. 2018 73 853 863 10.1093/gerona/glx177
Sandberg M. Patil J. D’Angelo B. Weber S.G. Mallard C. NRF2-regulation in brain health and disease: Implication of cerebral inflammation Neuropharmacology 2014 79 298 306 10.1016/j.neuropharm.2013.11.004
Deshmukh P. Unni S. Krishnappa G. Padmanabhan B. The Keap1–Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases Biophys. Rev. 2017 9 41 56 10.1007/s12551-016-0244-4
Brandes M.S. Gray N.E. NRF2 as a Therapeutic Target in Neurodegenerative Diseases ASN Neuro 2020 12 175909141989978 10.1177/1759091419899782
Anandhan A. Nguyen N. Syal A. Dreher L.A. Dodson M. Zhang D.D. Madhavan L. NRF2 Loss Accentuates Parkinsonian Pathology and Behavioral Dysfunction in Human α-Synuclein Overexpressing Mice Aging Dis. 2021 12 964 982 10.14336/AD.2021.0511
Bono S. Feligioni M. Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy Mol. Neurodegener. 2021 16 71 10.1186/s13024-021-00479-8
Cuadrado A. Brain-Protective Mechanisms of Transcription Factor NRF2: Toward a Common Strategy for Neurodegenerative Diseases Annu. Rev. Pharmacol. Toxicol. 2022 62 255 277 10.1146/annurev-pharmtox-052220-103416
Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. et al. Chronic inflammation in the etiology of disease across the life span Nat. Med. 2019 25 1822 1832 10.1038/s41591-019-0675-0
Liu T. Zhang L. Joo D. Sun S.-C. NF-κB signaling in inflammation Signal Transduct. Target. Ther. 2017 2 17023 10.1038/sigtrans.2017.23
Christian F. Smith E.L. Carmody R.J. The Regulation of NF-κB Subunits by Phosphorylation Cells 2016 5 12 10.3390/cells5010012 26999213
Sivandzade F. Prasad S. Bhalerao A. Cucullo L. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches Redox Biol. 2019 21 101059 10.1016/j.redox.2018.11.017 30576920
Ganesh Yerra V. Negi G. Sharma S.S. Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy Redox Biol. 2013 1 394 397 10.1016/j.redox.2013.07.005 24024177
Li W. Khor T.O. Xu C. Shen G. Jeong W.-S. Yu S. Kong A.-N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis Biochem. Pharmacol. 2008 76 1485 1489 10.1016/j.bcp.2008.07.017 18694732
Ahmed S.M.U. Luo L. Namani A. Wang X.J. Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 585 597 10.1016/j.bbadis.2016.11.005 27825853
Saha S. Buttari B. Panieri E. Profumo E. Saso L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation Molecules 2020 25 5474 10.3390/molecules25225474
Pae H.-O. Chung H.-T. Heme oxygenase-1: Its therapeutic roles in inflammatory diseases Immune Netw. 2009 9 12 19 10.4110/in.2009.9.1.12
Drummond G.S. Baum J. Greenberg M. Lewis D. Abraham N.G. HO-1 overexpression and underexpression: Clinical implications Arch. Biochem. Biophys. 2019 673 108073 10.1016/j.abb.2019.108073
Subedi L. Lee J.H. Yumnam S. Ji E. Kim S.Y. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation Cells 2019 8 194 10.3390/cells8020194
Nitti M. Furfaro A.L. Mann G.E. Heme Oxygenase Dependent Bilirubin Generation in Vascular Cells: A Role in Preventing Endothelial Dysfunction in Local Tissue Microenvironment? Front. Physiol. 2020 11 23 10.3389/fphys.2020.00023
Helou D.G. Martin S.F. Pallardy M. Chollet-Martin S. Kerdine-Römer S. Nrf2 Involvement in Chemical-Induced Skin Innate Immunity Front. Immunol. 2019 10 1004 10.3389/fimmu.2019.01004
Krajka-Kuźniak V. Baer-Dubowska W. Modulation of Nrf2 and NF-κB Signaling Pathways by Naturally Occurring Compounds in Relation to Cancer Prevention and Therapy. Are Combinations Better Than Single Compounds? Int. J. Mol. Sci. 2021 22 8223 10.3390/ijms22158223
Yu M. Li H. Liu Q. Liu F. Tang L. Li C. Yuan Y. Zhan Y. Xu W. Li W. et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway Cell. Signal. 2011 23 883 892 10.1016/j.cellsig.2011.01.014
Hu B. Wei H. Song Y. Chen M. Fan Z. Qiu R. Zhu W. Xu W. Wang F. NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection J. Virol. 2020 94 e00016-20 10.1128/JVI.00016-20
Bellezza I. Mierla A.L. Minelli A. Nrf2 and NF-κB and Their Concerted Modulation in Cancer Pathogenesis and Progression Cancers 2010 2 483 497 10.3390/cancers2020483
Guo X. Hong S. He H. Zeng Y. Chen Y. Mo X. Li J. Li L. Steinmetz R. Liu Q. NFκB promotes oxidative stress-induced necrosis and ischemia/reperfusion injury by inhibiting Nrf2-ARE pathway Free Radic. Biol. Med. 2020 159 125 135 10.1016/j.freeradbiomed.2020.07.031
Gao W. Guo L. Yang Y. Wang Y. Xia S. Gong H. Zhang B.-K. Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity Front. Cell Dev. Biol. 2021 9 809952 10.3389/fcell.2021.809952
Liu G.-H. Qu J. Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK Biochim. Biophys. Acta 2008 1783 713 727 10.1016/j.bbamcr.2008.01.002
Jin W. Zhu L. Guan Q. Chen G. Wang Q.F. Yin H.X. Hang C.H. Shi J.X. Wang H.D. Influence of Nrf2 genotype on pulmonary NF-kappaB activity and inflammatory response after traumatic brain injury Ann. Clin. Lab. Sci. 2008 38 221 227
Pan H. Wang H. Wang X. Zhu L. Mao L. The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes Mediators Inflamm. 2012 2012 217580 10.1155/2012/217580
Wang K. Zheng M. Lester K.L. Han Z. Light-induced Nrf2-/- mice as atrophic age-related macular degeneration model and treatment with nanoceria laden injectable hydrogel Sci. Rep. 2019 9 14573 10.1038/s41598-019-51151-7
Chang S.-H. Lee J.-S. Yun U.J. Park K.W. A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure Biomedicines 2021 9 1196 10.3390/biomedicines9091196
Jardim N.S. Müller S.G. Pase F.M. Nogueira C.W. Nuclear Factor [Erythroid-derived 2]-like 2 and Mitochondrial Transcription Factor A Contribute to Moderate-intensity Swimming Effectiveness against Memory Impairment in Young Mice Induced by Concomitant Exposure to a High-calorie Diet during the Early Life Period Neuroscience 2021 452 311 325 10.1016/j.neuroscience.2020.11.023 33246070
Stevenson R.J. Francis H.M. The hippocampus and the regulation of human food intake Psychol. Bull. 2017 143 1011 1032 10.1037/bul0000109
Mattson M.P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease Cell Metab. 2012 16 706 722 10.1016/j.cmet.2012.08.012
Vasconcelos A.R. Dos Santos N.B. Scavone C. Munhoz C.D. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders Front. Pharmacol. 2019 10 33 10.3389/fphar.2019.00033
Matsui S. Sasaki T. Kohno D. Yaku K. Inutsuka A. Yokota-Hashimoto H. Kikuchi O. Suga T. Kobayashi M. Yamanaka A. et al. Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice Nat. Commun. 2018 9 4604 10.1038/s41467-018-07033-z
Gälman C. Lundåsen T. Kharitonenkov A. Bina H.A. Eriksson M. Hafström I. Dahlin M. Amark P. Angelin B. Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man Cell Metab. 2008 8 169 174 10.1016/j.cmet.2008.06.014
Laeger T. Henagan T.M. Albarado D.C. Redman L.M. Bray G.A. Noland R.C. Münzberg H. Hutson S.M. Gettys T.W. Schwartz M.W. et al. FGF21 is an endocrine signal of protein restriction J. Clin. Investig. 2014 124 3913 3922 10.1172/JCI74915
Solon-Biet S.M. Cogger V.C. Pulpitel T. Heblinski M. Wahl D. McMahon A.C. Warren A. Durrant-Whyte J. Walters K.A. Krycer J.R. et al. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework Cell Metab. 2016 24 555 565 10.1016/j.cmet.2016.09.001
Lundsgaard A.-M. Fritzen A.M. Sjøberg K.A. Myrmel L.S. Madsen L. Wojtaszewski J.F.P. Richter E.A. Kiens B. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates Mol. Metab. 2017 6 22 29 10.1016/j.molmet.2016.11.001 28123934
Jensen-Cody S.O. Flippo K.H. Claflin K.E. Yavuz Y. Sapouckey S.A. Walters G.C. Usachev Y.M. Atasoy D. Gillum M.P. Potthoff M.J. FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake Cell Metab. 2020 32 273 286.e6 10.1016/j.cmet.2020.06.008 32640184
Sajja R.K. Prasad S. Tang S. Kaisar M.A. Cucullo L. Blood-brain barrier disruption in diabetic mice is linked to Nrf2 signaling deficits: Role of ABCB10? Neurosci. Lett. 2017 653 152 158 10.1016/j.neulet.2017.05.059
Yu Z. Lin L. Jiang Y. Chin I. Wang X. Li X. Lo E.H. Wang X. Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice Mol. Neurobiol. 2019 56 2314 2327 10.1007/s12035-018-1234-2
Furusawa Y. Uruno A. Yagishita Y. Higashi C. Yamamoto M. Nrf2 induces fibroblast growth factor 21 in diabetic mice Genes Cells 2014 19 864 878 10.1111/gtc.12186
Sáenz de Urturi D. Buqué X. Porteiro B. Folgueira C. Mora A. Delgado T.C. Prieto-Fernández E. Olaizola P. Gómez-Santos B. Apodaka-Biguri M. et al. Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis Nat. Commun. 2022 13 1096 10.1038/s41467-022-28749-z
Yagishita Y. Uruno A. Fukutomi T. Saito R. Saigusa D. Pi J. Fukamizu A. Sugiyama F. Takahashi S. Yamamoto M. Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress Cell Rep. 2017 18 2030 2044 10.1016/j.celrep.2017.01.064
Bösl M.R. Seldin M.F. Nishimura S. Taketo M. Cloning, structural analysis and mapping of the mouse selenocysteine tRNA([Ser]Sec) gene (Trsp) Mol. Gen. Genet. 1995 248 247 252 10.1007/BF02191590
Shen G. Zhou L. Liu W. Cui Y. Xie W. Chen H. Yu W. Li W. Li H. Di(2-ethylhexyl)phthalate Alters the Synthesis and β-Oxidation of Fatty Acids and Hinders ATP Supply in Mouse Testes via UPLC-Q-Exactive Orbitrap MS-Based Metabonomics Study J. Agric. Food Chem. 2017 65 5056 5063 10.1021/acs.jafc.7b01015
Wang Y. Li L. Wang Y. Zhu X. Jiang M. Song E. Song Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway Eur. J. Pharmacol. 2018 822 128 137 10.1016/j.ejphar.2018.01.020 29355553
Xia S.-F. Shao J. Zhao S.-Y. Qiu Y.-Y. Teng L.-P. Huang W. Wang S.-S. Cheng X.-R. Jiang Y.-Y. Niga-ichigoside F1 ameliorates high-fat diet-induced hepatic steatosis in male mice by Nrf2 activation Food Funct. 2018 9 906 916 10.1039/C7FO01051F 29309075
Niu Y. He J. Ahmad H. Shen M. Zhao Y. Gan Z. Zhang L. Zhong X. Wang C. Wang T. Dietary Curcumin Supplementation Increases Antioxidant Capacity, Upregulates Nrf2 and Hmox1 Levels in the Liver of Piglet Model with Intrauterine Growth Retardation Nutrients 2019 11 2978 10.3390/nu11122978 31817533
Amos D. Cook C. Santanam N. Omega 3 rich diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel antioxidant mouse model Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 466 488 10.1016/j.bbalip.2019.01.002
Rajendran P. Ammar R.B. Al-Saeedi F.J. Mohamed M.E. ElNaggar M.A. Al-Ramadan S.Y. Bekhet G.M. Soliman A.M. Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies Int. J. Mol. Sci. 2020 22 217 10.3390/ijms22010217
Erten F. Orhan C. Tuzcu M. Er B. Defo Deeh P.B. Sahin N. Özercan I.H. Juturu V. Sahin K. Salacia chinensis exerts its antidiabetic effect by modulating glucose-regulated proteins and transcription factors in high-fat diet fed-streptozotocin-induced type 2 diabetic rats J. Food Biochem. 2020 44 e13513 10.1111/jfbc.13513
Illesca P. Valenzuela R. Espinosa A. Echeverría F. Soto-Alarcon S. Campos C. Rodriguez A. Vargas R. Magrone T. Videla L.A. Protective Effects of Eicosapentaenoic Acid Plus Hydroxytyrosol Supplementation Against White Adipose Tissue Abnormalities in Mice Fed a High-Fat Diet Molecules 2020 25 4433 10.3390/molecules25194433
Abrescia P. Treppiccione L. Rossi M. Bergamo P. Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis Prog. Lipid Res. 2020 80 101066 10.1016/j.plipres.2020.101066
Mohamed A.B. Rémond D. Gual-Grau A. Bernalier-Donnadille A. Capel F. Michalski M.-C. Laugerette F. Cohade B. Hafnaoui N. Béchet D. et al. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs Nutrients 2021 13 4202 10.3390/nu13124202
Bruns D.R. Drake J.C. Biela L.M. Peelor F.F. Miller B.F. Hamilton K.L. Nrf2 Signaling and the Slowed Aging Phenotype: Evidence from Long-Lived Models Oxid. Med. Cell. Longev. 2015 2015 732596 10.1155/2015/732596
Dodson M. Anandhan A. Zhang D.D. Madhavan L. An NRF2 Perspective on Stem Cells and Ageing Front. Aging 2021 2 690686 10.3389/fragi.2021.690686
Matsumaru D. Motohashi H. The KEAP1-NRF2 System in Healthy Aging and Longevity Antioxidants 2021 10 1929 10.3390/antiox10121929
Lewis K.N. Wason E. Edrey Y.H. Kristan D.M. Nevo E. Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents Proc. Natl. Acad. Sci. USA 2015 112 3722 3727 10.1073/pnas.1417566112
Zhang H. Davies K.J.A. Forman H.J. Oxidative stress response and Nrf2 signaling in aging Free Radic. Biol. Med. 2015 88 314 336 10.1016/j.freeradbiomed.2015.05.036
Silva-Palacios A. Ostolga-Chavarría M. Zazueta C. Königsberg M. Nrf2: Molecular and epigenetic regulation during aging Ageing Res. Rev. 2018 47 31 40 10.1016/j.arr.2018.06.003
Tsay H.J. Wang P. Wang S.L. Ku H.H. Age-associated changes of superoxide dismutase and catalase activities in the rat brain J. Biomed. Sci. 2000 7 466 474 10.1007/BF02253362
Samarghandian S. Azimi-Nezhad M. Samini F. Preventive effect of safranal against oxidative damage in aged male rat brain Exp. Anim. 2015 64 65 71 10.1538/expanim.14-0027
Berr C. Balansard B. Arnaud J. Roussel A.M. Alpérovitch A. Cognitive decline is associated with systemic oxidative stress: The EVA study. Etude du Vieillissement Artériel J. Am. Geriatr. Soc. 2000 48 1285 1291 10.1111/j.1532-5415.2000.tb02603.x
Baierle M. Nascimento S.N. Moro A.M. Brucker N. Freitas F. Gauer B. Durgante J. Bordignon S. Zibetti M. Trentini C.M. et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly Oxid. Med. Cell. Longev. 2015 2015 804198 10.1155/2015/804198
Schöttker B. Saum K.-U. Jansen E.H.J.M. Holleczek B. Brenner H. Associations of metabolic, inflammatory and oxidative stress markers with total morbidity and multi-morbidity in a large cohort of older German adults Age Ageing 2016 45 127 135 10.1093/ageing/afv159
Hajjar I. Hayek S.S. Goldstein F.C. Martin G. Jones D.P. Quyyumi A. Oxidative stress predicts cognitive decline with aging in healthy adults: An observational study J. Neuroinflamm. 2018 15 17 10.1186/s12974-017-1026-z
Cuadrado A. Manda G. Hassan A. Alcaraz M.J. Barbas C. Daiber A. Ghezzi P. León R. López M.G. Oliva B. et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach Pharmacol. Rev. 2018 70 348 383 10.1124/pr.117.014753
Hushpulian D.M. Ammal Kaidery N. Ahuja M. Poloznikov A.A. Sharma S.M. Gazaryan I.G. Thomas B. Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue Front. Aging Neurosci. 2021 13 673205 10.3389/fnagi.2021.673205
Han K. Jin X. Guo X. Cao G. Tian S. Song Y. Zuo Y. Yu P. Gao G. Chang Y.-Z. Nrf2 knockout altered brain iron deposition and mitigated age-related motor dysfunction in aging mice Free Radic. Biol. Med. 2021 162 592 602 10.1016/j.freeradbiomed.2020.11.019
Liu Z. Han K. Huo X. Yan B. Gao M. Lv X. Yu P. Gao G. Chang Y.-Z. Nrf2 knockout dysregulates iron metabolism and increases the hemolysis through ROS in aging mice Life Sci. 2020 255 117838 10.1016/j.lfs.2020.117838
Bao W.-D. Pang P. Zhou X.-T. Hu F. Xiong W. Chen K. Wang J. Wang F. Xie D. Hu Y.-Z. et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease Cell Death Differ. 2021 28 1548 1562 10.1038/s41418-020-00685-9 33398092
Raha A.A. Biswas A. Henderson J. Chakraborty S. Holland A. Friedland R.P. Mukaetova-Ladinska E. Zaman S. Raha-Chowdhury R. Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases Int. J. Mol. Sci. 2022 23 1060 10.3390/ijms23031060 35162984
Kubben N. Zhang W. Wang L. Voss T.C. Yang J. Qu J. Liu G.-H. Misteli T. Repression of the Antioxidant NRF2 Pathway in Premature Aging Cell 2016 165 1361 1374 10.1016/j.cell.2016.05.017 27259148
Sadowska-Bartosz I. Bartosz G. Effect of antioxidants supplementation on aging and longevity BioMed Res. Int. 2014 2014 404680 10.1155/2014/404680 24783202
Conti V. Izzo V. Corbi G. Russomanno G. Manzo V. De Lise F. Di Donato A. Filippelli A. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases Front. Pharmacol. 2016 7 24 10.3389/fphar.2016.00024
Grilc N.K. Sova M. Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases Pharmaceutics 2021 13 2137 10.3390/pharmaceutics13122137
Malavolta M. Bracci M. Santarelli L. Sayeed M.A. Pierpaoli E. Giacconi R. Costarelli L. Piacenza F. Basso A. Cardelli M. et al. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy Mediators Inflamm. 2018 2018 4159013 10.1155/2018/4159013
Kulkarni A.S. Gubbi S. Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging Cell Metab. 2020 32 15 30 10.1016/j.cmet.2020.04.001
Ngoi N.Y.L. Liew A.Q.X. Chong S.J.F. Davids M.S. Clement M.-V. Pervaiz S. The redox-senescence axis and its therapeutic targeting Redox Biol. 2021 45 102032 10.1016/j.redox.2021.102032
Zhang L. Pitcher L.E. Prahalad V. Niedernhofer L.J. Robbins P.D. Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics FEBS J. 2022 197 111526 10.1111/febs.16350
Nayeri Rad A. Shams G. Avelar R.A. Morowvat M.H. Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures Inform. Med. Unlocked 2022 30 100920 10.1016/j.imu.2022.100920
Sikora E. Bielak-Zmijewska A. Dudkowska M. Krzystyniak A. Mosieniak G. Wesierska M. Wlodarczyk J. Cellular Senescence in Brain Aging Front. Aging Neurosci. 2021 13 646924 10.3389/fnagi.2021.646924
Martínez-Cué C. Rueda N. Cellular Senescence in Neurodegenerative Diseases Front. Cell. Neurosci. 2020 14 16 10.3389/fncel.2020.00016
Ogrodnik M. Evans S.A. Fielder E. Victorelli S. Kruger P. Salmonowicz H. Weigand B.M. Patel A.D. Pirtskhalava T. Inman C.L. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice Aging Cell 2021 20 e13296 10.1111/acel.13296
Krzystyniak A. Wesierska M. Petrazzo G. Gadecka A. Dudkowska M. Bielak-Zmijewska A. Mosieniak G. Figiel I. Wlodarczyk J. Sikora E. Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile Aging 2022 14 572 595 10.18632/aging.203835
Yuan H. Xu Y. Luo Y. Wang N.-X. Xiao J.-H. Role of Nrf2 in cell senescence regulation Mol. Cell. Biochem. 2021 476 247 259 10.1007/s11010-020-03901-9
Saha S. Buttari B. Profumo E. Tucci P. Saso L. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases Front. Cell. Neurosci. 2022 15 787258 10.3389/fncel.2021.787258
Uddin M.S. Stachowiak A. Mamun A.A. Tzvetkov N.T. Takeda S. Atanasov A.G. Bergantin L.B. Abdel-Daim M.M. Stankiewicz A.M. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications Front. Aging Neurosci. 2018 10 4 10.3389/fnagi.2018.00004
Dinkova-Kostova A.T. Kostov R.V. Kazantsev A.G. The role of Nrf2 signaling in counteracting neurodegenerative diseases FEBS J. 2018 285 3576 3590 10.1111/febs.14379
Schmidlin C.J. Dodson M.B. Madhavan L. Zhang D.D. Redox Regulation by NRF2 in Aging and Disease Free Radic. Biol. Med. 2019 134 702 707 10.1016/j.freeradbiomed.2019.01.016
Joshi G. Gan K.A. Johnson D.A. Johnson J.A. Increased Alzheimer’s disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy Neurobiol. Aging 2015 36 664 679 10.1016/j.neurobiolaging.2014.09.004
Ren P. Chen J. Li B. Zhang M. Yang B. Guo X. Chen Z. Cheng H. Wang P. Wang S. et al. Nrf2 Ablation Promotes Alzheimer’s Disease-Like Pathology in APP/PS1 Transgenic Mice: The Role of Neuroinflammation and Oxidative Stress Oxid. Med. Cell. Longev. 2020 2020 3050971 10.1155/2020/3050971
Kanninen K. Heikkinen R. Malm T. Rolova T. Kuhmonen S. Leinonen H. Ylä-Herttuala S. Tanila H. Levonen A.-L. Koistinaho M. et al. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease Proc. Natl. Acad. Sci. USA 2009 106 16505 16510 10.1073/pnas.0908397106
Jiwaji Z. Tiwari S.S. Avilés-Reyes R.X. Hooley M. Hampton D. Torvell M. Johnson D.A. McQueen J. Baxter P. Sabari-Sankar K. et al. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology Nat. Commun. 2022 13 135 10.1038/s41467-021-27702-w
Ramsey C.P. Glass C.A. Montgomery M.B. Lindl K.A. Ritson G.P. Chia L.A. Hamilton R.L. Chu C.T. Jordan-Sciutto K.L. Expression of Nrf2 in neurodegenerative diseases J. Neuropathol. Exp. Neurol. 2007 66 75 85 10.1097/nen.0b013e31802d6da9
Delaidelli A. Richner M. Jiang L. van der Laan A. Bergholdt Jul Christiansen I. Ferreira N. Nyengaard J.R. Vægter C.B. Jensen P.H. Mackenzie I.R. et al. α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response Acta Neuropathol. Commun. 2021 9 105 10.1186/s40478-021-01209-3 34092244
Barone M.C. Sykiotis G.P. Bohmann D. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease Dis. Model. Mech. 2011 4 701 707 10.1242/dmm.007575 21719443
Zhang C. Zhao M. Wang B. Su Z. Guo B. Qin L. Zhang W. Zheng R. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease Redox Biol. 2021 47 102134 10.1016/j.redox.2021.102134 34600334
Zhong Y. Cai X. Ding L. Liao J. Liu X. Huang Y. Chen X. Long L. Nrf2 Inhibits the Progression of Parkinson’s Disease by Upregulating AABR07032261.5 to Repress Pyroptosis J. Inflamm. Res. 2022 15 669 685 10.2147/JIR.S345895 35140498
Chen J. Rusnak M. Lombroso P.J. Sidhu A. Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades Eur. J. Neurosci. 2009 29 287 306 10.1111/j.1460-9568.2008.06590.x
Rojo A.I. Innamorato N.G. Martín-Moreno A.M. De Ceballos M.L. Yamamoto M. Cuadrado A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease Glia 2010 58 588 598 10.1002/glia.20947
Lastres-Becker I. Ulusoy A. Innamorato N.G. Sahin G. Rábano A. Kirik D. Cuadrado A. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease Hum. Mol. Genet. 2012 21 3173 3192 10.1093/hmg/dds143
Gan L. Vargas M.R. Johnson D.A. Johnson J.A. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model J. Neurosci. 2012 32 17775 17787 10.1523/JNEUROSCI.3049-12.2012
Vargas M.R. Burton N.C. Kutzke J. Gan L. Johnson D.A. Schäfer M. Werner S. Johnson J.A. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models PLoS ONE 2013 8 e56625 10.1371/annotation/28f68b10-e23d-4519-8d52-8cc94fe372b1
Sigfridsson E. Marangoni M. Johnson J.A. Hardingham G.E. Fowler J.H. Horsburgh K. Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion Sci. Rep. 2018 8 12552 10.1038/s41598-018-30675-4
Daniels C.M.L. Austin E.V. Rockney D.E. Jacka E.M. Hagemann T.L. Johnson D.A. Johnson J.A. Messing A. Beneficial Effects of Nrf2 Overexpression in a Mouse Model of Alexander Disease J. Neurosci. 2012 32 10507 10515 10.1523/JNEUROSCI.1494-12.2012
Jenner P. Oxidative stress in Parkinson’s disease Ann. Neurol. 2003 53 (Suppl. 3) S26 S38 S26–S36; discussion S36–S38 10.1002/ana.10483
Gan L. Johnson J.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases Biochim. Biophys. Acta 2014 1842 1208 1218 10.1016/j.bbadis.2013.12.011
Vinish M. Anand A. Prabhakar S. Altered oxidative stress levels in Indian Parkinson’s disease patients with PARK2 mutations Acta Biochim. Pol. 2011 58 165 169 10.18388/abp.2011_2260
Manoharan S. Guillemin G.J. Abiramasundari R.S. Essa M.M. Akbar M. Akbar M.D. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review Oxid. Med. Cell. Longev. 2016 2016 8590578 10.1155/2016/8590578
Wei Z. Li X. Li X. Liu Q. Cheng Y. Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis Front. Mol. Neurosci. 2018 11 236 10.3389/fnmol.2018.00236
Pan H. Wang H. Zhu L. Wang X. Cong Z. Sun K. Fan Y. The involvement of Nrf2-ARE pathway in regulation of apoptosis in human glioblastoma cell U251 Neurol. Res. 2013 35 71 78 10.1179/1743132812Y.0000000094
Zhou Y. Wang H.-D. Zhu L. Cong Z.-X. Li N. Ji X.-J. Pan H. Wang J.-W. Li W.-C. Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line Oncol. Rep. 2013 29 394 400 10.3892/or.2012.2115
Cong Z.-X. Wang H.-D. Wang J.-W. Zhou Y. Pan H. Zhang D.-D. Zhu L. ERK and PI3K signaling cascades induce Nrf2 activation and regulate cell viability partly through Nrf2 in human glioblastoma cells Oncol. Rep. 2013 30 715 722 10.3892/or.2013.2485
Fan Z. Wirth A.-K. Chen D. Wruck C.J. Rauh M. Buchfelder M. Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis Oncogenesis 2017 6 e371 10.1038/oncsis.2017.65
Ji X.-J. Chen S.-H. Zhu L. Pan H. Zhou Y. Li W. You W.-C. Gao C.-C. Zhu J.-H. Jiang K. et al. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model Oncol. Rep. 2013 30 157 164 10.3892/or.2013.2476 23673813
Ji X. Wang H. Zhu J. Zhu L. Pan H. Li W. Zhou Y. Cong Z. Yan F. Chen S. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α Int. J. Cancer 2014 135 574 584 10.1002/ijc.28699 24374745
Haapasalo J. Nordfors K. Granberg K.J. Kivioja T. Nykter M. Haapasalo H. Soini Y. NRF2, DJ1 and SNRX1 and their prognostic impact in astrocytic gliomas Histol. Histopathol. 2018 33 791 801 10.14670/HH-11-973 29441509
Ji X. Wang H. Zhu J. Tang Y. Zhou Y. Zhu L. Gao C. Li W. You W. Yu B. et al. Correlation of Nrf2 and HIF-1α in glioblastoma and their relationships to clinicopathologic features and survival Neurol. Res. 2013 35 1044 1050 10.1179/1743132813Y.0000000251
Pölönen P. Jawahar Deen A. Leinonen H.M. Jyrkkänen H.-K. Kuosmanen S. Mononen M. Jain A. Tuomainen T. Pasonen-Seppänen S. Hartikainen J.M. et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma Oncogene 2019 38 7473 7490 10.1038/s41388-019-0956-6
Kanamori M. Higa T. Sonoda Y. Murakami S. Dodo M. Kitamura H. Taguchi K. Shibata T. Watanabe M. Suzuki H. et al. Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients Neuro-Oncology 2015 17 555 565 10.1093/neuonc/nou282
Li K. Ouyang L. He M. Luo M. Cai W. Tu Y. Pi R. Liu A. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway Oncotarget 2017 8 28865 28879 10.18632/oncotarget.15868
Ahmad F. Dixit D. Sharma V. Kumar A. Joshi S.D. Sarkar C. Sen E. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma Cell Death Dis. 2016 7 e2213 10.1038/cddis.2016.117
Tsakonas G. Martín-Bernabé A. Rounis K. Moreno-Ruiz P. Botling J. De Petris L. Ylipää A. Mezheyeuski A. Micke P. Östman A. et al. High Density of NRF2 Expression in Malignant Cells Is Associated with Increased Risk of CNS Metastasis in Early-Stage NSCLC Cancers 2021 13 3151 10.3390/cancers13133151
Aljohani H.M. Aittaleb M. Furgason J.M. Amaya P. Deeb A. Chalmers J.J. Bahassi E.M. Genetic mutations associated with lung cancer metastasis to the brain Mutagenesis 2018 33 137 145 10.1093/mutage/gey003
Cong Z.-X. Wang H.-D. Zhou Y. Wang J.-W. Pan H. Zhang D.-D. Zhang L. Zhu L. Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells J. Neurooncol. 2014 116 41 48 10.1007/s11060-013-1260-x
Rocha C.R.R. Reily Rocha A. Molina Silva M. Rodrigues Gomes L. Teatin Latancia M. Andrade Tomaz M. de Souza I. Karolynne Seregni Monteiro L. Menck C.F.M. Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries Cells 2020 9 2573 10.3390/cells9122573
Escoll M. Lastra D. Robledinos-Antón N. Wandosell F. Antón I.M. Cuadrado A. WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells Antioxidants 2020 9 773 10.3390/antiox9090773
Beltzig L. Schwarzenbach C. Leukel P. Frauenknecht K.B.M. Sommer C. Tancredi A. Hegi M.E. Christmann M. Kaina B. Senescence Is the Main Trait Induced by Temozolomide in Glioblastoma Cells Cancers 2022 14 2233 10.3390/cancers14092233
Yagishita Y. Gatbonton-Schwager T.N. McCallum M.L. Kensler T.W. Current Landscape of NRF2 Biomarkers in Clinical Trials Antioxidants 2020 9 716 10.3390/antiox9080716
Kornberg R.D. Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome Cell 1999 98 285 294 10.1016/S0092-8674(00)81958-3
Baker M. Making sense of chromatin states Nat. Methods 2011 8 717 722 10.1038/nmeth.1673
Ohnmacht J. May P. Sinkkonen L. Krüger R. Missing heritability in Parkinson’s disease: The emerging role of non-coding genetic variation J. Neural Transm. 2020 127 729 748 10.1007/s00702-020-02184-0
Blackwood E.M. Kadonaga J.T. Going the distance: A current view of enhancer action Science 1998 281 60 63 10.1126/science.281.5373.60
Krivega I. Dean A. Enhancer and promoter interactions-long distance calls Curr. Opin. Genet. Dev. 2012 22 79 85 10.1016/j.gde.2011.11.001
Correa F. Mallard C. Nilsson M. Sandberg M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β Neurobiol. Dis. 2011 44 142 151 10.1016/j.nbd.2011.06.016
Wang B. Zhu X. Kim Y. Li J. Huang S. Saleem S. Li R. Xu Y. Dore S. Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage Free Radic. Biol. Med. 2012 52 928 936 10.1016/j.freeradbiomed.2011.12.006
Li Z. Xu L. Tang N. Xu Y. Ye X. Shen S. Niu X. Lu S. Chen Z. The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2 FEBS Lett. 2014 588 3000 3007 10.1016/j.febslet.2014.05.057
Chorley B.N. Campbell M.R. Wang X. Karaca M. Sambandan D. Bangura F. Xue P. Pi J. Kleeberger S.R. Bell D.A. Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha Nucleic Acids Res. 2012 40 7416 7429 10.1093/nar/gks409
Malhotra D. Portales-Casamar E. Singh A. Srivastava S. Arenillas D. Happel C. Shyr C. Wakabayashi N. Kensler T.W. Wasserman W.W. et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis Nucleic Acids Res. 2010 38 5718 5734 10.1093/nar/gkq212
He C.H. Gong P. Hu B. Stewart D. Choi M.E. Choi A.M. Alam J. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation J. Biol. Chem. 2001 276 20858 20865 10.1074/jbc.M101198200
Zhang J. Ohta T. Maruyama A. Hosoya T. Nishikawa K. Maher J.M. Shibahara S. Itoh K. Yamamoto M. BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress Mol. Cell. Biol. 2006 26 7942 7952 10.1128/MCB.00700-06
Alam J. Killeen E. Gong P. Naquin R. Hu B. Stewart D. Ingelfinger J.R. Nath K.A. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2 Am. J. Physiol. Renal Physiol. 2003 284 F743 F752 10.1152/ajprenal.00376.2002
Sekine H. Okazaki K. Ota N. Shima H. Katoh Y. Suzuki N. Igarashi K. Ito M. Motohashi H. Yamamoto M. The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression Mol. Cell. Biol. 2016 36 407 420 10.1128/MCB.00785-15
Nioi P. Nguyen T. Sherratt P.J. Pickett C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation Mol. Cell. Biol. 2005 25 10895 10906 10.1128/MCB.25.24.10895-10906.2005
Kim J.-H. Yu S. Chen J.D. Kong A.N. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains Oncogene 2013 32 514 527 10.1038/onc.2012.59 22370642
Pan H. Guan D. Liu X. Li J. Wang L. Wu J. Zhou J. Zhang W. Ren R. Zhang W. et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2 Cell Res. 2016 26 190 205 10.1038/cr.2016.4 26768768
Guttman M. Amit I. Garber M. French C. Lin M.F. Feldser D. Huarte M. Zuk O. Carey B.W. Cassady J.P. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals Nature 2009 458 223 227 10.1038/nature07672 19182780
Ikeda Y. Sugawara A. Taniyama Y. Uruno A. Igarashi K. Arima S. Ito S. Takeuchi K. Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2 J. Biol. Chem. 2000 275 33142 33150 10.1074/jbc.M002319200 10930400
Shah N.M. Rushworth S.A. Murray M.Y. Bowles K.M. MacEwan D.J. Understanding the role of NRF2-regulated miRNAs in human malignancies Oncotarget 2013 4 1130 1142 10.18632/oncotarget.1181 24029073
Joo M.S. Lee C.G. Koo J.H. Kim S.G. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury Cell Death Dis. 2013 4 e899 10.1038/cddis.2013.427 24176857
Kwak M.-K. Wakabayashi N. Itoh K. Motohashi H. Yamamoto M. Kensler T.W. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival J. Biol. Chem. 2003 278 8135 8145 10.1074/jbc.M211898200
Handy D.E. Castro R. Loscalzo J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease Circulation 2011 123 2145 2156 10.1161/CIRCULATIONAHA.110.956839
Marstrand T.T. Storey J.D. Identifying and mapping cell-type-specific chromatin programming of gene expression Proc. Natl. Acad. Sci. USA 2014 111 E645 E654 10.1073/pnas.1312523111
Winick-Ng W. Kukalev A. Harabula I. Zea-Redondo L. Szabó D. Meijer M. Serebreni L. Zhang Y. Bianco S. Chiariello A.M. et al. Cell-type specialization is encoded by specific chromatin topologies Nature 2021 599 684 691 10.1038/s41586-021-04081-2
Czamara D. Eraslan G. Page C.M. Lahti J. Lahti-Pulkkinen M. Hämäläinen E. Kajantie E. Laivuori H. Villa P.M. Reynolds R.M. et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns Nat. Commun. 2019 10 2548 10.1038/s41467-019-10461-0
Breton C.V. Landon R. Kahn L.G. Enlow M.B. Peterson A.K. Bastain T. Braun J. Comstock S.S. Duarte C.S. Hipwell A. et al. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations Commun. Biol. 2021 4 769 10.1038/s42003-021-02316-6
Wang Z. Pan Q. Gendron P. Zhu W. Guo F. Cen S. Wainberg M.A. Liang C. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape Cell Rep. 2016 15 481 489 10.1016/j.celrep.2016.03.042
Levings D.C. Wang X. Kohlhase D. Bell D.A. Slattery M. A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations Redox Biol. 2018 19 235 249 10.1016/j.redox.2018.07.026
Oyake T. Itoh K. Motohashi H. Hayashi N. Hoshino H. Nishizawa M. Yamamoto M. Igarashi K. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site Mol. Cell. Biol. 1996 16 6083 6095 10.1128/MCB.16.11.6083
Itoh-Nakadai A. Hikota R. Muto A. Kometani K. Watanabe-Matsui M. Sato Y. Kobayashi M. Nakamura A. Miura Y. Yano Y. et al. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program Nat. Immunol. 2014 15 1171 1180 10.1038/ni.3024
Shin S. Wakabayashi N. Misra V. Biswal S. Lee G.H. Agoston E.S. Yamamoto M. Kensler T.W. NRF2 modulates aryl hydrocarbon receptor signaling: Influence on adipogenesis Mol. Cell. Biol. 2007 27 7188 7197 10.1128/MCB.00915-07
Chan K. Lu R. Chang J.C. Kan Y.W. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development Proc. Natl. Acad. Sci. USA 1996 93 13943 13948 10.1073/pnas.93.24.13943
Rushworth S.A. Zaitseva L. Murray M.Y. Shah N.M. Bowles K.M. MacEwan D.J. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance Blood 2012 120 5188 5198 10.1182/blood-2012-04-422121
Tao S. Wang S. Moghaddam S.J. Ooi A. Chapman E. Wong P.K. Zhang D.D. Oncogenic KRAS confers chemoresistance by upregulating NRF2 Cancer Res. 2014 74 7430 7441 10.1158/0008-5472.CAN-14-1439
Saunders A. Macosko E.Z. Wysoker A. Goldman M. Krienen F.M. de Rivera H. Bien E. Baum M. Bortolin L. Wang S. et al. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain Cell 2018 174 1015 1030.e16 10.1016/j.cell.2018.07.028
Murphy T.H. Yu J. Ng R. Johnson D.A. Shen H. Honey C.R. Johnson J.A. Preferential expression of antioxidant response element mediated gene expression in astrocytes J. Neurochem. 2001 76 1670 1678 10.1046/j.1471-4159.2001.00157.x
Shih A.Y. Johnson D.A. Wong G. Kraft A.D. Jiang L. Erb H. Johnson J.A. Murphy T.H. Coordinate Regulation of Glutathione Biosynthesis and Release by Nrf2-Expressing Glia Potently Protects Neurons from Oxidative Stress J. Neurosci. 2003 23 3394 3406 10.1523/JNEUROSCI.23-08-03394.2003
Kraft A.D. Johnson D.A. Johnson J.A. Nuclear Factor E2-Related Factor 2-Dependent Antioxidant Response Element Activation by tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult J. Neurosci. 2004 24 1101 1112 10.1523/JNEUROSCI.3817-03.2004
Bell K.F.S. Al-Mubarak B. Martel M.-A. McKay S. Wheelan N. Hasel P. Márkus N.M. Baxter P. Deighton R.F. Serio A. et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2 Nat. Commun. 2015 6 7066 10.1038/ncomms8066
Narasimhan M. Patel D. Vedpathak D. Rathinam M. Henderson G. Mahimainathan L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells PLoS ONE 2012 7 e51111 10.1371/journal.pone.0051111
Jing X. Shi H. Zhang C. Ren M. Han M. Wei X. Zhang X. Lou H. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson’s disease by enhancing Nrf2 activity Neuroscience 2015 286 131 140 10.1016/j.neuroscience.2014.11.047
Ahuja M. Ammal Kaidery N. Yang L. Calingasan N. Smirnova N. Gaisin A. Gaisina I.N. Gazaryan I. Hushpulian D.M. Kaddour-Djebbar I. et al. Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson’s-Like Disease J. Neurosci. 2016 36 6332 6351 10.1523/JNEUROSCI.0426-16.2016
Campolo M. Casili G. Biundo F. Crupi R. Cordaro M. Cuzzocrea S. Esposito E. The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse Model of Parkinson’s Disease: Involvement of Reactive Oxygen Species/Nuclear Factor-κB/Nuclear Transcription Factor Related to NF-E2 Antioxid. Redox Signal. 2017 27 453 471 10.1089/ars.2016.6800
Campolo M. Casili G. Lanza M. Filippone A. Paterniti I. Cuzzocrea S. Esposito E. Multiple mechanisms of dimethyl fumarate in amyloid β-induced neurotoxicity in human neuronal cells J. Cell. Mol. Med. 2018 22 1081 1094 10.1111/jcmm.13358
Rajput M.S. Nirmal N.P. Rathore D. Dahima R. Dimethyl Fumarate Mitigates Tauopathy in Aβ-Induced Neuroblastoma SH-SY5Y Cells Neurochem. Res. 2020 45 2641 2652 10.1007/s11064-020-03115-x 32816241
Sun X. Suo X. Xia X. Yu C. Dou Y. Dimethyl Fumarate is a Potential Therapeutic Option for Alzheimer’s Disease J. Alzheimers Dis. 2022 85 443 456 10.3233/JAD-215074 34842188
Singh A. Venkannagari S. Oh K.H. Zhang Y.-Q. Rohde J.M. Liu L. Nimmagadda S. Sudini K. Brimacombe K.R. Gajghate S. et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors ACS Chem. Biol. 2016 11 3214 3225 10.1021/acschembio.6b00651 27552339
Okazaki K. Anzawa H. Liu Z. Ota N. Kitamura H. Onodera Y. Alam M.M. Matsumaru D. Suzuki T. Katsuoka F. et al. Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers Nat. Commun. 2020 11 5911 10.1038/s41467-020-19593-0
Preissl S. Fang R. Huang H. Zhao Y. Raviram R. Gorkin D.U. Zhang Y. Sos B.C. Afzal V. Dickel D.E. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation Nat. Neurosci. 2018 21 432 439 10.1038/s41593-018-0079-3
Mich J.K. Graybuck L.T. Hess E.E. Mahoney J.T. Kojima Y. Ding Y. Somasundaram S. Miller J.A. Kalmbach B.E. Radaelli C. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex Cell Rep. 2021 34 108754 10.1016/j.celrep.2021.108754
Gui Y. Grzyb K. Thomas M.H. Ohnmacht J. Garcia P. Buttini M. Skupin A. Sauter T. Sinkkonen L. Single-nuclei chromatin profiling of ventral midbrain reveals cell identity transcription factors and cell-type-specific gene regulatory variation Epigenetics Chromatin 2021 14 43 10.1186/s13072-021-00418-3
Ahuja M. Ammal Kaidery N. Attucks O.C. McDade E. Hushpulian D.M. Gaisin A. Gaisina I. Ahn Y.H. Nikulin S. Poloznikov A. et al. Bach1 derepression is neuroprotective in a mouse model of Parkinson’s disease Proc. Natl. Acad. Sci. USA 2021 118 e2111643118 10.1073/pnas.2111643118
Wang X.J. Hayes J.D. Henderson C.J. Wolf C.R. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha Proc. Natl. Acad. Sci. USA 2007 104 19589 19594 10.1073/pnas.0709483104
Armand E.J. Li J. Xie F. Luo C. Mukamel E.A. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes Neuron 2021 109 11 26 10.1016/j.neuron.2020.12.010
Maurano M.T. Humbert R. Rynes E. Thurman R.E. Haugen E. Wang H. Reynolds A.P. Sandstrom R. Qu H. Brody J. et al. Systematic localization of common disease-associated variation in regulatory DNA Science 2012 337 1190 1195 10.1126/science.1222794
Schaub M.A. Boyle A.P. Kundaje A. Batzoglou S. Snyder M. Linking disease associations with regulatory information in the human genome Genome Res. 2012 22 1748 1759 10.1101/gr.136127.111
Deplancke B. Alpern D. Gardeux V. The Genetics of Transcription Factor DNA Binding Variation Cell 2016 166 538 554 10.1016/j.cell.2016.07.012
Rojo de la Vega M. Chapman E. Zhang D.D. NRF2 and the Hallmarks of Cancer Cancer Cell 2018 34 21 43 10.1016/j.ccell.2018.03.022
Tsai W.-C. Hueng D.-Y. Lin C.-R. Yang T.C.K. Gao H.-W. Nrf2 Expressions Correlate with WHO Grades in Gliomas and Meningiomas Int. J. Mol. Sci. 2016 17 722 10.3390/ijms17050722
Wu S. Lu H. Bai Y. Nrf2 in cancers: A double-edged sword Cancer Med. 2019 8 2252 2267 10.1002/cam4.2101