[en] Traditional climate strategies focus on long-term emissions targets, neglecting cumulative CO2 emissions and often limiting their scope to territorial emissions. Additionally, individual citizens struggle to connect with community targets. This study addresses these issues by computing a comprehensive carbon footprint pathway that, as a main contribution, can be easily personalized and associated with common carbon footprint calculators. This approach innovatively leverages inverted “S-shaped” patterns based on logistic functions that, unlike common linear patterns, have been documented as relevant for diffusion mechanisms of social or ecological transformations. One challenge lies in efficiently aligning the carbon footprint figures, expressed in CO2eq, with IPCC's +2 °C carbon budgets, expressed in CO2-only. This work first retrieves the current share of CO2-only footprint and then defines two mitigation pathways: one focusing solely on CO2 emissions and one addressing residual GHGs. Except for initial and final emission levels, both targeted pathways are defined by the same logistic function, based on the assumed intrinsic link between CO2 and the other GHGs. As final targets, the CO2-only pathway considers the common net-zero emission goal while the second pathway considers a level of 1 tCO2eq/year per capita of unmitigated non-CO2 emissions, in alignment with IPCC's latest assumptions and anticipated population growth. Besides the new +2 °C compatible suggested pathways, developing this method for France and Wallonia has also revealed that they should reach territorial (nature-based) carbon uptake of at least three times their current levels, necessitating deep land-use changes in their policies (implementing intensive urban vegetation, alternative agriculture techniques, etc).
Disciplines :
Earth sciences & physical geography Energy Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Paulus, Nicolas ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Language :
English
Title :
Developing individual carbon footprint reduction pathways from carbon budgets: Examples with Wallonia and France
Publication date :
23 April 2024
Journal title :
Renewable and Sustainable Energy Reviews
ISSN :
1364-0321
eISSN :
1879-0690
Publisher :
Elsevier BV
Volume :
198
Pages :
114428
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
7. Affordable and clean energy 11. Sustainable cities and communities 12. Responsible consumption and production 13. Climate action
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
IPCC WGIII. Climate change 2022 mitigation of climate change - summary for policymakers. IPCC - Working Group III Technical Support Unit, 2022, 10.1017/9781009157926.001.
Matthews, H.D., Wynes, S., Current global efforts are insufficient to limit warming to 1.5°C. Science (1979) 376 (2022), 1404–1409, 10.1126/SCIENCE.ABO3378.
Martin, M.A., Sendra, O.A., Bastos, A., Bauer, N., Bertram, C., Blenckner, T., et al. Ten new insights in climate science 2021: a horizon scan. Glob Sustain, 4, 2021, 10.1017/SUS.2021.25.
Liu, Z., Deng, Z., Davis, S.J., Giron, C., Ciais, P., Monitoring global carbon emissions in 2021. Nat Rev Earth Environ 3 (2022), 217–219, 10.1038/s43017-022-00285-w.
Smith, S.M., Lowe, J.A., Bowerman, N.H.A., Gohar, L.K., Huntingford, C., Allen, M.R., Equivalence of greenhouse-gas emissions for peak temperature limits. Nat Clim Change 2 (2012), 535–538, 10.1038/nclimate1496.
Rogelj, J., Forster, P.M., Kriegler, E., Smith, J., Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 571, 2019, 10.1038/s41586-019-1368-z.
Paulus, N., Confronting Nationally Determined Contributions (NDCs) to IPPC's +2°C carbon budgets through the analyses of France and Wallonia climate policies. J Ecol Eng, 24, 2023, 10.12911/22998993/162984.
Stockwell, C, Geiges, A, Ramalope, D, Gidden, M, Hare, B, de Villafranca Casas, MJ, et al. Glasgow's 2030 credibility gap: net zero's lip service to climate action. Clim Action Track, 2021 https://climateactiontracker.org/documents/997/CAT_2021-11-09_Briefing_Global-Update_Glasgow2030CredibilityGap.pdf.
Williamson, K., Satre-Meloy, A., Velasco, K., Green, K., Climate change needs behavior change: making the case for behavioral solutions to reduce global warming. Rare, 2018 https://rare.org/wp-content/uploads/2019/02/2018-CCNBC-Report.pdf.
Gignac, R., Matthews, H.D., Allocating a 2 °C cumulative carbon budget to countries. Environ Res Lett, 10, 2015, 10.1088/1748-9326/10/7/075004.
Raupach, M.R., Davis, S.J., Peters, G.P., Andrew, R.M., Canadell, J.G., Ciais, P., et al. Sharing a quota on cumulative carbon emissions. Nat Clim Change 4 (2014), 873–879, 10.1038/NCLIMATE2384.
Dooley, K., Holz, C., Kartha, S., Klinsky, S., Roberts, J.T., Shue, H., et al. Ethical choices behind quantifications of fair contributions under the Paris Agreement. Nat Clim Change 11 (2021), 300–305, 10.1038/S41558-021-01015-8.
van der Ploeg, F., The safe carbon budget. Clim Change 147 (2018), 47–59, 10.1007/s10584-017-2132-8.
Allen, M.R., Fuglestvedt, J.S., Shine, K.P., Reisinger, A., Pierrehumbert, R.T., Forster, P.M., New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat Clim Change 6 (2016), 773–776, 10.1038/nclimate2998.
Lynch, J., Cain, M., Pierrehumbert, R., Allen, M., Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ Res Lett, 15, 2020, 10.1088/1748-9326/AB6D7E.
Mills-Novoa, M., Liverman, D.M., Nationally Determined Contributions: material climate commitments and discursive positioning in the NDCs. Wiley Interdiscip Rev Clim Change, 10, 2019, 10.1002/WCC.589.
Hausfather, Z., Moore, F.C., Climate science Commitments could limit warming to below 2 oC. Nature, 604, 2022, 10.1038/d41586-022-00874-1.
Kriegler, E., Bertram, C., Kuramochi, T., Jakob, M., Pehl, M., Stevanović, M., et al. Short term policies to keep the door open for Paris climate goals. Environ Res Lett, 13, 2018, 10.1088/1748-9326/AAC4F1.
Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., et al. Locked into Copenhagen pledges - implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc Change 90 (2015), 8–23, 10.1016/J.TECHFORE.2013.09.016.
Vandevyvere, H., Nevens, F., Lost in transition or geared for the S-curve? An analysis of flemish transition trajectories with a focus on energy use and buildings. Sustainability 7 (2015), 2415–2436, 10.3390/su7032415.
Kucharavy, D., De Guio, R., Application of S-shaped curves. Procedia Eng 9 (2011), 559–572, 10.1016/J.PROENG.2011.03.142.
van Vuuren, D.P., Stehfest, E., Gernaat, D.E.H.J., Doelman, J.C., van den Berg, M., Harmsen, M., et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environ Change 42 (2017), 237–250, 10.1016/J.GLOENVCHA.2016.05.008.
Gambhir, A., George, M., McJeon, H., Arnell, N.W., Bernie, D., Mittal, S., et al. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat Clim Change 12 (2021), 88–96, 10.1038/s41558-021-01236-x.
Grant, N., The Paris Agreement's ratcheting mechanism needs strengthening 4-fold to keep 1.5°C alive. Joule 6 (2022), 703–708, 10.1016/j.joule.2022.02.017.
Figueres, C., Schellnhuber, H.J., Whiteman, G., Rockström, J., Hobley, A., Rahmstorf, S., Three years to safeguard our climate. Nature 546 (2017), 593–595, 10.1038/546593a.
Semenza, J.C., Hall, D.E., Wilson, D.J., Bontempo, B.D., Sailor, D.J., George, L.A., Public perception of climate change: voluntary mitigation and barriers to behavior change. Am J Prev Med 35 (2008), 479–487, 10.1016/J.AMEPRE.2008.08.020.
Moser, S.C., Communicating climate change: history, challenges, process and future directions. Wiley Interdiscip Rev Clim Change 1 (2010), 31–53, 10.1002/WCC.11.
Steininger, K.W., Lininger, C., Meyer, L.H., Muñoz, P., Schinko, T., Multiple carbon accounting to support just and effective climate policies. Nat Clim Change 6 (2016), 35–41, 10.1038/nclimate2867.
Salo, M., Mattinen-Yuryev, M.K., Nissinen, A., Opportunities and limitations of carbon footprint calculators to steer sustainable household consumption – analysis of Nordic calculator features. J Clean Prod 207 (2019), 658–666, 10.1016/j.jclepro.2018.10.035.
Waage, J., Yap, C., Bell, S., Levy, C., Mace, G., Pegram, T., et al. Governing the UN sustainable development goals: interactions, infrastructures, and institutions. Lancet Global Health 3 (2015), e251–e252, 10.1016/S2214-109X(15)70112-9.
Wiedmann, T., Allen, C., City footprints and SDGs provide untapped potential for assessing city sustainability. Nat Commun, 12, 2021, 3758, 10.1038/s41467-021-23968-2.
Berkson, J., Tables for the maximum likelihood estimate of the logistic function. Biometrics, 13, 1957, 28, 10.2307/3001900.
Ren, J., McIsaac, K.A., Patel, R.V., Peters, T.M., A potential field model using generalized sigmoid functions. IEEE Trans Syst Man Cybern B Cybern 37 (2007), 477–484, 10.1109/TSMCB.2006.883866.
Klimstra, M., Zehr, E.P., A sigmoid function is the best fit for the ascending limb of the Hoffmann reflex recruitment curve. Exp Brain Res 186 (2008), 93–105, 10.1007/S00221-007-1207-6.
Ikhlasse, H., Benjamin, D., Vincent, C., Hicham, M., Environmental impacts of pre/during and post-lockdown periods on prominent air pollutants in France. Environ Dev Sustain, 23, 2021, 10.1007/S10668-021-01241-2.
van den Bergh, J.C.J.M., Energy conservation more effective with rebound policy. Environ Resour Econ 48 (2011), 43–58, 10.1007/s10640-010-9396-z.
Birnik, A., An evidence-based assessment of online carbon calculators. Int J Greenh Gas Control 17 (2013), 280–293, 10.1016/j.ijggc.2013.05.013.
Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R., Riahi, K., Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ Res Lett, 10, 2015, 10.1088/1748-9326/10/7/075001.
Maris, G., Flouros, F., The green deal, national energy and climate plans in Europe: member states' compliance and strategies. Adm Sci, 11, 2021, 10.3390/admsci11030075.
Turbat, V., Gribble, R., Zeng, W., Population, Burden Of Disease, and Health Services. 2022, 59–77, 10.1007/978-3-031-02040-7_4.
Hambÿe, C., Hertveldt, B., Michel, B., Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposition. J Econ Struct, 7, 2018, 11, 10.1186/s40008-018-0110-6.
Bourgeois, A., Lafrogne-Joussier, R., Lequien, M., Ralle, P., Un tiers de l'empreinte carbone de l'Union européenne est dû à ses importations. Insee Analyses, 74, 2022 https://www.insee.fr/fr/statistiques/fichier/6474294/ia74.pdf.
Lannelongue, L., Grealey, J., Inouye, M., Green algorithms: quantifying the carbon footprint of computation. Adv Sci, 8, 2021, 10.1002/ADVS.202100707.
INSEE. Résultats détaillés des projections de population 2021-2070 pour la France – Scénario central. Projections de Population 2021-2070, 2021 https://www.insee.fr/fr/statistiques/5894083?sommaire=5760764. (Accessed 23 November 2023)
INSEE. Évolution de la population. Tableaux de l’économie Française - Édition 2020. 2020 https://www.insee.fr/fr/statistiques/4277615?sommaire=4318291. (Accessed 26 November 2023)
Bureau du Plan. Population par région et âge, au 1er janvier. Perspectives de Population 2021-2070. https://www.plan.be/databases/data-35-fr-perspectives_de_population_2021_2070, 2022. (Accessed 8 July 2022)
Haut Conseil pour le Climat. Dépasser les constats. Mettre en oeuvre les solutions, 2022 https://www.hautconseilclimat.fr/wp-content/uploads/2022/06/Rapport-annuel-Haut-conseil-pour-le-climat-29062022.pdf.
Gouvernement Wallon. Stratégie à long terme pour la Wallonie (SLT 2050): “Vers une Wallonie climatiquement neutre en 2050”. 2019 https://ec.europa.eu/clima/sites/lts/lts_be_fr.pdf.
Salzmann, M., Global warming without global mean precipitation increase’. Sci Adv, 2, 2016, 10.1126/SCIADV.1501572.
Allen, R.J., Horowitz, L.W., Naik, V., Oshima, N., O'Connor, F.M., Turnock, S., et al. Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ Res Lett, 16, 2021, 10.1088/1748-9326/ABE06B.
Dreyfus, G.B., Xu, Y., Shindell, D.T., Zaelke, D., Ramanathan, V., Mitigating climate disruption in time: a self-consistent approach for avoiding both near-term and long-term global warming. Proc Natl Acad Sci U S A, 119, 2022, 10.1073/PNAS.2123536119.
Ou, Y., Roney, C., Alsalam, J., Calvin, K., Creason, J., Edmonds, J., et al. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nat Commun 12 (2021), 1–9, 10.1038/s41467-021-26509-z.
Folini, D., Kubler, F., Malova, A., Scheidegger, S., The climate in climate economics. Proceedings of the 19th European geosciences union general assembly (EGU22), 2022, 10.5194/egusphere-egu22-2607.
Jenkins, S., Millar, R.J., Leach, N., Allen, M.R., Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys Res Lett 45 (2018), 2795–2804, 10.1002/2017GL076173.
Mengis, N., Matthews, H.D., Non-CO2 forcing changes will likely decrease the remaining carbon budget for 1.5 °C. NPJ Clim Atmos Sci 3 (2020), 1–7, 10.1038/s41612-020-0123-3.
Leach, N.J., Millar, R.J., Haustein, K., Jenkins, S., Graham, E., Allen, M.R., Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat Geosci, 11, 2018, 10.1038/s41561-018-0156-y.
Matthews, H.D., Tokarska, K.B., Nicholls, Z.R.J., Rogelj, J., Canadell, J.G., Friedlingstein, P., et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat Geosci 13 (2020 2020), 769–779, 10.1038/s41561-020-00663-3.
Reay, D.S., Davidson, E.A., Smith, K.A., Smith, P., Melillo, J.M., Dentener, F., et al. Global agriculture and nitrous oxide emissions. Nat Clim Change 2 (2012), 410–416, 10.1038/NCLIMATE1458.
Paulus, N., Lemort, V., Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis. J Environ Manag, 2024 Accepted for publication.
Ghisellini, P., Passaro, R., Ulgiati, S., Environmental assessment of multiple “cleaner electricity mix” scenarios within just energy and circular economy transitions, in Italy and Europe. J Clean Prod, 388, 2023, 135891, 10.1016/j.jclepro.2023.135891.
Gernaat, D.E.H.J., Calvin, K., Lucas, P.L., Luderer, G., Otto, S.A.C., Rao, S., et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Global Environ Change 33 (2015), 142–153, 10.1016/J.GLOENVCHA.2015.04.010.
Allen, M.R., Shine, K.P., Fuglestvedt, J.S., Millar, R.J., Cain, M., Frame, D.J., et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim Atmos Sci 1 (2018), 1–8, 10.1038/s41612-018-0026-8.
Meinshausen, M., Nicholls, Z., GWP*is a model, not a metric. Environ Res Lett, 17, 2022, 10.1088/1748-9326/AC5930.
Cain, M., Lynch, J., Allen, M.R., Fuglestvedt, J.S., Frame, D.J., Macey, A.H., Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim Atmos Sci 2 (2019), 1–7, 10.1038/s41612-019-0086-4.
Smith, M.A., Cain, M., Allen, M.R., Further improvement of warming-equivalent emissions calculation. NPJ Clim Atmos Sci 4 (2021), 1–3, 10.1038/s41612-021-00169-8.
Hertwich, E.G., Peters, G.P., Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol, 43, 2009, 10.1021/es803496a.
Towa, E., Zeller, V., Merciai, S., Schmidt, J., Achten, W.M.J., Toward the development of subnational hybrid input–output tables in a multiregional framework. J Ind Ecol, 26, 2022, 10.1111/jiec.13085.
Zhao, Y., Su, Q., Li, B., Zhang, Y., Wang, X., Zhao, H., et al. Have those countries declaring “zero carbon” or “carbon neutral” climate goals achieved carbon emissions-economic growth decoupling?. J Clean Prod, 363, 2022, 132450, 10.1016/j.jclepro.2022.132450.
Dumont, G.-F., L'Ukraine face à la guerre : géopolitique et population. Popul Avenir 758 (2022), 17–19, 10.3917/POPAV.758.0017.
Blujdea, V.N.B., Viñas, R.A., Federici, S., Grassi, G., The EU greenhouse gas inventory for the LULUCF sector: I. Overview and comparative analysis of methods used by EU member states. Carbon Manag 6 (2016), 247–259, 10.1080/17583004.2016.1151504.
García-Oliva, F., Masera, O.R., Assessment and measurement issues related to soil carbon sequestration in land-use, land-use change, and forestry (LULUCF) projects under the Kyoto Protocol. Clim Change 65 (2004), 347–364, 10.1023/B:CLIM.0000038211.84327.d9.
Cacho, O.J., Hean, R.L., Wise, R.M., Carbon‐accounting methods and reforestation incentives. Aust J Agric Resour Econ 47 (2003), 153–179, 10.1111/1467-8489.00208.
Keller, D.P., Lenton, A., Littleton, E.W., Oschlies, A., Scott, V., Vaughan, N.E., The effects of carbon dioxide removal on the carbon cycle. Curr Clim Change Rep 4 (2018), 250–265, 10.1007/S40641-018-0104-3.
Matthews, H.D., Zickfeld, K., Dickau, M., MacIsaac, A.J., Mathesius, S., Nzotungicimpaye, C.-M., et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun Earth Environ 3 (2022), 1–8, 10.1038/s43247-022-00391-z.
Batres, M., Wang, F.M., Buck, H., Kapila, R., Kosar, U., Licker, R., et al. Environmental and climate justice and technological carbon removal. Electr J, 34, 2021, 107002, 10.1016/J.TEJ.2021.107002.
McQueen, N., Gomes, K.V., McCormick, C., Blumanthal, K., Pisciotta, M., Wilcox, J., A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog Energy, 3, 2021, 10.1088/2516-1083/ABF1CE.
Nataly Echevarria Huaman, R., Xiu, Jun T., Energy related CO2 emissions and the progress on CCS projects: a review. Renew Sustain Energy Rev 31 (2014), 368–385, 10.1016/J.RSER.2013.12.002.
Lenzi, D., The ethics of negative emissions. Glob Sustain 1 (2018), 1–8, 10.1017/SUS.2018.5.
Abdulla, A., Hanna, R., Schell, K.R., Babacan, O., Victor, D.G., Explaining successful and failed investments in U.S. carbon capture and storage using empirical and expert assessments. Environ Res Lett, 16, 2021, 014036, 10.1088/1748-9326/abd19e.
Perrin, D., Temmerman, M., Laitat, E., Calculation on the impacts of forestation, afforestation and reforestation on the C-sequestration potential in Belgian forests ecosystems. Biotechnologie, Agronomie, Société et Environnement, 4, 2000 https://popups.uliege.be/1780-4507/index.php/base/article/download/463/index.php?id=17509&file=1&pid=15054.
Hathaway, M.D., Agroecology and permaculture: addressing key ecological problems by rethinking and redesigning agricultural systems. J Environ Stud Sci 6 (2016), 239–250, 10.1007/S13412-015-0254-8.
Neumann, M., Smith, P., Carbon uptake by European agricultural land is variable, and in many regions could be increased: evidence from remote sensing, yield statistics and models of potential productivity. Sci Total Environ 643 (2018), 902–911, 10.1016/J.SCITOTENV.2018.06.268.
Jyoti Nath, A., Lal, R., Kumar Das, A., Fired bricks: CO2 emission and food insecurity. Glob Chall, 2, 2018, 10.1002/GCH2.201700115.
Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K., Rounsevell, M., et al. Carbon sequestration potential in European croplands has been overestimated. Global Change Biol 11 (2005), 2153–2163, 10.1111/J.1365-2486.2005.01052.X.
Viglizzo, E.F., Ricard, M.F., Taboada, M.A., Vázquez-Amábile, G., Reassessing the role of grazing lands in carbon-balance estimations: meta-analysis and review. Sci Total Environ 661 (2019), 531–542, 10.1016/J.SCITOTENV.2019.01.130.
Delescaille, L.-M., Nature conservation and pastoralism in Wallonia. Pasture Landscapes and Nature Conservation, 2002, 39–52, 10.1007/978-3-642-55953-2_3.
Seto, K.C., Churkina, G., Hsu, A., Keller, M., Newman, P.W.G., Qin, B., et al. From low- to net-zero carbon cities: the next global agenda. Annu Rev Environ Resour, 46, 2021, 10.1146/annurev-environ-050120-113117.
Alderweireld, M., Rondeux, J., Latte, N., Hébert, J., Lecomte, H., Chapter 8 - Belgium (Wallonia). National forest inventories assessment of wood availability and use. 2016, Springer, 159–179, 10.1007/978-3-319-44015-6_8.
Kuittinen, M., Hautamäki, R., Tuhkanen, E.M., Riikonen, A., Ariluoma, M., Environmental Product Declarations for plants and soils: how to quantify carbon uptake in landscape design and construction?. Int J Life Cycle Assess 26 (2021), 1100–1116, 10.1007/S11367-021-01926-W.
Carnicer, J., Alegria, A., Giannakopoulos, C., Di Giuseppe, F., Karali, A., Koutsias, N., et al. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci Rep 12:1 (2022), 1–6, 10.1038/s41598-022-14480-8.
Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408 (2000), 184–187, 10.1038/35041539.
Gouvernement Wallon. Plan air climat energie (PACE) 2030. 2023 https://henry.wallonie.be/files/Documents/230321%20-%20PACE2030.pdf.
Fawcett, T., Hvelplund, F., Meyer, N.I., Making it personal. Generating electricity in a carbon-constrained world. 2010, Elsevier, 87–107, 10.1016/B978-1-85617-655-2.00004-3.
Auger, C., Hilloulin, B., Boisserie, B., Thomas, M., Guignard, Q., Rozière, E., Open-source carbon footprint estimator: development and university declination. Sustainability, 13, 2021, 10.3390/su13084315.
Haut Conseil pour le Climat. Maîtriser l'empreinte carbone de la France - Réponse à la saisine du gouvernement. 2020 https://www.hautconseilclimat.fr/wp-content/uploads/2020/10/hcc_rapport_maitriser-lempreinte-carbone-de-la-france-1.pdf.
INSEE. Résultats détaillés des projections de population 2021-2070 pour la France – Les quatre scénarios extrêmes. Projections de Population 2021-2070, 2021 https://www.insee.fr/fr/statistiques/5894087?sommaire=5760764. (Accessed 23 November 2023)
Bureau du Plan. Perspectives démographiques 2019-2070: Population et ménages. 2020 https://www.plan.be/uploaded/documents/202003030902350.FOR_POP1970_12071_F.pdf.
Taylor, B.N., Kuyatt, C.E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results - 1994 edition. 1994, National Institute of Standards and Technology https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1297.pdf.
Pandey, D., Agrawal, M., Jai, Pandey, S., Pandey, D., Agrawal, M., et al. Carbon footprint: current methods of estimation. Environ Monit Assess 178 (2011), 135–160, 10.1007/S10661-010-1678-Y.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.