Distinct hemodynamic and functional connectivity features of fatigue in clinically isolated syndrome and multiple sclerosis: accounting for the confounding effect of concurrent depression symptoms.
Clinically isolated syndrome; Depression; Fatigue; Relapsing–remitting multiple sclerosis; Resting-state fMRI; Time shift analysis; Humans; Depression/diagnostic imaging; Brain/diagnostic imaging; Magnetic Resonance Imaging; Multiple Sclerosis/complications; Multiple Sclerosis/diagnostic imaging; Multiple Sclerosis, Relapsing-Remitting; Brain; Multiple Sclerosis; Radiology, Nuclear Medicine and Imaging; Neurology (clinical); Cardiology and Cardiovascular Medicine
Abstract :
[en] PURPOSE: This study aims to identify common and distinct hemodynamic and functional connectivity (FC) features for self-rated fatigue and depression symptoms in patients with clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RR-MS).
METHODS: Twenty-four CIS, 29 RR-MS patients, and 39 healthy volunteers were examined using resting-state fMRI (rs-fMRI) to obtain whole-brain maps of (i) hemodynamic response patterns (through time shift analysis), (ii) FC (via intrinsic connectivity contrast maps), and (iii) coupling between hemodynamic response patterns and FC. Each regional map was correlated with fatigue scores, controlling for depression, and with depression scores, controlling for fatigue.
RESULTS: In CIS patients, the severity of fatigue was associated with accelerated hemodynamic response in the insula, hyperconnectivity of the superior frontal gyrus, and evidence of reduced hemodynamics-FC coupling in the left amygdala. In contrast, depression severity was associated with accelerated hemodynamic response in the right limbic temporal pole, hypoconnectivity of the anterior cingulate gyrus, and increased hemodynamics-FC coupling in the left amygdala. In RR-MS patients, fatigue was associated with accelerated hemodynamic response in the insula and medial superior frontal cortex, increased functional role of the left amygdala, and hypoconnectivity of the dorsal orbitofrontal cortex, while depression symptom severity was linked to delayed hemodynamic response in the medial superior frontal gyrus; hypoconnectivity of the insula, ventromedial thalamus, dorsolateral prefrontal cortex, and posterior cingulate; and decreased hemodynamics-FC coupling of the medial orbitofrontal cortex.
CONCLUSION: There are distinct FC and hemodynamic responses, as well as different magnitude and topography of hemodynamic connectivity coupling, associated with fatigue and depression in early and later stages of MS.
Disciplines :
Neurosciences & behavior
Author, co-author :
Antypa, Despina; Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Simos, Nikolaos-Ioannis ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
Panou, Theodora; Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Spyridaki, Eirini; Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Kagialis, Antonios; Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Kosteletou, Emmanouela; Institute of Applied Mathematics, Foundation for Research and Technology, Hellas, Heraklion, Crete, Greece
Kavroulakis, Eleftherios; Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Mastorodemos, Vasileios; Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
Papadaki, Efrosini ; Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Hellas, Heraklion, Crete, Greece. fpapada@otenet.gr ; Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece. fpapada@otenet.gr
Language :
English
Title :
Distinct hemodynamic and functional connectivity features of fatigue in clinically isolated syndrome and multiple sclerosis: accounting for the confounding effect of concurrent depression symptoms.
Publication date :
August 2023
Journal title :
Neuroradiology
ISSN :
0028-3940
eISSN :
1432-1920
Publisher :
Springer Science and Business Media Deutschland GmbH, Germany
This manuscript has been partially published as an abstract: Neuroradiology (2022) 64 (Suppl 1 ):S1–S165 https://doi.org/10.1007/s00234-022-03012-w. Abstracts ESNR 2022 Published online: 8 August 2022. p. 535: 1-O20 Distinct resting-state fmri features of fatigue in clinically isolated syndrome and multiple sclerosis: accounting for the confounding effect of concurrent depression symptoms.
d’Ambrosio A, Valsasina P, Gallo A, De Stefano N, Pareto D, Barkhof F, Ciccarelli O, Enzinger C, Tedeschi G, Stromillo M, Arévalo MJ, Hulst HE, Muhlert N, Koini M, Filippi M, Rocca MA (2020) Reduced dynamics of functional connectivity and cognitive impairment in multiple sclerosis. Mult Scler 26:476–488. 10.1177/1352458519837707 DOI: 10.1177/1352458519837707
Hidalgo de la Cruz M, Valsasina P, Sangalli F, Esposito F, Rocca MA, Filippi Μ (2021) Dynamic functional connectivity in the main clinical phenotypes of multiple sclerosis. Brain Connect 11:678–690. 10.1089/brain.2020.0920 DOI: 10.1089/brain.2020.0920
Panou Τ, Kavroulakis E, Mastorodemos V, Pouli S, Kalaitzakis G, Spyridaki E, Maris TG, Simos P, Papadaki E (2021) Myelin content changes in clinically isolated syndrome and relapsing- remitting multiple sclerosis: associations with lesion type and severity of visuomotor impairment. Mult Scler Relat Disord 54:103108. 10.1016/j.msard.2021.103108 DOI: 10.1016/j.msard.2021.103108
Papadaki E, Mastorodemos V, Panou T, Pouli S, Spyridaki E, Kavroulakis E, Kalaitzakis G, Maris TG, Simos P (2021) T2 relaxometry evidence of microstructural changes in diffusely abnormal white matter in relapsing–remitting multiple sclerosis and clinically isolated syndrome: impact on visuomotor performance. J Magn Reson Imaging 54:1077–1087. 10.1002/jmri.27661 DOI: 10.1002/jmri.27661
Papadaki EZ, Mastorodemos VC, Amanakis EZ, Tsekouras KC, Papadakis AE, Tsavalas ND, Simos PG, Karantanas AH, Plaitakis A, Maris TG (2012) White matter and deep gray matter hemodynamic changes in multiple sclerosis patients with clinically isolated syndrome. Magn Reson Med 68:1932–1942. 10.1002/mrm.24194 DOI: 10.1002/mrm.24194
Tahedl M, Levine SM, Greenlee MW, Weissert R, Schwarzbach JV (2018) Functional connectivity in multiple sclerosis: recent findings and future directions. Front Neurol 9:828. 10.3389/fneur.2018.00828 DOI: 10.3389/fneur.2018.00828
Miller DH, Chard DT, Ciccarelli O (2012) Clinically isolated syndromes. Lancet Neurol 11:157–169. 10.1016/S1474-4422(11)70274-5 DOI: 10.1016/S1474-4422(11)70274-5
Liu Y, Dai Z, Duan Y, Huang J, Ren Z, Liu Z, Dong H, Shu N, Vrenken H, Wattjes MP, Barkhof F, He Y, Li K (2016) Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. Eur Radiol 26:2982–2991. 10.1007/s00330-015-4147-8 DOI: 10.1007/s00330-015-4147-8
Papadaki EZ, Simos PG, Mastorodemos VC, Panou T, Maris TG, Karantanas AH, Plaitakis A (2014) Regional MRI perfusion measures predict motor/executive function in patients with clinically isolated syndrome. Behav Neurol 8. 10.1155/2014/252419
Papadaki EZ, Simos PG, Panou T, Mastorodemos VC, Maris TG, Karantanas AH, Plaitakis A (2014) Hemodynamic evidence linking cognitive deficits in clinically isolated syndrome to regional brain inflammation. Eur J Neurol 21:499–505. 10.1111/ene.12338 DOI: 10.1111/ene.12338
Planche V, Ruet A, Charré-Morin J, Deloire M, Brochet B, Tourdias T (2017) Pattern separation performance is decreased in patients with early multiple sclerosis. Brain Behav 7:e00739. 10.1002/brb3.739 DOI: 10.1002/brb3.739
Rocca MA, Hidalgo de La Cruz M, Valsasina P, Mesaros S, Martinovic V, Ivanovic J, Drulovic J, Filippi M (2020) Two-year dynamic functional network connectivity in clinically isolated syndrome. Mult Scler 26:645–658. 10.1177/1352458519837704 DOI: 10.1177/1352458519837704
Bol Y, Duits AA, Lousberg R, Hupperts RMM, Lacroix MHP, Verhey FRJ, Vlaeyen JWS (2010) Fatigue and physical disability in patients with multiple sclerosis: a structural equation modeling approach. J Behav Med 33:355–363. 10.1007/s10865-010-9266-8 DOI: 10.1007/s10865-010-9266-8
Cruz Gómez ÁJ, Ventura Campos N, Belenguer A, Ávila C, Forn C (2013) Regional brain atrophy and functional connectivity changes related to fatigue in multiple sclerosis. PLoS One 8:e77914. 10.1371/journal.pone.0077914 DOI: 10.1371/journal.pone.0077914
Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H, Herbert J, Grossman RI (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3T. Arch Neurol 64:196. 10.1001/archneur.64.2.196 DOI: 10.1001/archneur.64.2.196
van Geest Q, Boeschoten RE, Keijzer MJ, Steenwijk MD, Pouwels PJ, Twisk JW, Smit JH, Uitdehaag BM, Geurts JJ, van Oppen P, Hulst HE (2019) Fronto-limbic disconnection in patients with multiple sclerosis and depression. Mult Scler 25:715–726. 10.1177/1352458518767051 DOI: 10.1177/1352458518767051
Corallo F, Lo Buono V, Genovese R, Palmeri R, Di Cara M, Rifici C, Sessa E, D’Aleo G, Galletti F, Bonanno L, Marino S (2019) A complex relation between depression and multiple sclerosis: a descriptive review. Neurol Sci 40:1551–1558. 10.1007/s10072-019-03889-1 DOI: 10.1007/s10072-019-03889-1
Riccelli R, Passamonti L, Cerasa A, Nigro S, Cavalli SM, Chiriaco C, Valentino P, Nisticò R, Quattrone A (2016) Individual differences in depression are associated with abnormal function of the limbic system in multiple sclerosis patients. Mult Scler 22:1094–1105. 10.1177/1352458515606987 DOI: 10.1177/1352458515606987
Rintala A, Matcham F, Radaelli M, Locafaro G, Simblett S, di San B, Pietro C, Bulgari V, Burke P, Devonshire J, Weyer J, Wykes T, Comi G, Hotopf M, Myin-Germeys I (2019) Emotional outcomes in clinically isolated syndrome and early phase multiple sclerosis: a systematic review and meta-analysis. J Psychosomatic Res 124:109761. 10.1016/j.jpsychores.2019.109761 DOI: 10.1016/j.jpsychores.2019.109761
Runia TF, Jafari N, Siepman DAM, Hintzen RQ (2015) Fatigue at time of CIS is an independent predictor of a subsequent diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatry 86:543–546. 10.1136/jnnp-2014-308374 DOI: 10.1136/jnnp-2014-308374
Baumgartner A, Frings L, Schiller F, Stich O, Mix M, Egger K, Schluh G, Rauer S, Meyer PT (2018) Regional neuronal activity in patients with relapsing remitting multiple sclerosis. Acta Neurol Scand 138:466–474. 10.1111/ane.13012 DOI: 10.1111/ane.13012
Bisecco A, Nardo FD, Docimo R, Caiazzo G, d’Ambrosio A, Bonavita S, Capuano R, Sinisi L, Cirillo M, Esposito F, Tedeschi G, Gallo A (2018) Fatigue in multiple sclerosis: the contribution of resting-state functional connectivity reorganization. Mult Scler 24:1696–1705. 10.1177/1352458517730932 DOI: 10.1177/1352458517730932
Jaeger S, Paul F, Scheel M, Brandt A, Heine J, Pach D, Witt CM, Bellmann-Strobl J, Finke C (2019) Multiple sclerosis–related fatigue: altered resting-state functional connectivity of the ventral striatum and dorsolateral prefrontal cortex. Mult Scler 25:554–564. 10.1177/1352458518758911 DOI: 10.1177/1352458518758911
Hanken K, Francis Y, Kastrup A, Eling P, Klein J, Hildebrandt H (2018) On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis. Mult Scler Relat Disord 20:67–72. 10.1016/j.msard.2017.12.014 DOI: 10.1016/j.msard.2017.12.014
Høgestøl EA, Nygaard GO, Alnæs D, Beyer MK, Westlye LT, Harbo HF (2019) Symptoms of fatigue and depression is reflected in altered default mode network connectivity in multiple sclerosis. PLoS One 14:e0210375. 10.1371/journal.pone.0210375 DOI: 10.1371/journal.pone.0210375
Pardini M, Bonzano L, Mancardi GL, Roccatagliata L (2010) Frontal networks play a role in fatigue perception in multiple sclerosis. Behav Neurosci 124:329–336. 10.1037/a0019585 DOI: 10.1037/a0019585
Khalil AA, Ostwaldt AC, Nierhaus T, Ganeshan R, Audebert HJ, Villringer K, Villringer A, Fiebach JB (2017) Relationship between changes in the temporal dynamics of the blood-oxygen-level-dependent signal and hypoperfusion in acute ischemic stroke. Stroke 48:925–931. 10.1161/STROKEAHA.116.015566 DOI: 10.1161/STROKEAHA.116.015566
Khalil AA, Villringer K, Filleböck V, Hu JY, Rocco A, Fiebach JB, Villringer A (2020) Non-invasive monitoring of longitudinal changes in cerebral hemodynamics in acute ischemic stroke using BOLD signal delay. J Cereb Blood Flow Metab 40:23–34. 10.1177/0271678X18803951 DOI: 10.1177/0271678X18803951
Lv Y, Margulies DS, Cameron Craddock R, Long X, Winter B, Gierhake D, Endres M, Villringer K, Fiebach J, Villringer A (2013) Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 73:136–140. 10.1002/ana.23763 DOI: 10.1002/ana.23763
Siegel JS, Snyder AZ, Ramsey L, Shulman GL, Corbetta M (2016) The effects of hemodynamic lag on functional connectivity and behavior after stroke. J Cereb Blood Flow Metab 36:2162–2176. 10.1177/0271678X15614846 DOI: 10.1177/0271678X15614846
Amemiya S, Kunimatsu A, Saito N, Ohtomo K (2014) Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 270:548–555. 10.1148/radiol.13130982 DOI: 10.1148/radiol.13130982
Yan S, Qi Z, An Y, Zhang M, Qian T, Lu J (2019) Detecting perfusion deficit in Alzheimer’s disease and mild cognitive impairment patients by resting-state fMRI. J Magn Reson Imaging 49:1099–1104. 10.1002/jmri.26283 DOI: 10.1002/jmri.26283
Antypa D, Simos NJ, Kavroulakis E, Bertsias G, Fanouriakis A, Sidiropoulos P, Boumpas D, Papadaki E (2021) Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study. Lupus Sci Med 8:e000473. 10.1136/lupus-2020-000473 DOI: 10.1136/lupus-2020-000473
Papadaki E, Simos NJ, Kavroulakis E, Bertsias G, Antypa D, Fanouriakis A, Maris T, Sidiropoulos P, Boumpas DT (2022) Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity. Neuroradiology 64(8):1593–1604. 10.1007/s00234-022-02924-x DOI: 10.1007/s00234-022-02924-x
Kotzamani D, Panou T, Mastorodemos V (2007) Community-based study of MS: natural history and prognostic factors. Ann Neurol 62:S73
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. 10.1002/ana.22366 DOI: 10.1002/ana.22366
Michopoulos I, Douzenis A, Kalkavoura C, Christodoulou C, Michalopoulou P, Kalemi G, Fineti K, Patapis P, Protopapas K, Lykouras L (2008) Hospital Anxiety and Depression Scale (HADS): validation in a Greek general hospital sample. Ann Gen Psychiatry 7:4. 10.1186/1744-859X-7-4 DOI: 10.1186/1744-859X-7-4
Krupp LB (1989) The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121. 10.1001/archneur.1989.00520460115022 DOI: 10.1001/archneur.1989.00520460115022
Bjelland I, Dahl AA, Haug TT, Neckelmann D (2002) The validity of the Hospital Anxiety and Depression Scale. J Psychosom Res 52:69–77. 10.1016/S0022-3999(01)00296-3 DOI: 10.1016/S0022-3999(01)00296-3
Flachenecker P, Kümpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P, Trenkwalder C, Toyka KV (2002) Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 8:523–526. 10.1191/1352458502ms839oa DOI: 10.1191/1352458502ms839oa
Kabiri S, Jameie M, Balali P, Adib Moradi S, Sanjari Moghaddam H, Aghamollaii V, Harirchian MH (2023) Trail Making Test could predict impairment in cognitive domains in patients with multiple sclerosis: a study of diagnostic accuracy. Arch Clin Neuropsychol J 38(1):37–48. 10.1093/arclin/acac059 DOI: 10.1093/arclin/acac059
Beier M, Hughes AJ, Williams MW, Gromisch ES (2019) Brief and cost-effective tool for assessing verbal learning in multiple sclerosis: comparison of the Rey Auditory Verbal Learning Test (RAVLT) to the California Verbal Learning Test -II (CVLT-II). J Neurol Sci 400:104–109. 10.1016/j.jns.2019.03.016 DOI: 10.1016/j.jns.2019.03.016
Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, Syndulko K, Weinshenker BG, Antel JP, Confavreux C, Ellison GW, Lublin F, Miller AE, Rao SM, Reingold S, Thompson A, Willoughby E (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122(Pt 5):871–882. 10.1093/brain/122.5.871 DOI: 10.1093/brain/122.5.871
Simos P, Papastefanakis E, Panou T, Kasselimis D (2011) The Greek Memory Scale. Laboratory of Applied Psychology, University of Crete, Rethymno
Constantinidou F, Zaganas I, Papastefanakis E, Kasselimis D, Nidos A, Simos PG (2014) Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment. J Int Neuropsychol Soc 20:822–835. 10.1017/S1355617714000678 DOI: 10.1017/S1355617714000678
Geffen G, Geffen L (eds) (2000) Auditory verbal learning test (AVLT) computerized scoring program and population norms. Australian Council for Educational Research; ACER Press, Melbourne
Kosmidis MH, Vlahou CH, Panagiotaki P, Kiosseoglou G (2004) The verbal fluency task in the Greek population: normative data, and clustering and switching strategies. J Int Neuropsychol Soc. 10:164–172. 10.1017/S1355617704102014 DOI: 10.1017/S1355617704102014
Wechsler D (2008) Wechsler Adult Intelligence Scale–Fourth Edition. Pearson, San Antonio TX
Zalonis I, Kararizou E, Triantafyllou NI, Kapaki E, Papageorgiou S, Sgouropoulos P, Vassilopoulos D (2008) A normative study of the Trail Making Test A and B in Greek adults. Clin Neuropsychol 22:842–850. 10.1080/13854040701629301 DOI: 10.1080/13854040701629301
Dadar M, Narayanan S, Arnold DL, Collins DL, Maranzano J (2021) Conversion of diffusely abnormal white matter to focal lesions is linked to progression in secondary progressive multiple sclerosis. Mult Scler 27(2):208–219. 10.1177/1352458520912172 DOI: 10.1177/1352458520912172
Manjón JV, Coupé P (2016) volBrain: an online MRI brain volumetry system. Front Neuroinform 10. 10.3389/fninf.2016.00030
Whitefield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2:125–141. 10.1089/brain.2012.0073 DOI: 10.1089/brain.2012.0073
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. 10.1006/nimg.2001.0978 DOI: 10.1006/nimg.2001.0978
Iwabuchi SJ, Krishnadas R, Li C, Auer DP, Radua J, Palaniyappan L (2015) Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci Biobehav Rev 51:77–86. 10.1016/j.neubiorev.2015.01.006 DOI: 10.1016/j.neubiorev.2015.01.006
Li C, Hu Q, Zhang D, Hoffstaedter F, Bauer A, Elmenhorst D (2022) Neural correlates of affective control regions induced by common therapeutic strategies in major depressive disorders: an activation likelihood estimation meta-analysis study. Neurosci Biobehav Rev 137:104643. 10.1016/j.neubiorev.2022.104643 DOI: 10.1016/j.neubiorev.2022.104643
Yuan J, Yu H, Yu M, Liang X, Huang C, He R, Lei W, Jing C, Jianning C, Tan Y, Liu K, Zhang T, Luo H, Xiang B (2022) Altered spontaneous brain activity in major depressive disorder: an activation likelihood estimation meta-analysis. J Affect Disord 314:19–26. 10.1016/j.jad.2022.06.014 DOI: 10.1016/j.jad.2022.06.014
Ellison PM, Goodall S, Kennedy N, Dawes H, Clark A, Pomeroy V, Duddy M, Baker MR, Saxton JM (2022) Neurostructural and neurophysiological correlates of multiple sclerosis physical fatigue: systematic review and meta-analysis of cross-sectional studies. Neuropsychol Rev 32:506–519. 10.1007/s11065-021-09508-1 DOI: 10.1007/s11065-021-09508-1
Gonzalez Campo C, Salamone PC, Rodríguez-Arriagada N, Richter F, Herrera E, Bruno D, Pagani Cassara F, Sinay V, García AM, Ibáñez A, Sedeño L (2020) Fatigue in multiple sclerosis is associated with multimodal interoceptive abnormalities. Mult Scler 26:1845–1853. 10.1177/1352458519888881 DOI: 10.1177/1352458519888881
Fuchs TA, Vaughn CB, Benedict RHB, Weinstock-Guttman B, Choudhery S, Carolus K, Rooney P, Ashton K, Ramasamy DP, Jakimovski D, Zivadinov R (2019) Lower self-report fatigue in multiple sclerosis is associated with localized white matter tract disruption between amygdala, temporal pole, insula, and other connected structures. Mult Scler Relat Disord 27:298–304. 10.1016/j.msard.2018.11.005 DOI: 10.1016/j.msard.2018.11.005
Riccelli R, Passamonti L, Cerasa A, Nigro S, Cavalli SM, Chiriaco C, Valentino P, Nisticò R, Quattrone A (2016) Individual differences in depression are associated with abnormal function of the limbic system in multiple sclerosis patients. Mult Scler 22(8):1094–1105. 10.1177/1352458515606987 DOI: 10.1177/1352458515606987
Tassone VK, Demchenko I, Salvo J, Mahmood R, Di Passa AM, Kuburi S, Rueda A, Bhat V (2022) Contrasting the amygdala activity and functional connectivity profile between antidepressant-free participants with major depressive disorder andhealthy controls: a systematic review of comparative fMRI studies. Psychiatry Res Neuroimaging 325:111517. 10.1016/j.pscychresns.2022.111517 DOI: 10.1016/j.pscychresns.2022.111517
Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, Gnadt JW, Nielsen L, Hillaire-Clarke CS, Spruance V, Horowitz TS, Vallejo YF, Langevin HM (2021) The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci 44:3–16. 10.1016/j.tins.2020.10.007 DOI: 10.1016/j.tins.2020.10.007
Williams LM (2016) Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiat 3:472–480. 10.1016/S2215-0366(15)00579-9 DOI: 10.1016/S2215-0366(15)00579-9
Pujol J, Bello J, Deus J, Martí-Vilalta JL, Capdevila A (1997) Lesions in the left arcuate fasciculus region and depressive symptoms in multiple sclerosis. Neurology 49:1105–1110. 10.1212/WNL.49.4.1105 DOI: 10.1212/WNL.49.4.1105
Bisecco A, Caiazzo G, d’Ambrosio A, Sacco R, Bonavita S, Docimo R, Cirillo M, Pagani E, Filippi M, Esposito F, Tedeschi G, Gallo A (2016) Fatigue in multiple sclerosis: the contribution of occult white matter damage. Mult Scler 22:1676–1684. 10.1177/1352458516628331 DOI: 10.1177/1352458516628331
Gobbi C, Rocca M, Riccitelli G, Pagani E, Messina R, Preziosa P, Colombo B, Rodegher M, Falini A, Comi G, Filippi M (2014) Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Mult Scler 20:192–201. 10.1177/1352458513493684 DOI: 10.1177/1352458513493684
Bakshi R, Czarnecki D, Shaikh ZA, Priore RL, Janardhan V, Kaliszky Z, Kinkel PR (2000) Brain MRI lesions and atrophy are related to depression in multiple sclerosis. Neuroreport 11:1153–1158. 10.1097/00001756-200004270-00003 DOI: 10.1097/00001756-200004270-00003
Hanken K, Eling P, Klein J, Klaene E, Hildebrandt H (2016) Different cortical underpinnings for fatigue and depression in MS? Mult Scler Relat Disord 6:81–86. 10.1016/j.msard.2016.02.005 DOI: 10.1016/j.msard.2016.02.005
Stuke H, Hanken K, Hirsch J, Klein J, Wittig F, Kastrup A, Hildebrandt H (2016) Cross-sectional and longitudinal relationships between depressive symptoms and brain atrophy in MS patients. Front Hum Neurosci 10:622. 10.3389/fnhum.2016.00622 DOI: 10.3389/fnhum.2016.00622
Rocca MA, Parisi L, Pagani E, Copetti M, Rodegher M, Colombo B, Comi G, Falini A, Filippi M (2014) Regional but not global brain damage contributes to fatigue in multiple sclerosis. Radiology 273:511–520. 10.1148/radiol.14140417 DOI: 10.1148/radiol.14140417
Niepel G, Tench CR, Morgan PS, Evangelou N, Auer DP, Constantinescu CS (2006) Deep gray matter and fatigue in MS: a T1 relaxation time study. J Neurol 253:896–902. 10.1007/s00415-006-0128-9 DOI: 10.1007/s00415-006-0128-9
Palotai M, Nazeri A, Cavallari M, Healy BC, Glanz B, Gold SM, Weiner HL, Chitnis T, Guttmann CRG (2019) History of fatigue in multiple sclerosis is associated with grey matter atrophy. Sci Rep 9:14781. 10.1038/s41598-019-51110-2 DOI: 10.1038/s41598-019-51110-2
Oathes DJ, Patenaude B, Schatzberg AF, Etkin A (2015) Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol Psychiatry 77:385–393. 10.1016/j.biopsych.2014.08.006 DOI: 10.1016/j.biopsych.2014.08.006
Mitra A, Snyder AZ, Hacker CD, Raichle ME (2014) Lag structure in resting-state fMRI. J Neurophysiol 111:2374–2391. 10.1152/jn.00804.2013 DOI: 10.1152/jn.00804.2013
Tong Y, Lindsey KP, Hocke LM, Vitaliano G, Mintzopoulos D, Frederick BD (2017) Perfusion information extracted from resting state functional magnetic resonance imaging. J Cereb Blood Flow Metab 37:564–576. 10.1177/0271678X16631755 DOI: 10.1177/0271678X16631755