adoptive cell transfer; cytokines; immune checkpoint inhibitors; monoclonal antibodies; vaccines; Oncology; Cancer Research
Abstract :
[en] Conventional cancer treatments such as chemotherapy and radiation therapy have reached their therapeutic potential, leaving a gap for developing more effective cancer therapeutics. Cancer cells evade the immune system using various mechanisms of immune tolerance, underlying the potential impact of immunotherapy in the treatment of cancer. Immunotherapy includes several approaches such as activating the immune system in a cytokine-dependent manner, manipulating the feedback mechanisms involved in the immune response, enhancing the immune response via lymphocyte expansion and using cancer vaccines to elicit long-lasting, robust responses. These techniques can be used as monotherapies or combination therapies. The present review describes the immune-based mechanisms involved in tumor cell proliferation and maintenance and the rationale underlying various treatment methods. In addition, the present review provides insight into the potential of immunotherapy used alone or in combination with various types of therapeutics.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Author, co-author :
Hoteit, Mira; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Oneissi, Zeina; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Reda, Ranim; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Wakim, Fadi; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Zaidan, Amar; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Farran, Mohammad ; Université de Liège - ULiège > GIGA > GIGA Cancer - Tumours and development biology ; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Abi-Khalil, Elie; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
El-Sibai, Mirvat; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
Language :
English
Title :
Cancer immunotherapy: A comprehensive appraisal of its modes of application.
Publication date :
September 2021
Journal title :
Oncology Letters
ISSN :
1792-1074
eISSN :
1792-1082
Publisher :
Spandidos Publications, Greece
Volume :
22
Issue :
3
Pages :
655
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work was supported by the Department of Natural Sciences at the School of Arts and Science at the Lebanese American University.
Koo SL, Wang WW and Toh HC: Cancer Immunotherapy-The target is precisely on the cancer and also not. Ann Acad Med Singap 47: 381-387, 2018.
Meng J, Zhou Y, Lu X, Bian Z, Chen Y, Zhou J, Zhang L, Hao Z, Zhang M and Liang C: Immune response drives outcomes in prostate cancer: Implications for immunotherapy. Mol Oncol 15: 1358-1375, 2021.
Balachandran VP, Beatty GL and Dougan SK: Broadening the impact of immunotherapy to pancreatic cancer: Challenges and opportunities. Gastroenterology 156: 2056-2072, 2019.
Parkin J and Cohen B: An overview of the immune system. Lancet 357: 1777-1789, 2001.
Perales-Puchalt A, Wojtak K, Duperret EK, Yang X, Slager AM, Yan J, Muthumani K, Montaner LJ and Weiner DB: Engineered DNA vaccination against follicle-stimulating hormone receptor delays ovarian cancer progression in animal models. Mol Ther 27: 314-325, 2019.
Pedersen M, Westergaard MCW, Milne K, Nielsen M, Borch TH, Poulsen LG, Hendel HW, Kennedy M, Briggs G, Ledoux S, et al: Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: A pilot study. OncoImmunology 7: e1502905, 2018.
Mitchell DM, Ravkov EV and Williams MA: Distinct roles for IL-2 and IL-15 in the differentiation and survival of CD8+ effector and memory T cells. J Immunol 184: 6719-6730, 2010.
Jaeckel E, Kretschmer K, Apostolou I and von Boehmer H: Instruction of Treg commitment in peripheral T cells is suited to reverse autoimmunity. Semin Immunol 18: 89-92, 2006.
Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV and Tarkowski A: Phenotypic and functional characterization of human CD25+ B cells. Immunology 117: 548-557, 2006.
Kim HP, Imbert J and Leonard WJ: Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17: 349-366, 2006.
Smith FO, Downey SG, Klapper JA, Yang JC, Sherry RM, Royal RE, Kammula US, Hughes MS, Restifo NP, Levy CL, et al: Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res 14: 5610-5618, 2008.
Lopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, Alvarez JC and Losey HC: ALKS 4230: A novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 8: e000673, 2020.
Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, Manzotti C, Kopf M and Walker LS: IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119: 4656-4664, 2012.
Zimmerman RJ, Aukerman SL, Katre NV, Winkelhake JL and Young JD: Schedule dependency of the antitumor activity and toxicity of polyethylene glycol-modified interleukin 2 in murine tumor models. Cancer Res 49: 6521-6528, 1989.
Rosenberg SA: IL-2: The first effective immunotherapy for human cancer. J Immunol 192: 5451-5458., 2014.
Grimm EA, Mazumder A, Zhang HZ and Rosenberg SA: Lymphokine-Activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-Activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823-1841, 1982.
Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, et al: Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23: 2346-2357, 2005.
Krieg C, Létourneau S, Pantaleo G and Boyman O: Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA 107: 11906-11911, 2010.
Nasreddine G, El-Sibai M and Abi-Habib RJ: Cytotoxicity of [HuArgI (co)-PEG5000]-induced arginine deprivation to ovarian cancer cells is autophagy dependent. Invest New Drugs 38: 10-19, 2020.
Ingersoll SB, Ahmad S, McGann HC, Banks RK, Stavitzski NM, Srivastava M, Ali G, Finkler NJ, Edwards JR and Holloway RW: Cellular therapy in combination with cytokines improves survival in a xenograft mouse model of ovarian cancer. Mol Cell Biochem 407: 281-287, 2015.
Ingersoll SB, Patel S, Caballero L, Ahmad S, Edwards D, Holloway RW and Edwards JR: Synergistic cytotoxicity of interferonalpha-2b and interleukin-2 in combination with PBMC against ovarian cancer: Development of an experimental model for cellular therapy. Gynecol Oncol 112: 192-198, 2009.
Di Scala M, Gil-Fariña I, Olagöe C, Vales A, Sobrevals L, Fortes P, Corbacho D and González-Aseguinolaza G: Identification of IFN-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure. Oncotarget 7: 49008-49026, 2016.
Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HEK, Thompson JA, Sondel PM, Wakelee HA, Disis ML, Kaiser JC, et al: A First-in-Human Phase I Study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res 24: 1525-1535, 2018.
Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart DM, et al: Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during First-in-Human clinical trial of recombinant human Interleukin-15 in patients with cancer. J Clin Oncol 33: 74-82, 2015.
Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD and Sprent J: Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA 103: 9166-9171, 2006.
Ochoa MC, Fioravanti J, Rodriguez I, Hervas-Stubbs S, Azpilikueta A, Mazzolini G, Gúrpide A, Prieto J, Pardo J, Berraondo P and Melero I: Antitumor immunotherapeutic and toxic properties of an HDL-Conjugated Chimeric IL-15 fusion protein. Cancer Res 73: 139-149, 2013.
Mortier E, Quéméner A, Vusio P, Lorenzen I, Boublik Y, Grötzinger J, Plet A and Jacques Y: Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 281: 1612-1619, 2006.
Ochoa MC, Minute L, López A, Pérez-Ruiz E, Gomar C, Vasquez M, Inoges S, Etxeberria I, Rodriguez I, Garasa S, et al: Enhancement of antibody-dependenT cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15. Oncoimmunology 7: e1393597, 2017.
Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res 4: 49-60, 2016.
Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, et al: First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131: 2515-2527, 2018.
Rosser CJ, Nix L, Ferguson L, Hernandez L and Wong HC: Phase Ib trial of ALT-803, an IL-15 superagonist, plus BCG for the treatment of BCG-naïve patients with non-muscle-invasive bladder cancer. J Clin Oncol 36 (Suppl 6): 510, 2021.
Timmerman JM, Byrd JC, Andorsky DJ, Yamada RE, Kramer J, Muthusamy N, Hunder N and Pagel JM: A phase I dose-finding trial of recombinant interleukin-21 and rituximab in relapsed and refractory low grade B-cell lymphoproliferative disorders. Clin Cancer Res 18: 5752-5760, 2012.
Fioravanti J, Di Lucia P, Magini D, Moalli F, Boni C, Benechet AP, Fumagalli V, Inverso D, Vecchi A, Fiocchi A, et al: Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol 67: 543-548, 2017.
Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K, et al: Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 18: 1874-1884, 2010.
Spaapen RM, Leung MY, Fuertes MB, Kline JP, Zhang L, Zheng Y, Fu YX, Luo X, Cohen KS and Gajewski TF: Therapeutic activity of High-Dose Intratumoral IFN-β requires direct effect on the tumor vasculature. J Immunol 193: 4254-4260, 2014.
Herndon TM, Demko SG, Jiang X, He K, Gootenberg JE, Cohen MH, Keegan P and Pazdur R: U.S. Food and Drug Administration Approval: Peginterferon-Alfa-2b for the adjuvant treatment of patients with melanoma. Oncologist 17: 1323-1328, 2012.
Bellobuono A, Mondazzi L, Tempini S, Silini E, Vicari F and Idéo G. Ribavirin and interferon-Alpha combination therapy vs interferon-Alpha alone in the retreatment of chronic hepatitis C: A randomized clinical trial. J Viral Hepat 4: 185-191, 1997.
Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K, Tsoutsos D, Panagiotou P, Polyzos A, Papadopoulos O, Stratigos A, et al: Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354: 709-718, 2006.
Fioravanti J, González I, Medina-Echeverz J, Larrea E, Ardaiz N, González-Aseguinolaza G, Prieto J and Berraondo P: Anchoring interferon alpha to apolipoprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology 53: 1864-1873, 2011.
Cauwels A, Van Lint S, Paul F, Garcin G, De Koker S, Van Parys A, Wueest T, Gerlo S, Van der Heyden J, Bordat Y, et al: Delivering Type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res 78: 463-474, 2018.
Palladino MA, Bahjat FR, Theodorakis EA and Moldawer LL: Anti-TNF-Alpha therapies: The next generation. Nat Rev Drug Discov 2: 736-746, 2003.
Creaven PJ, Plager JE, Dupere S, Huben RP, Takita H, Mittelman A and Proefrock A: Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemother Pharmacol 20: 137-144, 1987.
Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH and Lenardo MJ: Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377: 348-351, 1995.
Kahn JO, Kaplan LD, Volberding PA, Ziegler JL, Crowe S, Saks SR and Abrams DI: Intralesional recombinant tumor necrosis factor-Alpha for AIDS-Associated Kaposi's sarcoma: A randomized, double-blind trial. J Acquir Immune Defic Syndr 2: 217-223, 1989.
Manusama ER, Nooijen PT, Stavast J, Durante NM, Marquet RL and Eggermont AM: Synergistic antitumour effect of recombinant human tumour necrosis factor alpha with melphalan in isolated limb perfusion in the rat. Br J Surg 83: 551-555, 1996.
Lejeune FJ, Liénard D, Matter M and Röegg C: Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun 6: 6, 2006.
van Horssen R, Ten Hagen TL and Eggermont AM: TNF-Alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 11: 397-408, 2006.
Herzberg B, Campo MJ and Gainor JF: Immune checkpoint inhibitors in non-small cell lung cancer. Oncologist 22: 81-88, 2017.
Delgobo M and Frantz S: Heart failure in cancer: Role of checkpoint inhibitors. J Thorac Dis 10 (Suppl 35): S4323-S4334, 2018.
Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, et al: Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377: 1345-1356, 2017.
Kamath SD and Kumthekar PU: Immune checkpoint inhibitors for the treatment of central nervous system (CNS) metastatic disease. Front Oncol 8: 414, 2018.
Heinzerling L, Ott PA, Hodi FS, Husain AN, Tajmir-Riahi A, Tawbi H, Pauschinger M, Gajewski TF, Lipson EJ and Luke JJ: Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer 4: 50, 2016.
Sznol M, Postow MA, Davies MJ, Pavlick AC, Plimack ER, Shaheen M, Veloski C and Robert C: Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat Rev 58: 70-76, 2017.
Hassel JC, Heinzerling L, Aberle J, Bähr O, Eigentler TK, Grimm MO, Grönwald V, Leipe J, Reinmuth N, Tietze JK, et al: Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. Cancer Treat Rev 57: 36-49, 2017.
Simonaggio A, Michot JM, Voisin AL, Le Pavec J, Collins M, Lallart A, Cengizalp G, Vozy A, Laparra A, Varga A, et al: Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol 5: 1310-1317, 2019.
Santini FC, Rizvi H, Plodkowski AJ, Ni A, Lacouture ME, Gambarin-Gelwan M, Wilkins O, Panora E, Halpenny DF, Long NM, et al: Safety and efficacy of re-Treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol Res 6: 1093-1099, 2018.
Kluger HM, Zito CR, Turcu G, Baine MK, Zhang H, Adeniran A, Sznol M, Rimm DL, Kluger Y, Chen L, et al: PD-L1 studies across tumor types, its differential expression and predictive value in patients treated with immune checkpoint inhibitors. Clin Cancer Res 23: 4270-4279, 2017.
Fan J, Shang D, Han B, Song J, Chen H and Yang JM: Adoptive cell transfer: Is it a promising immunotherapy for colorectal cancer? Theranostics 8: 5784-5800, 2018.
Wrangle J, Paulos CM, Smith TW, Nishimura MI and Rubinstein MP: Inducible enhancement of T cell function and anti-Tumor activity after adoptive transfer. Mol Ther 25: 1995-1996, 2017.
Rohaan MW, Wilgenhof S and Haanen JBAG: Adoptive cellular therapies: The current landscape. Virchows Arch 474: 449-461, 2019.
Mitchison NA: Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med 102: 157-177, 1955.
Fefer A: Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res 29: 2177-2183, 1969.
Rosenberg SA and Terry WD: Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25: 323-388, 1977.
Kono K, Ichihara F, Iizuka H, Sekikawa T and Matsumoto Y: Expression of signal transducing T-cell receptor zeta molecules after adoptive immunotherapy in patients with gastric and colon cancer. Int J Cancer 78: 301-305, 1998.
Lu TL, Pugach O, Somerville R, Rosenberg SA, Kochenderfer JN, Better M and Feldman SA: A Rapid cell expansion process for production of engineered autologous CAR-T cell therapies. Hum Gene Ther Methods 27: 209-218, 2016.
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, Jin Q, Su L, Liu X, Wang K, et al: Adoptive transfer of NKG2D CAR mRNA-Engineered natural killer cells in colorectal cancer patients. Mol Ther 27: 1114-1125, 2019.
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49, 2011.
Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer 16: 7-19, 2016.
Basar R, Daher M and Rezvani K: Next-generation cell therapies: The emerging role of CAR-NK cells. Blood Adv 4: 5868-5876, 2020.
Zhou J, Bethune MT, Malkova N, Sutherland AM, Comin-Anduix B, Su Y, Baltimore D, Ribas A and Heath JR: A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication. PLoS One 13: e0191634, 2018.
Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R, Yu Z, Sanchez-Perez L, Muranski P, Kern SJ, Logun C, et al: Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 106: 17469-17474, 2009.
De Sanctis F, Trovato R and Ugel S: Anti-Telomerase T cells adoptive transfer. Aging (Albany NY) 9: 2239-2240, 2017.
Kondo T, Imura Y, Chikuma S, Hibino S, Omata-Mise S, Ando M, Akanuma T, Iizuka M, Sakai R, Morita R and Yoshimura A: Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer Sci 109: 2130-2140, 2018.
Foley KC, Nishimura MI and Moore TV: Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Res 28: 171-184, 2018.
Abi-Habib RJ, Singh R, Leppla SH, Greene JJ, Ding Y, Berghuis B, Duesbery NS and Frankel AE: Systemic anthrax lethal toxin therapy produces regressions of subcutaneous human melanoma tumors in athymic nude mice. Clin Cancer Res 12: 7437-7443, 2006.
Kong LY, Abou-Ghazal MK, Wei J, Chakraborty A, Sun W, Qiao W, Fuller GN, Fokt I, Grimm EA, Schmittling RJ, et al: A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin Cancer Res 14: 5759-5768, 2008.
Weiss T, Weller M, Guckenberger M, Sentman CL and Roth P: NKG2D-Based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res 78: 1031-1043, 2018.
Al Hassan M, Fakhoury I, El Masri Z, Ghazale N, Dennaoui R, El Atat O, Kanaan A and El-Sibai M: Metformin treatment inhibits motility and invasion of glioblastoma cancer cells. Anal Cell Pathol (Amst) 2018: 5917470, 2018.
Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel AE and Abi-Habib RJ: Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol 122: 75-85, 2015.
Dudley ME and Rosenberg SA: Adoptive-cell-Transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3: 666-675, 2003.
Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, Singh B, Rosenblum MD and Fuchs E: Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177: 1172-1186.e14, 2019.
Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, Kobayashi KS, Sachidanandam R, Baccarini A, Merad M and Brown BD: Quiescent tissue stem cells evade immune surveillance. Immunity 48: 271-285.e5, 2018.
Brown JA, Yonekubo Y, Hanson N, Sastre-Perona A, Basin A, Rytlewski JA, Dolgalev I, Meehan S, Tsirigos A, Beronja S and Schober M: TGF-β-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 21: 650-664.e8, 2017.
Yang JC: Toxicities associated with adoptive T-cell transfer for cancer. Cancer 21: 506-509, 2015.
Miliotou AN and Papadopoulou LC: CAR T-cell therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol 19: 5-18, 2018.
Maeng HM and Berzofsky JA: Strategies for developing and optimizing cancer vaccines. F1000Res 8: F1000 Faculty Rev-654, 2019.
Gatti-Mays ME, Redman JM, Collins JM and Bilusic M: Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum Vaccines Immunother 13: 2561-2574, 2017.
Manthorpe M, Cornefert-Jensen F, Hartikka J, Felgner J, Rundell A, Margalith M and Dwarki V: Gene therapy by intramuscular injection of plasmid DNA: Studies on firefly luciferase gene expression in mice. Hum Gene Ther 4: 419-431, 1993.
Walters JN, Ferraro B, Duperret EK, Kraynyak KA, Chu J, Saint-Fleur A, Yan J, Levitsky H, Khan AS, Sardesai NY and Weiner DB: A Novel DNA vaccine platform enhances neo-Antigen-like T cell responses against WT1 to break tolerance and induce anti-Tumor immunity. Mol Ther 25: 976-988, 2017.
Lopes A, Vanvarenberg K, Kos Š, Lucas S, Colau D, Van den Eynde B, Préat V and Vandermeulen G: Combination of immune checkpoint blockade with DNA cancer vaccine induces potent antitumor immunity against P815 mastocytoma. Sci Rep 8: 15732, 2018.
Paston SJ, Brentville VA, Symonds P and Durrant LG: Cancer vaccines, adjuvants, and delivery systems. Front Immunol 12: 627932, 2021.
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD and McNeel DG: Treatment combinations with DNA vaccines for the treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers (Basel) 12: 2831, 2020.
Li L and Petrovsky N: Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 15: 313-329, 2016.
Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A and Hamblin MR: Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today 25: 552-560, 2020.
Bhuyan PK, Dallas M, Kraynyak K, Herring T, Morrow M, Boyer J, Duff S, Kim J and Weiner DB: Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum Vaccin Immunother 17: 1288-1293, 2021.
Lopes A, Vandermeulen G and Préat V: Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38: 146, 2019.
Malonis RJ, Lai JR and Vergnolle O: Peptide-based vaccines: Current progress and future challenges. Chem Rev 120: 3210-3229, 2020.
Li W, Joshi MD, Singhania S, Ramsey KH and Murthy AK: Peptide vaccine: Progress and challenges. Vaccines (Basel) 2: 515-536, 2014.
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW and Mukherjee P: Indomethacin enhances anti-Tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 14: e0224309, 2019.
Pan J, Zhang Q, Palen K, Wang L, Qiao L, Johnson B, Sei S, Shoemaker RH, Lubet RA, Wang Y and You M: Potentiation of Kras peptide cancer vaccine by avasimibe, a cholesterol modulator. EBioMedicine 49: 72-81, 2019.
Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi L, Zhang X, Ding Z, Xu H and Yang L: Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-Adjuvant vaccines in mouse tumor models. Cancer Immunol Immunother 69: 135-145, 2020.
Neek M, Kim TI and Wang SW: Protein-based nanoparticles in cancer vaccine development. Nanomedicine 15: 164-174, 2019.
Rousseau RF, Hirschmann-Jax C, Takahashi S and Brenner MK: Cancer vaccines. Hematol Oncol Clin North Am 15: 741-773, 2001.
Steinman RM and Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142-1162, 1973.
Santos PM and Butterfield LH: Dendritic cell-based cancer vaccines. J Immunol 200: 443-449, 2018.
Alvarez-Dominguez C, Calderón-Gonzalez R, Terán-Navarro H, Salcines-Cuevas D, Garcia-Castaño A, Freire J, Gomez-Roman J and Rivera F: Dendritic cell therapy in melanoma. Ann Transl Med 5: 386, 2017.
de Gruijl TD, van den Eertwegh AJM, Pinedo HM and Scheper RJ: Whole-cell cancer vaccination: From autologous to allogeneic tumor-and dendritic cell-based vaccines. Cancer Immunol Immunother 57: 1569-1577, 2008.
Fu C, Zhou L, Mi QS and Jiang A: DC-Based vaccines for cancer immunotherapy. Vaccines (Basel) 8: 706, 2020.
Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 7: 100, 2019.
Lai X and Friedman A: Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS One 12: e0178479, 2017.
Anassi E and Ndefo UA: Sipuleucel-T (provenge) injection: The first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T 36: 197-202, 2011.
Ayoub NM, Al-Shami KM and Yaghan RJ: Immunotherapy for HER2-positive breast cancer: Recent advances and combination therapeutic approaches. Breast Cancer (Dove Med Press) 11: 53-69, 2019.
Han Q, Wang Y, Pang M and Zhang J: STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC. J Exp Clin Cancer Res 36: 156, 2017.
Sheikhi A, Jafarzadeh A, Kokhaei P and Hojjat-Farsangi M: Whole tumor cell vaccine adjuvants: Comparing IL-12 to IL-2 and IL-15. Iran J Immunol 13: 148-166, 2016.
Xia L, Schrump DS and Gildersleeve JC: Whole-Cell cancer vaccines induce large antibody responses to carbohydrates and glycoproteins. Cell Chem Biol 23: 1515-1525, 2016.
Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, Daphtary MM, Garrett-Mayer E, Davidson NE, Hirt K, et al: A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ Metastatic breast cancer. Cancer Immunol Res 2: 949-961, 2014.
Constantino J, Gomes C, Falcão A, Cruz MT and Neves BM: Antitumor dendritic cell-based vaccines: Lessons from 20 years of clinical trials and future perspectives. Transl Res 168: 74-95, 2016.
Köhler G and Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495-497, 1975.
Chung S, Lin YL, Reed C, Ng C, Cheng ZJ, Malavasi F, Yang J, Quarmby V and Song A: Characterization of in vitro antibody-dependenT cell-mediated cytotoxicity activity of therapeutic antibodies-impact of effector cells. J Immunol Methods 407: 63-75, 2014.
Wang W, Erbe AK, Hank JA, Morris ZS and Sondel PM: NK Cell-Mediated Antibody-DependenT cellular cytotoxicity in cancer immunotherapy. Front Immunol 6: 368, 2015.
Harris TJ and Drake CG: Primer on tumor immunology and cancer immunotherapy. J Immunother Cancer 1: 12, 2013.
Mayor M, Yang N, Sterman D, Jones DR and Adusumilli PS: Immunotherapy for non-small cell lung cancer: Current concepts and clinical trials. Eur J Cardiothorac Surg 49: 1324-1333, 2016.
Kimiz-Gebologlu I, Gulce-Iz S and Biray-Avci C: Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep 45: 2935-2940, 2018.
Karlitepe A, Ozalp O and Avci CB: New approaches for cancer immunotherapy. Tumour Biol 36: 4075-4078, 2015.
Sathyanarayanan V and Neelapu SS: Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol Oncol 9: 2043-2053, 2015.
Posner J, Barrington P, Brier T and Datta-Mannan A: Monoclonal antibodies: Past, present and future. Handb Exp Pharmacol 260: 81-141, 2019.
Zahavi D and Weiner L: Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 9: 34, 2020.
Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, Campone M, Biganzoli L, Bonnefoi H, Jerusalem G, et al: Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-Arm, multicentre, phase 1b-2 trial. Lancet Oncol 20: 371-382, 2019.
ClinicalTrials.gov: A Dose Escalation and Cohort Expansion Study of NKTR-214 in Combination With Nivolumab and Other Anti-Cancer Therapies in Patients With Select Advanced Solid Tumors (PIVOT-02). ClinicalTrials.gov Identifier: NCT02983045. U.S. National Library of Medicine, Bethesda, MD, 2016. https://clinicaltrials.gov/ct2/show/NCT02983045. Accessed December 6, 2016.
ClinicalTrials.gov: Bempegaldesleukin and Pembrolizumab With or Without Chemotherapy in Locally Advanced or Metastatic Solid Tumors (PROPEL). ClinicalTrials.gov Identifier: NCT03138889. U.S. National Library of Medicine, Bethesda, MD, 2017. https://clinicaltrials.gov/ct2/show/NCT03138889. Accessed May 3, 2017.
Zimmer L, Goldinger SM, Hofmann L, Loquai C, Ugurel S, Thomas I, Schmidgen MI, Gutzmer R, Utikal JS, Göppner D, et al: Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 60: 210-225, 2016.