Adhesion; Angiogenesis; BMP signaling; Lymphangiogenesis; Migration; Rho GTPases; Sorbs1; Vegfc; Zebrafish Proteins; Adaptor Proteins, Signal Transducing; Animals; Zebrafish Proteins/genetics; Zebrafish Proteins/metabolism; Lymphangiogenesis/physiology; Adaptor Proteins, Signal Transducing/metabolism; Cytoskeleton/metabolism; Zebrafish/genetics; Zebrafish/metabolism; Lymphatic Vessels/metabolism; Cytoskeleton; Lymphatic Vessels; Zebrafish; Biotechnology; Structural Biology; Ecology, Evolution, Behavior and Systematics; Physiology; Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all); Plant Science; Developmental Biology; Cell Biology; General Agricultural and Biological Sciences; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] [en] BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish.
RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties.
CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Veloso, Alexandra ✱; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium ; Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium ; Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
Bleuart, Anouk ✱; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium ; Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
Conrard, Louise; Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
Orban, Tanguy ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales
Bruyr, Jonathan ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Gene Expression & Cancer
Cabochette, Pauline; Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium ; Present Address: Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
Germano, Raoul F V; Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
Schevenels, Giel; Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
Bernard, Alice ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Zindy, Egor; Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
Demeyer, Sofie; Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
Vanhollebeke, Benoit; Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
Dequiedt, Franck ✱; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales
Martin, Maud ✱; Université de Liège - ULiège > Chimie et bio-industries > Biologie cellulaire et moléculaire ; Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium. maud.martin@ulb.be ; Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium. maud.martin@ulb.be ; WEL Research Institute (WELBIO Department), Avenue Pasteur, 6, 1300, Wavre, Belgium. maud.martin@ulb.be
This research has been funded by the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (IUAP-BELSPO PVI/28 and PVII/13) and was supported by the Belgian National Fund for Scientific Research, the Léon Fredericq Fund (FLF) and Funds from the Université of Liège. A.B., A.V., and T.O. were FRIA Fellows of the Belgian National Fund for Scientific Research. P.C. was a postdoctoral researcher of the FRFS-FNRS. The CMMI is supported by the European Regional Development Fund and the Walloon Region. Work in the M.M. laboratory is supported by the FRFS-FNRS (MIS- F.4529.21) and the FRFS-WELBIO (CR-2022 S – 05). Work in the B.V. laboratory is supported by the Queen Elisabeth Medical Foundation (Q.E.M.F.), the FRFS-WELBIO (CR-2017S-05R), and the ERC (GoG Ctrl-BBB 865176).
M. Potente H. Gerhardt P. Carmeliet Basic and therapeutic aspects of angiogenesis Cell 2011 146 873 887 1:CAS:528:DC%2BC3MXhtF2ht7fL 10.1016/j.cell.2011.08.039 21925313
J.M. Vieira S. Norman C.V. Del Campo T.J. Cahill D.N. Barnette M. Gunadasa-Rohling et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction J Clin Investig 2018 128 3402 3412 10.1172/JCI97192 29985167 6063482
L. Klotz S. Norman J.M. Vieira M. Masters M. Rohling K.N. Dubé et al. Cardiac lymphatics are heterogeneous in origin and respond to injury Nature 2015 522 62 67 2015Natur.522..62K 1:CAS:528:DC%2BC2MXhtFeitLvN 10.1038/nature14483 25992544 4458138
T. Vuorio A. Tirronen S. Ylä-Herttuala Cardiac lymphatics – a new avenue for therapeutics? Trends Endocrinol Metab 2017 28 285 296 1:CAS:528:DC%2BC28XitFGitr%2FM 10.1016/j.tem.2016.12.002 28087126
E. Song T. Mao H. Dong L.S.B. Boisserand S. Antila M. Bosenberg et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours Nature 2020 577 689 694 2020Natur.577.689S 1:CAS:528:DC%2BB3cXis1Sitro%3D 10.1038/s41586-019-1912-x 31942068 7100608
K. Tanabe J. Wada Y. Sato Targeting angiogenesis and lymphangiogenesis in kidney disease Nat Rev Nephrol 2020 16 289 303 1:CAS:528:DC%2BB3cXltV2ku7k%3D 10.1038/s41581-020-0260-2 32144398
M. Shin T.J. Beane A. Quillien I. Male L.J. Zhu N.D. Lawson Vegfa signals through ERK to promote angiogenesis, but not artery differentiation Development 2016 143 3796 3805 1:CAS:528:DC%2BC2sXitFShtro%3D 10.1242/dev.137919 27578780 5087643
M. François A. Caprini B. Hosking F. Orsenigo D. Wilhelm C. Browne et al. Sox18 induces development of the lymphatic vasculature in mice Nature 2008 456 643 647 2008Natur.456.643F 1:CAS:528:DC%2BD1cXhsVGlurzM 10.1038/nature07391 18931657
Gauvrit S, Villasenor A, Strilic B, Kitchen P, Collins MM, Marín-Juez R, et al. HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-05039-1.
J. Kazenwadel K.L. Betterman C.E. Chong P.H. Stokes Y.K. Lee G.A. Secker et al. GATA2 is required for lymphatic vessel valve development and maintenance J Clin Investig 2015 125 2879 2994 10.1172/JCI78888
R.S. Srinivasan N. Escobedo Y. Yang A. Interiano M.E. Dillard D. Finkelstein et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors Genes Dev 2014 28 2175 2187 1:CAS:528:DC%2BC2cXhslOhurjM 10.1101/gad.216226.113 25274728 4180978
R.S. Srinivasan X. Geng Y. Yang Y. Wang S. Mukatira M. Studer et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells Genes Dev 2010 24 696 707 1:CAS:528:DC%2BC3cXltFWls74%3D 10.1101/gad.1859310 20360386 2849126
S. Baek T.G. Oh G. Secker D.L. Sutton K.S. Okuda S. Paterson et al. The alternative splicing regulator Nova2 constrains vascular Erk signaling to limit specification of the lymphatic lineage Dev Cell 2019 49 279 292.e5 1:CAS:528:DC%2BC1MXnvF2ntr0%3D 10.1016/j.devcel.2019.03.017 31014480
S.P. Williams A.F. Odell T. Karnezis R.H. Farnsworth C.M. Gould J. Li et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling Sci Signal 2017 10:eaal2987 10.1126/scisignal.aal2987 28974649
J. Nicenboim G. Malkinson T. Lupo L. Asaf Y. Sela O. Mayseless et al. Lymphatic vessels arise from specialized angioblasts within a venous niche Nature 2015 522 56 61 2015Natur.522..56N 1:CAS:528:DC%2BC2MXhtFeitLrF 10.1038/nature14425 25992545
K. Koltowska A.K. Lagendijk C. Pichol-Thievend J.C. Fischer M. Francois E.A. Ober et al. Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish Cell Rep 2015 13 1828 1841 1:CAS:528:DC%2BC2MXhvVOqsbjL 10.1016/j.celrep.2015.10.055 26655899
Peng D, Ando K, Hußmann M, Gloger M, Skoczylas R, Mochizuki N, et al. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. Elife 2022;11. https://doi.org/10.7554/eLife.74094.
J. Bussmann F.L. Bos A. Urasaki K. Kawakami H.J. Duckers S. Schulte-Merker Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk Development 2010 137 2653 2657 1:CAS:528:DC%2BC3cXht1KjtLrO 10.1242/dev.048207 20610484
B.M. Hogan S. Schulte-Merker How to plumb a pisces: understanding vascular development and disease using zebrafish embryos Dev Cell 2017 42 567 583 1:CAS:528:DC%2BC2sXhsFKisLnF 10.1016/j.devcel.2017.08.015 28950100
C. Xu S.S. Hasan I. Schmidt S.F. Rocha M.E. Pitulescu J. Bussmann et al. Arteries are formed by vein-derived endothelial tip cells Nat Commun 2014 5 5758 2014NatCo..5.5758X 1:CAS:528:DC%2BC2MXksVemsbo%3D 10.1038/ncomms6758 25502622
Geudens I, Coxam B, Alt S, Gebala V, Vion AC, Meier K, et al. Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine-tuning. Development 2019;146. https://doi.org/10.1242/dev.181024.
D.M. Wiley J.D. Kim J. Hao C.C. Hong V.L. Bautch S.W. Jin Distinct signaling pathways regulate sprouting angiogenesis from the dorsal aorta and axial vein Nat Cell Biol 2011 13 686 92 10.1038/ncb2232.Distinct 21572418 3107371
A. Seth M. Goi S.J. Childs Patterning mechanisms of the sub-intestinal venous plexus in zebrafish Dev Biol 2016 409 114 128 1:CAS:528:DC%2BC2MXhslSjsb7O 10.1016/j.ydbio.2015.10.017
G. Hen J. Nicenboim O. Mayseless L. Asaf M. Shin G. Busolin et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development Development 2015 142 4266 4278 1:CAS:528:DC%2BC28XntFSmsLo%3D 10.1242/dev.129247 26525671 4689221
S. Isogai M. Horiguchi B.M. Weinstein The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development Dev Biol 2001 230 278 301 1:CAS:528:DC%2BD3MXnsFSitA%3D%3D 10.1006/dbio.2000.9995 11161578
A.M. Küchler E. Gjini J. Peterson-Maduro B. Cancilla H. Wolburg S. Schulte-Merker Development of the zebrafish lymphatic system requires Vegfc signaling Curr Biol 2006 16 1244 1248 1:CAS:528:DC%2BD28XlvF2jtLo%3D 10.1016/j.cub.2006.05.026 16782017
X.D. Sun X.E. Liu J.M. Wu X.J. Cai Y.P. Mou J.D. Li Expression and significance of angiopoietin-2 in gastric cancer World J Gastroenterol 2004 10 1382 5 1:CAS:528:DC%2BD2cXnsVCnt7k%3D 10.3748/wjg.v10.i9.1382 15112366 4622790
S.F. Schoppmann P. Birner J. Stöckl R. Kalt R. Ullrich C. Caucig et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis Am J Pathol 2002 161 947 956 1:CAS:528:DC%2BD38XnsFOisrs%3D 10.1016/S0002-9440(10)64255-1 12213723 1867252
B.M. Hogan R. Herpers M. Witte H. Heloterä K. Alitalo H.J. Duckers et al. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries Development 2009 136 4001 4009 1:CAS:528:DC%2BC3cXislSksQ%3D%3D 10.1242/dev.039990 19906867
M. Alders B.M. Hogan E. Gjini F. Salehi L. Al-Gazali E.A. Hennekam et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans Nat Genet 2009 41 1272 1274 1:CAS:528:DC%2BD1MXhsVGlur3J 10.1038/ng.484 19935664
B.M. Hogan F.L. Bos J. Bussmann M. Witte N.C. Chi H.J. Duckers et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting Nat Genet 2009 41 396 398 1:CAS:528:DC%2BD1MXjtFCisbk%3D 10.1038/ng.321 19287381
M. Jeltsch S.K. Jha D. Tvorogov A. Anisimov V.M. Leppänen T. Holopainen et al. CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation Circulation 2014 129 1962 1971 1:CAS:528:DC%2BC2cXnslyktrY%3D 10.1161/CIRCULATIONAHA.113.002779 24552833
L. Le Guen T. Karpanen D. Schulte N.C. Harris K. Koltowska G. Roukens et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis Development 2014 141 1239 1249 1:CAS:528:DC%2BC2cXntVehsrw%3D 10.1242/dev.100495 24523457
K. Koltowska S. Paterson N.I. Bower G.J. Baillie A.K. Lagendijk J.W. Astin et al. mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish Genes Dev 2015 29 1618 1630 1:CAS:528:DC%2BC2MXhsVemt7nL 10.1101/gad.263210.115 26253536 4536310
L. Grimm H. Nakajima S. Chaudhury N.I. Bower K.S. Okuda A.G. Cox et al. Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegfc in the zebrafish trunk Elife 2019 8 1 22 10.7554/eLife.42881
Jerafi-Vider A, Bassi I, Moshe N, Tevet Y, Hen G, Splittstoesser D, et al. VEGFC/FLT4-induced cell-cycle arrest mediates sprouting and differentiation of venous and lymphatic endothelial cells. Cell Rep 2021;35. https://doi.org/10.1016/j.celrep.2021.109255.
J.A. Villefranc S. Nicoli K. Bentley M. Jeltsch G. Zarkada J.C. Moore et al. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development Development 2013 140 1497 506 1:CAS:528:DC%2BC3sXntVCltLY%3D 10.1242/dev.084152 23462469 3596992
T. Karpanen Y. Padberg S.A. Van De Pavert C. Dierkes N. Morooka J. Peterson-Maduro et al. An evolutionarily conserved role for polydom/Svep1 during lymphatic vessel formation Circ Res 2017 120 1263 1275 1:CAS:528:DC%2BC2sXlvF2qtb8%3D 10.1161/CIRCRESAHA.116.308813 28179432 5389596
G. Cestra D. Toomre S. Chang P. De Camilli The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton Proc Natl Acad Sci U S A 2005 102 1731 1736 2005PNAS.102.1731C 1:CAS:528:DC%2BD2MXhs1Klu70%3D 10.1073/pnas.0409376102 15659545 547834
N. Kioka S. Sakata T. Kawauchi T. Amachi S.K. Akiyama K. Okazaki et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization J Cell Biol 1999 144 58 69 10.1083/jcb.144.1.59
V. Ribon R. Herrera B.K. Kay A.R. Saltiel A role for CAP, a novel, multifunctional Src homology 3 domain- containing protein in formation of actin stress fibers and focal adhesions J Biol Chem 1998 273 4073 4080 1:CAS:528:DyaK1cXht1ahs7Y%3D 10.1074/jbc.273.7.4073 9461600
M. Rönty A. Taivainen M. Moza G.D. Kruh E. Ehler O. Carpen Involvement of palladin and α-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton Exp Cell Res 2005 310 88 98 1:CAS:528:DC%2BD2MXhtVKisb7M 10.1016/j.yexcr.2005.06.026 16125169
M. Wakabayashi T. Ito M. Mitsushima S. Aizawa K. Ueda T. Amachi et al. Interaction of lp-dlg/KIAA0583, a membrane-associated guanylate kinase family protein, with vinexin and b-catenin at sites of cell-cell contact J Biol Chem 2003 278 21709 21714 1:CAS:528:DC%2BD3sXksVemsb8%3D 10.1074/jbc.M211004200 12657639
B. Wang E.A. Golemis G.D. Kruh ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks J Biol Chem 1997 272 17542 17550 1:CAS:528:DyaK2sXksFyhurY%3D 10.1074/jbc.272.28.17542 9211900
M. Zhang J. Liu A. Cheng S.M. DeYoung X. Chen L.H. Dold et al. CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility EMBO J 2006 25 5284 5293 1:CAS:528:DC%2BD28Xht1Sgt73N 10.1038/sj.emboj.7601406 17082770 1636617
N. Kioka A novel adaptor protein family regulating cytoskeletal organization and signal transduction–Vinexin, CAP/ponsin, ArgBP2 Seikagaku 2002 74 1356 1360 1:CAS:528:DC%2BD38Xpt1WqtL0%3D 10.1247/csf.27.1 12510380
J. Roignot P. Soubeyran ArgBP2 and the SoHo family of adapter proteins in oncogenic diseases Cell Adh Migr 2009 3 167 170 10.4161/cam.3.2.7576 19262174 2679877
T. Ichikawa M. Kita T.S. Matsui A.I. Nagasato T. Araki S.-H. Chiang et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation J Cell Sci 2017 130 3517 3531 1:CAS:528:DC%2BC1cXmslalsbo%3D 10.1242/jcs.200691 28864765 5665443
M. Kuroda K. Ueda N. Kioka Vinexin family (SORBS) proteins regulate mechanotransduction in mesenchymal stem cells Sci Rep 2018 8 1 12 1:CAS:528:DC%2BC1MXptFOr 10.1038/s41598-018-29700-3
A. Sur Y. Wang P. Capar G. Margolin M.K. Prochaska J.A. Farrell Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development Dev Cell 2023 10.1016/j.devcel.2023.11.001 37995681
I. Geudens R. Herpers K. Hermans I. Segura C.J. De RuizAlmodovarBussmann et al. Role of delta-like-4/notch in the formation and wiring of the lymphatic network in zebrafish Arterioscler Thromb Vasc Biol 2010 30 1695 702 1:CAS:528:DC%2BC3cXhtVCnsb3P 10.1161/ATVBAHA.110.203034 20466977 5497575
M.J. Karkkainen P. Haiko K. Sainio J. Partanen J. Taipale T.V. Petrova et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins Nat Immunol 2004 5 74 80 1:CAS:528:DC%2BD3sXhtVWhtrzO 10.1038/ni1013 14634646
M. Shin I. Male T.J. Beane J.A. Villefranc F.O. Kok L.J. Zhu et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors Development 2017 144 531 10.1242/dev.148569 28143848 5341803
C. Mauri A. van Impel E.W. Mackay S. Schulte-Merker The adaptor protein Grb2b is an essential modulator for lympho-venous sprout formation in the zebrafish trunk Angiogenesis 2021 24 345 362 1:CAS:528:DC%2BB3MXht1SmsrzK 10.1007/s10456-021-09774-w 33677657 8205915
D.M. Wiley J.D. Kim J. Hao C.C. Hong V.L. Bautch S.W. Jin Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein Nat Cell Biol 2011 13 686 693 1:CAS:528:DC%2BC3MXmvVars78%3D 10.1038/ncb2232 21572418 3107371
I. Fernow A. Tomasovic A. Siehoff-Icking R. Tikkanen Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases BMC Cell Biol 2009 10 80 1:CAS:528:DC%2BD1MXhsVagtrjO 10.1186/1471-2121-10-80 19891780 2777869
Tomasovic A, Kurrle N, Banning A, Tikkanen R. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion The SoHo protein family. J Mol Bio. 2012;1:171–82.
Veloso A, Martin M, Bruyr J, O’Grady T, Deroanne C, Mottet D, et al. Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion. Cell Death Dis 2019;10. https://doi.org/10.1038/s41419-019-1743-6.
M. Martin I. Geudens J. Bruyr M. Potente A. Bleuart M. Lebrun et al. PP2A regulatory subunit Bα controls endothelial contractility and vessel lumen integrity via regulation of HDAC7 EMBO J 2013 32 2491 2503 1:CAS:528:DC%2BC3sXht1yjs7jM 10.1038/emboj.2013.187 23955003 3770954
Y. Wakayama S. Fukuhara K. Ando M. Matsuda N. Mochizuki Cdc42 mediates Bmp - Induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish Dev Cell 2015 32 109 122 1:CAS:528:DC%2BC2MXnsl2jsQ%3D%3D 10.1016/j.devcel.2014.11.024 25584797
J.R. Levy E.L.F. Holzbaur J.T. Parsons A.R. Horwitz M.A. Schwartz D.R. Larson et al. Cell adhesion: integrating cytoskeletal dynamics and cellular tension Nat Rev Mol Cell Biol 2010 11 633 643 1:CAS:528:DC%2BC3cXhtVGgtLfL 10.1038/nrm2957
Y.I. Wu D. Frey O.I. Lungu A. Jaehrig I. Schlichting B. Kuhlman et al. A genetically encoded photoactivatable Rac controls the motility of living cells Nature 2009 461 104 108 2009Natur.461.104W 1:CAS:528:DC%2BD1MXhtVWhsbfE 10.1038/nature08241 19693014 2766670
C.K. Choi M. Vicente-Manzanares J. Zareno L.A. Whitmore A. Mogilner A.R. Horwitz Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner Nat Cell Biol 2008 10 1039 1050 1:CAS:528:DC%2BD1cXhtVGgtLnK 10.1038/ncb1763 19160484 2827253
R. Zaidel-Bar R. Milo Z. Kam B. Geiger A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions J Cell Sci 2007 120 137 148 1:CAS:528:DC%2BD2sXht1Gmsb4%3D 10.1242/jcs.03314 17164291
K.R. Legate S.A. Wickström R. Fässler Genetic and cell biological analysis of integrin outside-in signaling Genes Dev 2009 23 397 418 1:CAS:528:DC%2BD1MXivF2ntrg%3D 10.1101/gad.1758709 19240129
M. Zhang A. Kimura A.R. Saltiel Cloning and characterization of Cbl-associated protein splicing isoforms Mol Med 2003 9 18 25 1:CAS:528:DC%2BD3sXls1CisL0%3D 10.1007/BF03402103 12765336 1430382
L.A. Lesniewski S.E. Hosch J.G. Neels C. de Luca M. Pashmforoush C.N. Lumeng et al. Bone marrow-specific Cap gene deletion protects against high-fat diet-induced insulin resistance Nat Med 2007 13 455 62 1:CAS:528:DC%2BD2sXjvVaqtbY%3D 10.1038/nm1550 17351624
Q. Zhang X. Gao C. Li C. Feliciano D. Wang D. Zhou et al. Impaired dendritic development and memory in Sorbs2 knock-out mice J Neurosci 2016 36 2247 2260 1:CAS:528:DC%2BC28XpsV2gs7w%3D 10.1523/JNEUROSCI.2528-15.2016 26888934 4756157
Guan H, Cheng WL, Guo J, Chao ML, Zhang Y, Gong J, et al. Vinexin β ablation inhibits atherosclerosis in apolipoprotein E-deficient mice by inactivating the akt-nuclear factor jB inflammatory axis. J Am Heart Assoc 2017;6. https://doi.org/10.1161/JAHA.116.004585.
R. Bharadwaj M. Roy T. Ohyama E. Sivan-Loukianova M. Delannoy T.E. Lloyd et al. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila Development 2013 140 627 638 1:CAS:528:DC%2BC3sXktF2nuro%3D 10.1242/dev.085100 23293294 3561792
Z. Kontarakis A. Rossi S. Ramas M.T. Dellinger D.Y.R. Stainier Mir-126 is a conserved modulator of lymphatic development Dev Biol 2018 437 120 130 1:CAS:528:DC%2BC1cXlvVOhs7c%3D 10.1016/j.ydbio.2018.03.006 29550364
J.D. Kim J. Kim Alk3/Alk3b and Smad5 mediate BMP signaling during lymphatic development in zebrafish Mol Cells 2014 37 270 4 1:CAS:528:DC%2BC2cXhs1GgtLrI 10.14348/molcells.2014.0005 24608800 3969049
Y. Yoshimatsu Y.G. Lee Y. Akatsu L. Taguchi H.I. Suzuki S.I. Cunha et al. Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression Proc Natl Acad Sci U S A 2013 110 18940 18945 2013PNAS.11018940Y 1:CAS:528:DC%2BC3sXhvFCis7nI 10.1073/pnas.1310479110 24133138 3839734
Ponomarev LC, Ksiazkiewicz J, Staring MW, Luttun A, Zwijsen A. The bmp pathway in blood vessel and lymphatic vessel biology. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22126364.
W.P. Dunworth J. Cardona-Costa E.C. Bozkulak J.D. Kim S. Meadows J.C. Fischer et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos Circ Res 2014 114 56 66 1:CAS:528:DC%2BC2cXhs1KlsQ%3D%3D 10.1161/CIRCRESAHA.114.302452 24122719
M. Martin A. Veloso J. Wu E.A. Katrukha A. Akhmanova Control of endothelial cell polarity and sprouting angiogenesis by noncentrosomal microtubules Elife 2018 7 1 37 10.7554/eLife.33864
De Oliveira MB, Meier K, Jung S, Bartels-Klein E, Coxam B, Geudens I, et al. Vasohibin 1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. Development. 2021;148. https://doi.org/10.1242/dev.194993.
A.L. Koenig K. Baltrunaite N.I. Bower A. Rossi D.Y.R. Stainier B.M. Hogan et al. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein Dev Biol 2016 411 115 127 1:CAS:528:DC%2BC28XhtVaqtrc%3D 10.1016/j.ydbio.2016.01.002 26769101 4769896
E. Chen J.D. Larson S.C. Ekker Functional analysis of zebrafish microfibril-associated glycoprotein-1 (Magp1) in vivo reveals roles for microfibrils in vascular development and function Blood 2006 107 4364 4374 1:CAS:528:DC%2BD28Xlt1CgsLY%3D 10.1182/blood-2005-02-0789 16469878 1895789
J.M. Gansner E.C. Madsen R.P. Mecham J.D. Gitlin Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis Dev Dyn 2008 237 2844 61 1:CAS:528:DC%2BD1cXhtlWrtb7J 10.1002/dvdy.21705 18816837 3081706
F. Ramirez D.B. Rifkin Extracellular microfibrils: contextual platforms for TGFβ and BMP signaling Curr Opin Cell Biol 2009 21 616 622 1:CAS:528:DC%2BD1MXhtFyqt7rM 10.1016/j.ceb.2009.05.005 19525102 2767232
N. Morooka S. Futaki R. Sato-Nishiuchi M. Nishino Y. Totani C. Shimono et al. Polydom is an extracellular matrix protein involved in lymphatic vessel remodeling Circ Res 2017 120 1276 1288 1:CAS:528:DC%2BC2sXlvF2qtbw%3D 10.1161/CIRCRESAHA.116.308825 28179430
J. Roignot D. Taïeb M. Suliman N.J. Dusetti J.L. Iovanna P. Soubeyran CIP4 is a new ArgBP2 interacting protein that modulates the ArgBP2 mediated control of WAVE1 phosphorylation and cancer cell migration Cancer Lett 2010 288 116 123 1:CAS:528:DC%2BC3cXnvFynsg%3D%3D 10.1016/j.canlet.2009.06.030 19631450
K.I. Nagata H. Ito I. Iwamoto R. Morishita T. Asano Interaction of a multi-domain adaptor protein, vinexin, with a Rho-effector Rhotekin Med Mol Morphol 2009 42 9 15 1:CAS:528:DC%2BD1MXjt1Kjtro%3D 10.1007/s00795-008-0433-8 19294487
S.K. Mitra D.A. Hanson D.D. Schlaepfer Focal adhesion kinase: In command and control of cell motility Nat Rev Mol Cell Biol 2005 6 56 68 1:CAS:528:DC%2BD2MXlvVWm 10.1038/nrm1549 15688067
W.T. Arthur L.A. Petch K. Burridge Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism Curr Biol 2000 10 719 722 1:CAS:528:DC%2BD3cXkt1Wqt74%3D 10.1016/S0960-9822(00)00537-6 10873807
M. Schober S. Raghavan M. Nikolova L. Polak H.A. Pasolli H.E. Beggs et al. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics J Cell Biol 2007 176 667 680 1:CAS:528:DC%2BD2sXisVymtLc%3D 10.1083/jcb.200608010 17325207 2064024
L.M. Pillay J.J. Yano A.E. Davis M.G. Butler M.O. Ezeude J.S. Park et al. In vivo dissection of Rhoa function in vascular development using zebrafish Angiogenesis 2022 25 411 434 1:CAS:528:DC%2BB38XhtlWntLnK 10.1007/s10456-022-09834-9 35320450
P. Aleström L. D’Angelo P.J. Midtlyng D.F. Schorderet S. Schulte-Merker F. Sohm et al. Zebrafish: housing and husbandry recommendations Lab Anim 2020 54 213 224 1:CAS:528:DC%2BB3cXhtF2qt77O 10.1177/0023677219869037 31510859
N.D. Lawson B.M. Weinstein In vivo imaging of embryonic vascular development using transgenic zebrafish Dev Biol 2002 248 307 318 1:CAS:528:DC%2BD38XlvFSqtLw%3D 10.1006/dbio.2002.0711 12167406
A.T. Garnett T.A. Square D.M. Medeiros BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border Development 2012 139 4220 4231 1:CAS:528:DC%2BC38XhvVKltrbK 10.1242/dev.081497 23034628 4074300
A. van Impel Z. Zhao D.M.A. Hermkens M.G. Roukens J.C. Fischer J. Peterson-Maduro et al. Divergence of zebrafish and mouse lymphatic cell fate specification pathways Development 2014 141 1228 1238 1:CAS:528:DC%2BC2cXntVehsr8%3D 10.1242/dev.105031 24523456 3943180
L.-E. Jao S.R. Wente W. Chen Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system Proc Natl Acad Sci U S A 2013 110 13904 13909 2013PNAS.11013904J 10.1073/pnas.1308335110 23918387 3752207