Actinobacteria; Aggregate-associated organic carbon; Arbuscular mycorrhizal fungi; Desulfovibrio; Nitrogen; No-tillage; Aggregate formation; Aggregate stability; Conventional tillage; Nitrogen application rates; No tillage; Soil organic carbon; Environmental Engineering; Environmental Chemistry; Renewable Energy, Sustainability and the Environment; Industrial and Manufacturing Engineering
Abstract :
[en] The stability of aggregates plays a significant role in soil organic carbon (SOC) sequestration in conservation agriculture soils. However, the regulation of microorganisms within aggregates on aggregate stability and SOC sequestration remains elusive. By dividing the soil into three aggregate size classes [mega-aggregates (>2000 μm), macro-aggregates (250–2000 μm), and micro-aggregates (<250 μm)], we evaluated the response of aggregate stability, SOC and microbial communities within aggregates to long-term conservation tillage, which consisted of two tillage methods (conventional tillage and no-tillage) and three nitrogen application rates (105, 180, and 210 kg N ha−1). Under no-tillage treatment, high nitrogen application rate increased SOC by 2.1–3.7 g·kg−1 within mega- and macro-aggregates but reduced the total amount of phospholipid fatty acids (PLFAs) within all aggregates. Under conventional tillage, high N application rate increased mean weight diameter (MWD) and reduced total PLFAs within all aggregates only in 0–10 cm. With the same nitrogen application rate, no-tillage increased MWD by 8.7 %–42.7 %, SOC content within mega-aggregates by 7.3 %–27.8 % and within macro-aggregates by 13.2 %–28.3 % when compared with conventional tillage. Actinobacteria were recruited by straw under no-tillage and their biomass increased 1.5–7.8 times in all aggregates compared with conventional tillage, where they might participate in aggregate formation via degradation of straw and increasing SOC within mega- and macro-aggregates. Conversely, desulfovibrio biomass within all aggregates was diminished under no-tillage compared with conventional tillage, while desulfovibrio possibly directly inhibited soil aggregate formation and decreased SOC within mega- and macro-aggregates under conventional tillage. Moreover, under no-tillage, arbuscular mycorrhizal fungi biomass increased by 0.4–1.6 nmol g−1 within all aggregates compared with conventional tillage in 0–10 cm, potentially indirectly contributing to soil aggregate formation via co-metabolic processes and increasing SOC within mega- and macro-aggregates. Overall, high nitrogen application under long-term no-tillage protects SOC within mega-aggregates by altering aggregate formation through the microbial communities, providing information that may be useful in developing management strategies to enhance carbon sequestration in agricultural soils.
Research Center/Unit :
TERRA Research Centre. Echanges Eau - Sol - Plantes - ULiège
Disciplines :
Agriculture & agronomy
Author, co-author :
Zhang, Mengni ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, China
Song, Xiaojun; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, China
Wu, Xueping; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, China
Zheng, Fengjun; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, China
Li, Shengping; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning), Chinese Academy of Agricultural Sciences, Beijing, China
Zhuang, Yan; Department of Research Management of Chinese Academy of Agricultural Sciences, Beijing, China
Man, Xvlun; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Degré, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Language :
English
Title :
Microbial regulation of aggregate stability and carbon sequestration under long-term conservation tillage and nitrogen application
This work was financially supported by the National Key Research and Development Program of China ( 2023YFD1500301 ) and the Agricultural Science and Technology Innovation Program (ASTIP No. CAAS-ZDRW202202 ).
Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S., Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agr Ecosyst Environ 168 (2013), 25–36, 10.1016/j.agee.2013.02.003.
Alvarez, R., Alvarez, R., A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. 21 (2005), 38–52, 10.1079/sum2005291.
Amézketa, E., Soil aggregate stability: a review. J. Sustain. Agric. 14 (1999), 83–151 (doi:10/bpgk99).
Ayiti, O.E., Ayangbenro, A.S., Babalola, O.O., Relationship between nitrifying microorganisms and other microorganisms residing in the maize rhizosphere. Arch. Microbiol., 204, 2022, 246, 10.1007/s00203-022-02857-2.
Bach, E.M., Soil Aggregate Distribution and Turnover Affects Soil Microbial Ecology and Ecosystem Processes in Three Bioenergy Systems. (Doctoral dissertation), 2014, Iowa State University, Digital Repository, Ames, 10.31274/etd-180810-3661.
Barbosa, M.V., Pedroso, D. de F., Curi, N., Carneiro, M.A.C., Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates?. Cienc. Agrotecnol., 43, 2019, e003519, 10.1590/1413-7054201943003519.
Baumert, V.L., Vasilyeva, N.A., Vladimirov, A.A., Meier, I.C., Kögel-Knabner, I., Mueller, C.W., Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Front. Environ. Sci., 6, 2018, 140, 10.3389/fenvs.2018.00140.
Bhatti, A.A., Haq, S., Bhat, R.A., Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111 (2017), 458–467, 10.1016/j.micpath.2017.09.036.
Börjesson, G., Sundh, I., Tunlid, A., Svensson, B.H., Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol. Biochem. 30 (1998), 1423–1433, 10.1016/S0038-0717(97)00257-5.
Bossio, D.A., Fleck, J.A., Scow, K.M., Fujii, R., Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38 (2006), 1223–1233, 10.1016/j.soilbio.2005.09.027.
Chaplot, V., Cooper, M., Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 243–244 (2015), 205–213 (doi:10/f649b2).
Chappell, A., Baldock, J., Sanderman, J., The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Chang. 6 (2016), 187–191, 10.1038/nclimate2829.
Chowaniak, M., Głąb, T., Klima, K., Niemiec, M., Zaleski, T., Zuzek, D., Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Manage. 36 (2020), 581–593, 10.1111/sum.12606.
Chowdhury, T.R., Dick, R.P., Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities. J. Microbiol. Methods 88 (2012), 285–291, 10.1016/j.mimet.2011.12.008.
Cui, H., Sun, W., Delgado-Baquerizo, M., Song, W., Ma, J.-Y., Wang, K., Ling, X., The effects of mowing and multi-level N fertilization on soil bacterial and fungal communities in a semiarid grassland are year-dependent. Soil Biol. Biochem., 151, 2020, 108040 (doi:10/gmmxx7).
Dai, J., Hu, J., Zhu, A., Bai, J., Wang, J., Lin, X., No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbon accumulation in soil macroaggregates. J. Soil. Sediment. 15 (2015), 1055–1062, 10.1007/s11368-015-1091-9.
de Moraes, M.T., Debiasi, H., Franchini, J.C., Mastroberti, A.A., Levien, R., Leitner, D., Schnepf, A., Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res., 200, 2020, 104611, 10.1016/j.still.2020.104611.
del Mar Alguacil, M., Caravaca, F., Díaz, G., Marín, P., Roldán, A., Establishment of Retama sphaerocarpa L. seedlings on a degraded semiarid soil as influenced by mycorrhizal inoculation and sewage-sludge amendment. Z. Pflanzenernähr. Bodenkd. 167 (2004), 637–644, 10.1002/jpln.200421422.
Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V., Svistoonoff, S., Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 12, 2020, 370, 10.3390/d12100370.
Du, Z., Ren, T., Hu, C., Zhang, Q., Blanco-Canqui, H., Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain. J. Integr. Agric. 12 (2013), 2114–2123, 10.1016/S2095-3119(13)60428-1.
Effmert, U., Kalderás, J., Warnke, R., Piechulla, B., Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38 (2012), 665–703, 10.1007/s10886-012-0135-5.
FAO, Conservation Agriculture in Central Asia: Status, Policy, Institutional Support, and Strategic Framework for its Promotion. 2012 (57 pp).
Forster, S.M., The role of microorganisms in aggregate formation and soil stabilization: types of aggregation. Arid Soil Res. Rehabil. 4 (1990), 85–98, 10.1080/15324989009381236.
Frostegård, A., Bååth, E., The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22 (1996), 59–65, 10.1007/s003740050076.
Frostegård, Å., Tunlid, A., Bååth, E., Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43 (2011), 1621–1625 (doi:10/c2wcd8).
Fu, Y., Luo, Y., Tang, C., Li, Y., Guggenberger, G., Xu, J., Succession of the soil bacterial community as resource utilization shifts from plant residues to rhizodeposits. Soil Biol. Biochem., 173, 2022, 108785, 10.1016/j.soilbio.2022.108785.
Greene, E.A., Hubert, C., Nemati, M., Jenneman, G.E., Voordouw, G., Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ. Microbiol. 5 (2003), 607–617, 10.1046/j.1462-2920.2003.00446.x.
Guhra, T., Ritschel, T., Totsche, K.U., Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances. Eur. J. Soil Sci. 70 (2019), 604–615, 10.1111/ejss.12774.
Guo, L.-J., Zhang, Z.-S., Wang, D.-D., Li, C.-F., Cao, C.-G., Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system. Biol. Fertil. Soils 51 (2015), 65–75 (doi:10/f6t8bg).
Guo, J., Wang, Y., Blaylock, A.D., Chen, X., Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg ha −1 ) maize. Field Crop Res 204 (2017), 23–30, 10.1016/j.fcr.2016.12.021.
Gupta, V.V.S.R., Germida, J.J., Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol. Biochem. 80 (2015), A3–A9 (doi:10/f6s7ps).
Hati, K.M., Jha, P., Dalal, R.C., Jayaraman, S., Dang, Y.P., Kopittke, P.M., Kirchhof, G., Menzies, N.W., 50 years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a vertisol. Soil Tillage Res., 214, 2021, 105163, 10.1016/j.still.2021.105163.
Helgason, B.L., Walley, F.L., Germida, J.J., No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46 (2010), 390–397 (doi:10/fsq6m2).
IUSS Working Group WRB, World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 2014, FAO, Rome.
Jeewani, P.H., Luo, Y., Yu, G., Fu, Y., He, X., Van Zwieten, L., Liang, C., Kumar, A., He, Y., Kuzyakov, Y., Qin, H., Guggenberger, G., Xu, J., Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biol. Biochem., 162, 2021, 108417, 10.1016/j.soilbio.2021.108417.
Jha, P., Hati, K.M., Dalal, R.C., Dang, Y.P., Kopittke, P.M., Menzies, N.W., Soil carbon and nitrogen dynamics in a vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization. Geoderma, 358, 2020, 113996 (doi:10/gnnx53).
Ji, B., Zhao, Y., Mu, X., Liu, K., Li, C., Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ. 59 (2013), 295–302, 10.17221/57/2013-PSE.
Ji, L., Tan, W., Chen, X., Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil Tillage Res. 185 (2019), 1–8, 10.1016/j.still.2018.08.010.
Jia, S., Liang, A., Zhang, S., Chen, X., McLaughlin, N.B., Sun, B., Zhang, X., Wu, D., Effect of tillage system on soil CO2 flux, soil microbial community and maize (Zea mays L.) yield. Geoderma, 384, 2021, 114813, 10.1016/j.geoderma.2020.114813.
Jiang, W., Xing, Y., Wang, X., Liu, X., Cui, Z., Developing a sustainable management strategy for quantitative estimation of optimum nitrogen fertilizer recommendation rates for maize in Northeast China. Sustainability, 12, 2020, 2607, 10.3390/su12072607.
Jin, L., Cui, H., Li, B., Zhang, J., Dong, S., Liu, P., Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crop Res 134 (2012), 30–35, 10.1016/j.fcr.2012.04.008.
Kan, Z., Liu, Wen-Xuan, Liu, Wen-Sheng, Lal, R., Dang, Y.P., Zhao, X., Zhang, H., Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Glob. Chang. Biol. 28 (2021), 693–710 gcb.15968 (doi:10/gnnwrq).
Khan, S.A., Mulvaney, R.L., Ellsworth, T.R., Boast, C.W., The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 36 (2007), 1821–1832 (doi:10/dpb4zt).
Kokkoris, V., Lekberg, Y., Antunes, P.M., Fahey, C., Fordyce, J.A., Kivlin, S.N., Hart, M.M., Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence?. New Phytol. 228 (2020), 828–838, 10.1111/nph.16676.
Korenblum, Elisa, Massalha, Hassan, Aharoni, Asaph, Plant-microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 34 (2022), 3168–3182, 10.1093/plcell/koac163.
Kumar, A., Naresh, R.K., Singh, S., Mahajan, N.C., Singh, O., Soil aggregation and organic carbon fractions and indices in conventional and conservation agriculture under vertisol soils of sub-tropical ecosystems: a review. Int. J. Curr. Microbiol. App. Sci. 8 (2019), 2236–2253, 10.20546/ijcmas.2019.810.260.
Leghari, N., Mughal, A.Q., Leghari, K.Q., Farhad, W., Mirjat, M.S., Hammad, H.M., Effect of Various Tillage Practices on Soil Properties and Maize Growth. 2016.
Lehmann, A., Leifheit, E.F., Rillig, M.C., Mycorrhizas and soil aggregation. Mycorrhizal Mediation of Soil, 2017, Elsevier, 241–262, 10.1016/B978-0-12-804312-7.00014-0.
Lehmann, Anika, Zheng, W., Rillig, M.C., Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1 (2017), 1828–1835, 10.1038/s41559-017-0344-y.
Leifheit, E.F., Veresoglou, S.D., Lehmann, A., Morris, E.K., Rillig, M.C., Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374 (2014), 523–537, 10.1007/s11104-013-1899-2.
Li, N., Xu, Y.-Z., Han, X.-Z., He, H.-B., Zhang, X., Zhang, B., Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Eur. J. Soil Biol. 67 (2015), 51–58, 10.1016/j.ejsobi.2015.02.002.
Li, N., Yao, S.-H., Qiao, Y.-F., Zou, W.-X., You, M.-Y., Han, X.-Z., Zhang, B., Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol. Appl. Soil Ecol. 88 (2015), 9–20 (doi:10/f6xdf5).
Li, F., Qiu, P., Shen, B., Shen, Q., Soil aggregate size modifies the impacts of fertilization on microbial communities. Geoderma 343 (2019), 205–214 (doi:10/gnnwrd).
Li, Y., Song, D., Liang, S., Dang, P., Qin, X., Liao, Y., Siddique, K.H.M., Effect of no-tillage on soil bacterial and fungal community diversity: a meta-analysis. Soil Tillage Res., 204, 2020, 104721 (doi:10/gnn3gj).
Li, S., Lu, J., Liang, G., Wu, X., Zhang, M., Plougonven, E., Wang, Y., Gao, L., Abdelrhman, A.A., Song, X., Liu, X., Degré, A., Factors governing soil water repellency under tillage management: the role of pore structure and hydrophobic substances. Land Degrad. Dev. 32 (2021), 1046–1059, 10.1002/ldr.3779.
Li, P., Ying, D., Li, J., Deng, J., Li, C., Tian, S., Zhao, G., Wu, C., Jiao, J., Jiang, M., Hu, F., Global-scale no-tillage impacts on soil aggregates and associated carbon and nitrogen concentrations in croplands: a meta-analysis. Sci. Total Environ., 881, 2023, 163570, 10.1016/j.scitotenv.2023.163570.
Lian, T., Yu, Z., Liu, J., Li, Y., Wang, G., Liu, X., Herbert, S.J., Wu, J., Jin, J., Rhizobacterial community structure in response to nitrogen addition varied between two Mollisols differing in soil organic carbon. Sci. Rep., 8, 2018, 12280 (doi:10/gnnx7w).
Lin, M., Impacts of nitrogen fertilization and conservation tillage on the agricultural soils of the United States: a review. El-Esawi, M., (eds.) Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement, 2018, InTech, 10.5772/intechopen.70550.
Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., Ding, W., Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134 (2019), 187–196 (doi:10/gnnzjg).
Liu, L., Greaver, T.L., A global perspective on belowground carbon dynamics under nitrogen enrichment: belowground C dynamics under N enrichment. Ecol. Lett. 13 (2010), 819–828, 10.1111/j.1461-0248.2010.01482.x.
Liu, J., Li, S., Yue, S., Tian, J., Chen, H., Jiang, H., Siddique, K.H.M., Zhan, A., Fang, Q., Yu, Q., Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma, 396, 2021, 115086, 10.1016/j.geoderma.2021.115086.
Liu, X., Wu, X., Liang, G., Zheng, F., Zhang, M., Li, S., A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degrad. Dev. 32 (2021), 5292–5305, 10.1002/ldr.4109.
Lu, Y., Liu, X., Chen, F., Zhou, S., Shifts in plant community composition weaken the negative effect of nitrogen addition on community-level arbuscular mycorrhizal fungi colonization. Proc. R. Soc. B, 287, 2020, 20200483, 10.1098/rspb.2020.0483.
Lu, X., Hou, E., Guo, J., Gilliam, F.S., Li, J., Tang, S., Kuang, Y., Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta-analysis. Glob. Chang. Biol. 27 (2021), 2780–2792 (doi:10/gjh66b).
Lu, Y., Liu, X., Zhou, S., Nitrogen addition altered the plant-arbuscular mycorrhizal fungi network through reducing redundant interactions in an alpine meadow. Soil Biol. Biochem., 171, 2022, 108727, 10.1016/j.soilbio.2022.108727.
McConkey, B.G., Curtin, D., Campbell, C.A., Brandt, S.A., Selles, F., Crop and soil nitrogen status of tilled and no-tillage systems in semiarid regions of Saskatchewan. Can. J. Soil Sci. 82 (2002), 489–498, 10.4141/S01-036.
Mello Ivo, W.M.P., Mielniczuk, J., Influência da estrutura do solo na distribuição e na morfologia do sistema radicular do milho sob três métodos de preparo. Rev. Bras. Ciênc. Solo 23 (1999), 135–143, 10.1590/S0100-06831999000100017.
Mitra, D., Mondal, R., Khoshru, B., Senapati, A., Radha, T.K., Mahakur, B., Uniyal, N., Myo, E.M., Boutaj, H., Sierra, B.E.G., Panneerselvam, P., Ganeshamurthy, A.N., Elković, S.A., Vasić, T., Rani, A., Dutta, S., Mohapatra, P.K.D., Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: advances in soil, plant, and microbial multifactorial interactions. Pedosphere 32 (2022), 149–170, 10.1016/S1002-0160(21)60042-5.
Moll, J., Hoppe, B., König, S., Wubet, T., Buscot, F., Krüger, D., Spatial distribution of fungal communities in an arable soil. PloS One, 11, 2016, e0148130, 10.1371/journal.pone.0148130.
Moore-Kucera, J., Dick, R.P., PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir Chronosequence. Microb. Ecol. 55 (2008), 500–511 (doi:10/d5tdv7).
Navas, M., Martín-Lammerding, D., Hontoria, C., Ulcuango, K., Mariscal-Sancho, I., The distinct responses of bacteria and fungi in different-sized soil aggregates under different management practices. Eur. J. Soil Sci. 72 (2021), 1177–1189 (doi:10/gnnwrp).
Nie, M., Pendall, E., Bell, C., Wallenstein, M.D., Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol. Biochem. 68 (2014), 357–365 (doi:10/f5phj6).
Parihar, M., Rakshit, A., Meena, V.S., Gupta, V.K., Rana, K., Choudhary, M., Tiwari, G., Mishra, P.K., Pattanayak, A., Bisht, J.K., Jatav, S.S., Khati, P., Jatav, H.S., The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202 (2020), 1581–1596, 10.1007/s00203-020-01915-x.
Philippot, L., Chenu, C., Kappler, A., Rillig, M.C., Fierer, N., The interplay between microbial communities and soil properties. Nat. Rev. Microbiol., 2023, 10.1038/s41579-023-00980-5.
Piazza, G., Pellegrino, E., Moscatelli, M.C., Ercoli, L., Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil Tillage Res., 196, 2020, 104482 (doi:10/gmxjh4).
Poirier, V., Angers, D.A., Rochette, P., Chantigny, M.H., Ziadi, N., Tremblay, G., Fortin, J., Interactive effects of tillage and mineral fertilization on soil carbon profiles. Soil Sci. Soc. Am. J. 73 (2009), 255–261 (doi:10/b8wqfw).
Ramirez, K.S., Lauber, C.L., Knight, R., Bradford, M.A., Fierer, N., Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91 (2010), 3463–3470, 10.1890/10-0426.1.
Ren, C., Liu, K., Dou, P., Shao, X., Zhang, D., Wang, Kaili, Liu, X., Li, J., Wang, Kun, Soil nutrients drive microbial changes to alter surface soil aggregate stability in typical grasslands. J. Soil Sci. Plant Nutr. 22 (2022), 4943–4959, 10.1007/s42729-022-00972-z.
Rodrigues, K.M., Rodrigues, B.F., Chapter 12 - arbuscular mycorrhizae: natural ecological engineers for agro-ecosystem sustainability. Singh, J.S., Singh, D.P., (eds.) New and Future Developments in Microbial Biotechnology and Bioengineering, 2019, Elsevier, 165–175, 10.1016/B978-0-444-64191-5.00012-2.
Samson, M.-É., Chantigny, M.H., Vanasse, A., Menasseri-Aubry, S., Angers, D.A., Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs. Soil Biol. Biochem., 149, 2020, 107935, 10.1016/j.soilbio.2020.107935.
Sauvadet, M., Lashermes, G., Alavoine, G., Recous, S., Chauvat, M., Maron, P.-A., Bertrand, I., High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol. Biochem. 123 (2018), 64–73, 10.1016/j.soilbio.2018.04.026.
Schaeffer, A., Nannipieri, P., Kästner, M., Schmidt, B., Botterweck, J., From humic substances to soil organic matter–microbial contributions. In honour of Konrad Haider and James P. Martin for their outstanding research contribution to soil science. J. Soil. Sediment. 15 (2015), 1865–1881, 10.1007/s11368-015-1177-4.
Sithole, N.J., Magwaza, L.S., Thibaud, G.R., Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 190 (2019), 147–156 (doi:10/ghdmb3).
Six, J., Paustian, K., Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 68 (2014), A4–A9, 10.1016/j.soilbio.2013.06.014.
Six, J., Elliott, E.T., Paustian, K., Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32 (2000), 2099–2103 (doi:10/fcpwfb).
Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70 (2006), 555–569 (doi:10/cmk9q2).
Sollins, P., Homann, P., Caldwell, B.A., Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls. 74, 1996, 65–105.
Song, X., Li, J., Liu, X., Liang, G., Li, S., Zhang, M., Zheng, F., Wang, B., Wu, X., Wu, H., Altered microbial resource limitation regulates soil organic carbon sequestration based on ecoenzyme stoichiometry under long-term tillage systems. Land Degrad. Dev. 33 (2022), 2795–2808, 10.1002/ldr.4318.
Sosa-Hernández, M.A., Roy, J., Hempel, S., Kautz, T., Köpke, U., Uksa, M., Schloter, M., Caruso, T., Rillig, M.C., Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biol. Biochem. 117 (2018), 83–86, 10.1016/j.soilbio.2017.11.009.
Stewart, C.E., Roosendaal, D.L., Manter, D.K., Delgado, J.A., Del Grosso, S., Interactions of stover and nitrogen management on soil microbial community and labile carbon under irrigated no-till corn. Soil Sci. Soc. Am. J. 82 (2018), 323–331 (doi:10/gdfndd).
Su, Y., He, Z., Yang, Y., Jia, S., Yu, M., Chen, X., Shen, A., Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Sci. Rep., 10, 2020, 5526 (doi:10/gnn4t8).
Thierfelder, C., Baudron, F., Setimela, P., Nyagumbo, I., Mupangwa, W., Mhlanga, B., Lee, N., Gérard, B., Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev., 38, 2018, 16 (doi:10/gdfqdw).
Tisdall, J.M., Oades, J.M., Organic matter and water-stable aggregates in soils. J. Soil Sci. 33 (1982), 141–163 (doi:10/fg8vgf).
Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I., Microaggregates in soils. J. Plant Nutr. Soil Sci. 181 (2018), 104–136, 10.1002/jpln.201600451.
Trivedi, P., Rochester, I.J., Trivedi, C., Van Nostrand, J.D., Zhou, J., Karunaratne, S., Anderson, I.C., Singh, B.K., Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol. Biochem. 91 (2015), 169–181 (doi:10/f7xx75).
Tshuma, F., Rayns, F., Labuschagne, J., Bennett, J., Swanepoel, P.A., Effects of long-term (42 years) tillage sequence on soil chemical characteristics in a dryland farming system. Soil Tillage Res., 212, 2021, 105064, 10.1016/j.still.2021.105064.
Vilela, L.A.F., Molecular and cellular changes of arbuscular mycorrhizal fungi-plant interaction in cadmium contamination. Handbook of Bioremediation, 2021, Elsevier, 277–283, 10.1016/B978-0-12-819382-2.00017-X.
Vilela, L.A.F., Damásio, M.M., Chapter 41 - molecular and cellular changes of arbuscular mycorrhizal fungi-plant interaction in pesticide contamination. Hasanuzzaman, M., Prasad, M.N.V., (eds.) Handbook of Bioremediation, 2021, Academic Press, 649–656, 10.1016/B978-0-12-819382-2.00041-7.
Voordouw, G., The genus desulfovibrio: the centennial. Appl. Environ. Microbiol. 61 (1995), 2813–2819 (doi:10/gnwvnt).
Wang, X., Cai, D., Zhang, J., Gao, X., Nitrogen Untake by corn and N recovery in grain in dry farmland. Sci. Agric. Sin. 34 (2001), 179–185.
Wang, R., Dorodnikov, M., Dijkstra, F.A., Yang, S., Xu, Z., Li, H., Jiang, Y., Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland. Biol. Fertil. Soils 53 (2017), 129–140 (doi:10/f9j8k8).
Wang, Y., Li, C., Tu, C., Hoyt, G.D., DeForest, J.L., Hu, S., Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 609 (2017), 341–347, 10.1016/j.scitotenv.2017.07.053.
Wang, Chao, Liu, D., Bai, E., Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120 (2018), 126–133 (doi:10/gdgtjk).
Wang, Cong, Lu, X., Mori, T., Mao, Q., Zhou, K., Zhou, G., Nie, Y., Mo, J., Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121 (2018), 103–112 (doi:10/gdnwmw).
Wang, Y., Wang, Z.-L., Zhang, Q., Hu, N., Li, Z., Lou, Y., Li, Y., Xue, D., Chen, Y., Wu, C., Zou, C.B., Kuzyakov, Y., Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci. Total Environ. 624 (2018), 1131–1139, 10.1016/j.scitotenv.2017.12.113.
Wang, J.-J., Bowden, R.D., Lajtha, K., Washko, S.E., Wurzbacher, S.J., Simpson, M.J., Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry 142 (2019), 299–313 (doi:10/gj5rjm).
Wang, B., Gao, L., Yu, W., Wei, X., Li, J., Li, S., Song, X., Liang, G., Cai, D., Wu, X., Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. J. Arid. Land 11 (2019), 241–254, 10.1007/s40333-019-0094-6.
Wang, Q., Ma, M., Jiang, X., Guan, D., Wei, D., Zhao, B., Chen, S., Cao, F., Li, L., Yang, X., Li, J., Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in Northeast China. Appl. Soil Ecol. 136 (2019), 148–157 (doi:10/ghmmzp).
Weng, Z., Van Zwieten, L., Tavakkoli, E., Rose, M.T., Singh, B.P., Joseph, S., Macdonald, L.M., Kimber, S., Morris, S., Rose, T.J., Archanjo, B.S., Tang, C., Franks, A.E., Diao, H., Schweizer, S., Tobin, M.J., Klein, A.R., Vongsvivut, J., Chang, S.L.Y., Kopittke, P.M., Cowie, A., Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat. Commun., 13, 2022, 5177, 10.1038/s41467-022-32819-7.
Xue, Z., Zhou, Z., An, S., Changes in the soil microbial communities of different soil aggregations after vegetation restoration in a semiarid grassland, China. Soil Ecol. Lett. 3 (2021), 6–21 (doi:10/gnnwrm).
Yang, C., Liu, N., Zhang, Y., Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337 (2019), 444–452, 10.1016/j.geoderma.2018.10.002.
Yang, Y., Xie, H., Mao, Z., Bao, X., He, H., Zhang, X., Liang, C., Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands. Soil Biol. Biochem., 167, 2022, 108587, 10.1016/j.soilbio.2022.108587.
Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., Wu, F., Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci. Rep., 6, 2016, 19895 (doi:10/gjpkgt).
Zelles, L., Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29 (1999), 111–129 (doi:10/ddrmjn).
Zhang, B., He, H., Ding, X., Zhang, Xudong, Zhang, Xiaoping, Yang, X., Filley, T.R., Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem. Soil Tillage Res. 124 (2012), 153–160 (doi:10/f39sx3).
Zhang, B., Li, Y., Ren, T., Tian, Z., Wang, G., He, X., Tian, C., Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol. Fertil. Soils 50 (2014), 1077–1085, 10.1007/s00374-014-0929-4.
Zhang, T., Chen, H.Y.H., Ruan, H., Global negative effects of nitrogen deposition on soil microbes. ISME J. 12 (2018), 1817–1825 (doi:10/gdb9mw).
Zhang, Y., Dalal, R.C., Bhattacharyya, R., Meyer, G., Wang, P., Menzies, N.W., Kopittke, P.M., Effect of long-term no-tillage and nitrogen fertilization on phosphorus distribution in bulk soil and aggregates of a vertisol. Soil Tillage Res., 205, 2021, 104760, 10.1016/j.still.2020.104760.
Zhang, M., Li, S., Wu, X., Zheng, F., Song, X., Lu, J., Liu, X., Wang, B., Abdelrhmana, A.A., Degré, A., Nitrogen addition mediates the effect of soil microbial diversity on microbial carbon use efficiency under long-term tillage practices. Land Degrad. Dev. 33 (2022), 2258–2275, 10.1002/ldr.4279.
Zhang, W., Munkholm, L.J., Liu, X., An, T., Xu, Y., Ge, Z., Xie, N., Li, A., Dong, Y., Peng, C., Li, S., Wang, J., Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: evidence from one-year field experiment. Geoderma, 430, 2023, 116324, 10.1016/j.geoderma.2023.116324.
Zheng, W., Zhao, Z., Gong, Q., Zhai, B., Li, Z., Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol. Biochem. 125 (2018), 54–63 (doi:10/gd99jp).