Abdu, H., Robinson, D.A., Jones, S.B., Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments. Soil Sci. Soc. Am. J. 71 (2007), 189–196, 10.2136/sssaj2005.0394.
Altdorff, D., Bechtold, M., van der Kruk, J., Vereecken, H., Huisman, J., Mapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data. Geoderma 261 (2016), 178–189, 10.1016/j.geoderma.2015.07.015.
Andersen, R., Rochefort, L., Landry, J., La chimie des tourbières du Québec: une synthèse de 30 années de données. Le naturaliste canadien 135 (2011), 5–14.
Archie, G., The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146 (1942), 54–62, 10.2118/942054-G.
Asadi, A., Huat, B.B.K., Electrical Resistivity of Tropical Peat. 2009, Electron. J. Geotech, Eng, 14.
Bah, B., Veron, P., Bracke, C., Lejeune, P., Rondeux, J., Mokadem, A., Bock, L., The Digital Soil Map of Wallonia (DSMW/CNSW), Coruna, Spain. 2005.
Banwart, S.A., Chorover, J., Gaillardet, J., Sparks, D., White, T., Anderson, S., Aufdendkampe, A., Bernasconi, S., Brantley, S.L., Chadwick, O., Dietrich, W., Duffy, C., Goldhaber, M.B., Lehnert, K., Nikolaidis, N.P., Ragnarsdottir, K.V., Sustaining Earth's Critical Zone Basic Science and Interdisciplinary Solutions for Global Challenges. 2013, University of Sheffield, United Kingdom.
Beucher, A., Koganti, T., Iversen, B.V., Greve, M.H., Mapping of peat thickness using a multi-receiver electromagnetic induction instrument. Remote Sens., 12, 2020, 2458, 10.3390/rs12152458.
Beven, K.J., Kirkby, M.J., A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. Bull. 24 (1979), 43–69, 10.1080/02626667909491834.
Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D., The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 51 (2015), 3837–3866, 10.1002/2015WR017016.
Blanchy, G., McLachlan, P., Mary, B., Censini, M., Boaga, J., Cassiani, G., Comparison of multi-coil and multi-frequency frequency domain electromagnetic induction instruments. Front. Soil Sci., 4, 2024, 10.3389/fsoil.2024.1239497 1239497. URL: https://www.frontiersin.org/articles/10.3389/fsoil.2024.1239497/full.
Callegary, J.B., Ferŕe, T.P.A., Groom, R.W., Three-dimensional sensitivity distribution and sample volume of low-induction-number electromagnetic-induction instruments. Soil Sci. Soc. Am. J. 76 (2012), 85–91, 10.2136/sssaj2011.0003.
Comas, X., Slater, L., Low-frequency electrical properties of peat. Water Resour. Res., 40, 2004, 10.1029/2004WR003534.
Comas, X., Slater, L., Reeve, A., Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. J. Hydrol. 295 (2004), 173–184, 10.1016/j.jhydrol.2004.03.008.
Demoulin, A., Hallot, E., Shape and amount of the quaternary uplift of the western Rhenish shield and the Ardennes (western Europe). Tectonophysics 474 (2009), 696–708, 10.1016/j.tecto.2009.05.015.
Demoulin, A., Juvigńe, E., Houbrechts, G., The periglacial ramparted depressions of the Hautes Fagnes plateau: Traces of late Weichselian lithalsas. Landscapes and Landforms of Belgium and Luxembourg, 2018, Springer, 101–113.
Doolittle, J.A., Using ground-penetrating radar to increase the quality and efficiency of soil surveys. Soil Survey Techniques. Soil Sci. Soc. Am. J., 1987, 11–32.
Doolittle, J.A., Brevik, E.C., The use of electromagnetic induction techniques in soils studies. Geoderma 223-225 (2014), 33–45, 10.1016/j.geoderma.2014.01.027.
Doolittle, J.A., Butnor, J.R., Soils, peatlands, and biomonitoring. Ground Penetrating Radar Theory and Applications, 2009, Elsevier, 177–202.
Doussan, C., Ruy, S., Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resour. Res., 45, 2009, 10.1029/2008WR007309.
Ekwue, E., Bartholomew, J., Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosyst. Eng. 108 (2011), 95–103, 10.1016/j.biosystemseng.2010.11.002.
Fan, B., Liu, X., Zhu, Q., Qin, G., Li, J., Lin, H., Guo, L., Exploring the interplay between infiltration dynamics and critical zone structures with multiscale geophysical imaging: a review. Geoderma, 374, 2020, 10.1016/j.geoderma.2020.114431.
Frank, S., Tiemeyer, B., Bechtold, M., Lücke, A., Bol, R., Effect of past peat cultivation practices on present dynamics of dissolved organic carbon. Sci. Totakl Environ. 574 (2017), 1243–1253, 10.1016/j.scitotenv.2016.07.121.
Frankard, P., Bilan de 12 années de gestion conservatoire des tourbières hautes dans la réserve naturelle domaniale des Hautes-Fagnes (Est de la Belgique). Géocarrefour 79 (2004), 269–276, 10.4000/geocarrefour.795.
Gaillardet, J., et al. OZCAR: the French network of critical zone Observatories. Vadose Zone J., 17, 2018, 10.2136/vzj2018.04.0067.
Hilhorst, M.A., A pore water conductivity sensor. Soil Sci. Soc. Am. J. 64 (2000), 1922–1925, 10.2136/sssaj2000.6461922x.
Holden, J., Chapman, P.J., Labadz, J.C., Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. Earth Environ. 28 (2004), 95–123, 10.1191/0309133304pp403ra.
Inman, D.J., Freeland, R.S., Ammons, J.T., Yoder, R.E., Soil investigations using electromagnetic induction and ground-penetrating radar in Southwest Tennessee. Soil Sci. Soc. Am. J. 66 (2002), 206–211, 10.2136/sssaj2002.2060.
Jaquemart, A.L., Angenot, A., Un écosystème original, la tourbière. Le cas des tourbières acides en Belgique. Probio-revue, 4, 2004.
Kettridge, N., Comas, X., Baird, A., Slater, L., Strack, M., Thompson, D., Jol, H., Binley, A., Ecohydrologically important subsurface structures in peatlands revealed by ground-penetrating radar and complex conductivity surveys. J. Geophys. Res. Biogeosci., 113, 2008, 10.1029/2008JG000787.
Kløve, B., Berglund, K., Berglund, O., Weldon, S., Maljanen, M., Future options for cultivated Nordic peat soils: can land management and rewetting control greenhouse gas emissions?. Environ. Sci. Pol. 69 (2017), 85–93, 10.1016/j.envsci.2016.12.017.
Li, Y., Jonard, F., Henrion, M., Moore, A., Lambot, S., Opfergelt, S., Vanacker, V., Van Oost, K., Peat Soil Thickness and Carbon Storage in the Belgian High Fens: Insights from Multi-Sensor UAV Remote Sensing. 2024 In prep.
Lowry, C.S., Fratta, D., Anderson, M.P., Ground penetrating radar and spring formation in a groundwater dominated peat wetland. J. Hydrol. 373 (2009), 68–79, 10.1016/j.jhydrol.2009.04.023.
Luo, T.X.H., Lai, W., Chang, R., Goodman, D., GPR imaging criteria. J. Appl. Geophys. 165 (2019), 37–48, 10.1016/j.jappgeo.2019.04.008.
McCann, D.M., Culshaw, M.G., Fenning, P.J., Setting the standard for geophysical surveys in site investigation. Geol. Soc. Eng. Geol. Spec. Publ. 12 (1997), 3–34, 10.1144/GSL.ENG.1997.012.01.01.
McLachlan, P., Blanchy, G., Chambers, J., Sorensen, J., Uhlemann, S., Wilkinson, P., Binley, A., The application of electromagnetic induction methods to reveal the hydrogeological structure of a riparian wetland. Water Resour. Res., 57, 2021, 10.1029/2020WR029221.
McNeill, J., Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. 1980, Geonic Ltd, Mississauga, ON, Canada.
Minasny, B., Berglund, R., Connolly, J., Hedley, C., de Vries, F., Gimona, A., Kempen, B., Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P., O'Rourke, S., Rudiyanto, Padarian, J., Poggio, L., ten Caten, A., Thompson, D., Tuve, C., Widyatmanti, W., Digital mapping of peatlands – a critical review. Earth Sci. Rev., 196, 2019, 102870, 10.1016/j.earscirev.2019.05.014.
Minasny, B., et al. Mapping and monitoring peatland conditions from global to field scale. Biogeochemistry, 2023, 10.1007/s10533-023-01084-1.
Moghadas, D., Taghizadeh-Mehrjardi, R., Triantafilis, J., Probabilistic inversion of EM38 data for 3D soil mapping in Central Iran. Geoderma Reg 7 (2016), 230–238, 10.1016/j.geodrs.2016.04.006.
Morishita, M., Kawahigashi, M., Heterogeneity of peat decomposition under rice cultivation on the Pacific coast. Jpn. Geoderma Reg. 12 (2018), 56–64, 10.1016/j.geodrs.2017.12.003.
Mormal, P., Tricot, C., Aperçu climatique des Hautes-Fagnes. 2004, Institut Royal Météorologique de Belgique.
Neal, A., Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci. Rev. 66 (2004), 261–330, 10.1016/j.earscirev.2004.01.004.
Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S., Slater, L., Multiscale geophysical imaging of the critical zone: geophysical imaging of the critical zone. Rev. Geophys. 53 (2015), 1–26, 10.1002/2014RG000465.
Pathirana, S., Lambot, S., Krishnapillai, M., Cheema, M., Smeaton, C., Galagedara, L., Ground-penetrating radar and electromagnetic induction: challenges and opportunities in agriculture. Remote Sens., 15, 2023, 2932, 10.3390/rs15112932.
Poggio, L., Gimona, A., Aalders, I., Morrice, J., Hough, R., Legacy data for 3D modelling of peat properties with uncertainty estimation in Dava bog Scotland. Geoderma Reg, 22, 2020, 10.1016/j.geodrs.2020.e00288.
Ponziani, M., Slob, E., Ngan-Tillard, D., Experimental validation of a model relating water content to the electrical conductivity of peat. Eng. Geol. 129-130 (2012), 48–55, 10.1016/j.enggeo.2012.01.011.
Ponziani, M., Slob, E., Vanhala, H., Ngan-Tillard, D., Influence of physical and chemical properties on the low-frequency complex conductivity of peat. Near Surf. Geophys. 10 (2012), 491–501, 10.3997/1873-0604.2011037.
Proulx-McInnis, S., St-Hilaire, A., Rousseau, A.N., Jutras, S., A review of ground-penetrating radar studies related to peatland stratigraphy with a case study on the determination of peat thickness in a northern boreal fen in Quebec, Canada. Prog. Phys. Geogr. Earth Environ. 37 (2013), 767–786, 10.1177/0309133313501106.
Purvance, D.T., Andricevic, R., On the electrical-hydraulic conductivity correlation in aquifers. Water Resour. Res. 36 (2000), 2905–2913, 10.1029/2000WR900165.
Robinson, D.A., Lebron, I., Lesch, S.M., Shouse, P., Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. Soil Sci. Soc. Am. J. 68 (2004), 339–345, 10.2136/sssaj2004.3390.
Romero-Ruiz, A., Linde, N., Keller, T., Or, D., A review of geophysical methods for soil structure characterization. Rev. Geophys. 56 (2018), 672–697, 10.1029/2018RG000611.
Saarikoski, H., Mustajoki, J., Hjerppe, T., Aapala, K., Participatory multicriteria decision analysis in valuing peatland ecosystem services—trade-offs related to peat extraction vs. pristine peatlands in Southern Finland. Ecol. Econ. 162 (2019), 17–28, 10.1016/j.ecolecon.2019.04.010.
Sass, O., Friedmann, A., Haselwanter, G., Wetzel, K.F., Investigating thickness and internal structure of alpine mires using conventional and geophysical techniques. Catena 80 (2010), 195–203, 10.1016/j.catena.2009.11.006.
Silvestri, S., Knight, R., Viezzoli, A., Richardson, C.J., Anshari, G.Z., et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res., 124, 2019 3107–3023.
Slater, L.D., Reeve, A., Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67 (2002), 365–378, 10.1190/1.1468597.
Sougnez, N., Vanacker, V., The topographic signature of quaternary tectonic uplift in the Ardennes massif (Western Europe). Hydrol. Earth Syst. Sci. 15 (2011), 1095–1107, 10.5194/hess-15-1095-2011.
Stroh, J.C., Archer, S., Doolittle, J.A., Wilding, L., Detection of edaphic discontinuities with ground-penetrating radar and electromagnetic induction. Landsc. Ecol. 16 (2001), 377–390.
Theimer, B.D., Nobes, D.C., Warner, B.G., A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying. Geophys. Prospect. 42 (1994), 179–209, 10.1111/j.1365-2478.1994.tb00205.x.
Vereecken, H., et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J., 15, 2016, 10.2136/vzj2015.09.0131.
Walter, J., Lück, E., Bauriegel, A., Richter, C., Zeitz, J., Multi-scale analysis of electrical conductivity of peatlands for the assessment of peat properties: electrical conductivity of peatlands. Eur. J. Soil Sci. 66 (2015), 639–650, 10.1111/ejss.12251.
Walter, J., Hamann, G., Lück, E., Klingenfuss, C., Zeitz, J., Stratigraphy and soil properties of fens: geophysical case studies from northeastern Germany. Catena 142 (2016), 112–125.
Walter, J., Lück, E., Bauriegel, A., Facklam, M., Zeitz, J., Seasonal dynamics of soil salinity in peatlands: a geophysical approach. Geoderma 310 (2018), 1–11, 10.1016/j.geoderma.2017.08.022.
Walter, J., Lück, E., Heller, C., Bauriegel, A., Zeitz, J., Relationship between electrical conductivity and water content of peat and gyttja: implications for electrical surveys of drained peatlands. Near Surf. Geophys. 17 (2019), 169–179, 10.1002/nsg.12030.
Wastiaux, C., Schumaker, R., Topographie de surface et de subsurface des zones tourbeuses des réserves naturelles domaniales des Hautes-Fagnes. Convention C60 entre le Ministère de la Région Wallonne, Direction générale des Ressources naturelles de l'Environnement et l'Université de Liège, 2003, Université de Liège Unpublished report.
Wastiaux, C., Halleux, L., Schumaker, R., Streel, M., Jacqmotte, J.M., Development of the Hautes-Fagnes peat bogs (Belgium): new perspectives using groundpenetrating radar. Suo 51 (2000), 115–120.
Wende, S., Kirsch, R., Geophysical mapping of organic sediments. Paleolimnology of European Maar Lakes, 1993, Springer Berlin Heidelberg, 109–116.
Zaj́ıcova, K., Chuman, T., Application of ground penetrating radar methods in soil studies: a review. Geoderma 343 (2019), 116–129, 10.1016/j.geoderma.2019.02.024.