[en] The high luminosity of massive, early-type stars drives strong stellar winds through line scattering of the star's continuum radiation. Their momenta contribute substantially to the dynamics and energetics of the ambient interstellar medium in galaxies.
The detailed multi-wavelength study of massive O-type and Wolf-Rayet binaries is essential to explore the hydrodynamics of the shocks formed in the stellar outflows and wind structure. Further, deep analysis of some of the interesting phenomena like particle acceleration and dust formation associated with hot stars' winds provides a global view of stellar outflows. In this context, a few massive binaries have been explored using photometric and spectroscopic measurements in different wavebands. This paper highlights important insights gained from investigating massive binaries with several ground and space-based facilities.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Arora, Bharti ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Multi-wavelength Extragalactic and Galactic Astrophysics (MEGA)
De Becker, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Sciences spatiales ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Multi-wavelength Extragalactic and Galactic Astrophysics (MEGA)
Pandey, J. C.
Language :
English
Title :
Multiwavelength view of massive binaries
Publication date :
11 June 2024
Event name :
Third BINA workshop: Scientific potential of the Indo-Belgian cooperation
Event place :
Bhimtal, India
Event date :
22-24 March 2023
Audience :
International
Journal title :
Bulletin de la Société Royale des Sciences de Liège
ISSN :
0037-9565
eISSN :
1783-5720
Publisher :
Société Royale des Sciences de Liege, Liège, Belgium
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arora, B., Pandey, J. C. and De Becker, M. (2019) Long-term soft and hard X-ray investigation of the colliding wind WN+O binary WR 25. MNRAS, 487(2), 2624–2638. https://doi.org/10.1093/mnras/stz1447.
Arora, B., Pandey, J. C., De Becker, M., Pandey, S. B., Chakradhari, N. K., Sharma, S. and Kumar, B. (2021) Quest for the upcoming periastron passage of an episodic dust maker and particle-accelerating colliding-wind binary: WR 125. AJ, 162(6), 257. https://doi.org/10.3847/1538-3881/ac2506.
Baug, T., Ojha, D. K., Ghosh, S. K., Sharma, S., Pandey, A. K., Kumar, B., Ghosh, A., Ninan, J. P., Naik, M. B., D’Costa, S. L. A., Poojary, S. S., Sandimani, P. R., Shah, H., Krishna Reddy, B., Pandey, S. B. and Chand, H. (2018) TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope. JAI, 7(1), 1850003. https://doi.org/10.1142/S2251171718500034.
Berghöfer, T. W., Schmitt, J. H. M. M., Danner, R. and Cassinelli, J. P. (1997) X-ray properties of bright OB-type stars detected in the ROSAT all-sky survey. A&A, 322, 167–174. https://ui.adsabs.harvard.edu/link_gateway/1997A%26A...322..167B/ADS_PDF.
Cassinelli, J. P., Miller, N. A., Waldron, W. L., MacFarlane, J. J. and Cohen, D. H. (2001) Chandra detection of Doppler–shifted X-ray line profiles from the wind of ζ Puppis (O4 f). ApJ, 554(1), L55–L58. https://doi.org/10.1086/320916.
Cherepashchuk, A. M. (1976) Detectability of Wolf–Rayet binaries from X-rays. SvAL, 2(4), 138–139. https://ui.adsabs.harvard.edu/link_gateway/1976SvAL....2..138C/ADS_PDF.
Churchwell, E., Babler, B. L., Meade, M. R., Whitney, B. A., Benjamin, R., Indebetouw, R., Cyganowski, C., Robitaille, T. P., Povich, M., Watson, C. and Bracker, S. (2009) The Spitzer/GLIMPSE surveys: A new view of the Milky Way. PASP, 121(877), 213. https://doi.org/10.1086/597811.
Crowther, P. A. (2007) Physical properties of Wolf–Rayet stars. ARA&A, 45(1), 177–219. https://doi.org/10.1146/annurev.astro.45.051806.110615.
Crowther, P. A. and Walborn, N. R. (2011) Spectral classification of O2–3.5 If*/WN5–7 stars. MNRAS, 416(2), 1311–1323. https://doi.org/10.1111/j.1365-2966.2011.19129.x.
De Becker, M. and Arora, B. (2024) Synchrotron radio emission as a proxy to identify long period massive binaries. BSRSL, 93(2), 544–551. https://doi.org/10.25518/0037-9565.11788.
De Becker, M. and Raucq, F. (2013) Catalogue of particle-accelerating colliding-wind binaries. A&A, 558, A28. https://doi.org/10.1051/0004-6361/201322074.
Feldmeier, A., Puls, J. and Pauldrach, A. W. A. (1997) A possible origin for X-rays from O stars. A&A, 322, 878–895. https://ui.adsabs.harvard.edu/link_gateway/1997A%26A...322..878F/ADS_PDF.
Gamen, R., Gosset, E., Morrell, N., Niemela, V., Sana, H., Nazé, Y., Rauw, G., Barbá, R. and Solivella, G. (2006) The first orbital solution for the massive colliding–wind binary HD 93162 (≡ WR 25). A&A, 460(3), 777–782. https://doi.org/10.1051/0004-6361:20065618.
Harnden, J., F. R., Branduardi, G., Elvis, M., Gorenstein, P., Grindlay, J., Pye, J. P., Rosner, R., Topka, K. and Vaiana, G. S. (1979) Discovery of an X-ray star association in VI Cygni (Cyg OB2). ApJ, 234, L51–L54. https://doi.org/10.1086/183107.
Kahn, S. M., Leutenegger, M. A., Cottam, J., Rauw, G., Vreux, J. M., den Boggende, A. J. F., Mewe, R. and Güdel, M. (2001) High resolution X-ray spectroscopy of ζ Puppis with the xmm-newton reflection grating spectrometer. A&A, 365, L312–L317. https://doi.org/10.1051/0004-6361:20000093.
Kumar, B., Omar, A., Maheswar, G., Pandey, A. K., Sagar, R., Uddin, W., Sanwal, B. B., Bangia, T., Kumar, T. S., Yadav, S., Sahu, S., Pant, J., Reddy, B. K., Gupta, A. C., Chand, H., Pandey, J. C., Joshi, M. K., Jaiswar, M., Nanjappa, N., Purushottam, Yadav, R. K. S., Sharma, S., Pandey, S. B., Joshi, S., Joshi, Y. C., Lata, S., Mehdi, B. J., Misra, K. and Singh, M. (2018) 3.6-m Devasthal Optical Telescope project: Completion and first results. BSRSL, 87, 29–41. https://doi.org/10.25518/0037-9565.7454.
Langer, N. (2004) Stellar nucleosynthesis. In Cosmochemistry. The melting pot of the elements, edited by Esteban, C., García López, R., Herrero, A. and Sánchez, F., pp. 31–80. Cambridge University Press. https://doi.org/10.1017/CBO9780511536212.005.
Lomb, N. R. (1976) Least-squares frequency analysis of unequally spaced data. Ap&SS, 39(2), 447–462. https://doi.org/10.1007/BF00648343.
Lucy, L. B. (1982) X-ray emission from the winds of hot stars. II. ApJ, 255, 286–292. https://doi.org/10.1086/159827.
Lucy, L. B. and White, R. L. (1980) X-ray emission from the winds of hot stars. ApJ, 241, 300–305. https://doi.org/10.1086/158342.
Mainzer, A., Bauer, J., Cutri, R. M., Grav, T., Masiero, J., Beck, R., Clarkson, P., Conrow, T., Dailey, J., Eisenhardt, P., Fabinsky, B., Fajardo-Acosta, S., Fowler, J., Gelino, C., Grillmair, C., Heinrichsen, I., Kendall, M., Kirkpatrick, J. D., Liu, F., Masci, F., McCallon, H., Nugent, C. R., Papin, M., Rice, E., Royer, D., Ryan, T., Sevilla, P., Sonnett, S., Stevenson, R., Thompson, D. B., Wheelock, S., Wiemer, D., Wittman, M., Wright, E. and Yan, L. (2014) Initial performance of the NEOWISE reactivation mission. ApJ, 792(1), 30. https://doi.org/10.1088/0004-637X/792/1/30.
Mainzer, A., Bauer, J., Grav, T., Masiero, J., Cutri, R. M., Dailey, J., Eisenhardt, P., McMillan, R. S., Wright, E., Walker, R., Jedicke, R., Spahr, T., Tholen, D., Alles, R., Beck, R., Brandenburg, H., Conrow, T., Evans, T., Fowler, J., Jarrett, T., Marsh, K., Masci, F., McCallon, H., Wheelock, S., Wittman, M., Wyatt, P., DeBaun, E., Elliott, G., Elsbury, D., Gautier, I., T., Gomillion, S., Leisawitz, D., Maleszewski, C., Micheli, M. and Wilkins, A. (2011) Preliminary results from NEOWISE: An enhancement to the Wide-field Infrared Survey Explorer for solar system science. ApJ, 731(1), 53. https://doi.org/10.1088/0004-637X/731/1/53.
Owocki, S. P., Castor, J. I. and Rybicki, G. B. (1988) Time-dependent models of radiatively driven stellar winds. I. Nonlinear evolution of instabilities for a pure absorption model. ApJ, 335, 914. https://doi.org/10.1086/166977.
Pollock, A. M. T. (1987) The Einstein view of the Wolf–Rayet stars. ApJ, 320, 283–295. https://doi.org/10.1086/165539.
Pollock, A. M. T. and Corcoran, M. F. (2006) Evidence for colliding winds in WR 25 from XMM-Newton observations of X-ray variability. A&A, 445(3), 1093–1097. https://doi.org/10.1051/0004-6361:20053496.
Prilutskii, O. F. and Usov, V. V. (1976) X rays from Wolf–Rayet binaries. SvA, 20(1), 2–4. https://ui.adsabs.harvard.edu/link_gateway/1976SvA....20....2P/ADS_PDF.
Puls, J., Vink, J. S. and Najarro, F. (2008) Mass loss from hot massive stars. A&ARv, 16(3-4), 209–325. https://doi.org/10.1007/s00159-008-0015-8.
Raassen, A. J. J., van der Hucht, K. A., Mewe, R., Antokhin, I. I., Rauw, G., Vreux, J. M., Schmutz, W. and Güdel, M. (2003) XMM-Newton high-resolution X-ray spectroscopy of the Wolf–Rayet object WR 25 in the Carina OB1 association. A&A, 402, 653–666. https://doi.org/10.1051/0004-6361:20030119.
Reynolds, R. J. (2004) Warm ionized gas in the local interstellar medium. AdSpR, 34(1), 27–34. https://doi.org/10.1016/j.asr.2003.02.059.
Sana, H. and Evans, C. J. (2011) The multiplicity of massive stars. In Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, edited by Neiner, C., Wade, G., Meynet, G. and Peters, G., vol. 272, pp. 474–485. https://doi.org/10.1017/S1743921311011124.
Scargle, J. D. (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. ApJ, 263, 835–853. https://doi.org/10.1086/160554.
Seward, F. D. and Chlebowski, T. (1982) X-ray emission from the Carina Nebula and the associated early stars. ApJ, 256, 530–542. https://doi.org/10.1086/159929.
Seward, F. D., Forman, W. R., Giacconi, R., Griffiths, R. E., Harnden, J., F. R., Jones, C. and Pye, J. P. (1979) X-rays from Eta Carinae and the surrounding nebula. ApJ, 234, L55–L58. https://doi.org/10.1086/183108.
Singh, K. P., Tandon, S. N., Agrawal, P. C., Antia, H. M., Manchanda, R. K., Yadav, J. S., Seetha, S., Ramadevi, M. C., Rao, A. R., Bhattacharya, D., Paul, B., Sreekumar, P., Bhattacharyya, S., Stewart, G. C., Hutchings, J., Annapurni, S. A., Ghosh, S. K., Murthy, J., Pati, A., Rao, N. K., Stalin, C. S., Girish, V., Sankarasubramanian, K., Vadawale, S., Bhalerao, V. B., Dewangan, G. C., Dedhia, D. K., Hingar, M. K., Katoch, T. B., Kothare, A. T., Mirza, I., Mukerjee, K., Shah, H., Shah, P., Mohan, R., Sangal, A. K., Nagabhusana, S., Sriram, S., Malkar, J. P., Sreekumar, S., Abbey, A. F., Hansford, G. M., Beardmore, A. P., Sharma, M. R., Murthy, S., Kulkarni, R., Meena, G., Babu, V. C. and Postma, J. (2014) ASTROSAT mission. In Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, edited by Takahashi, T., den Herder, J.-W. A. and Bautz, M., vol. 9144 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. https://doi.org/10.1117/12.2062667.
Smith, R. K., Brickhouse, N. S., Liedahl, D. A. and Raymond, J. C. (2001) Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. ApJ, 556(2), L91–L95. https://doi.org/10.1086/322992.
Stevens, I. R., Blondin, J. M. and Pollock, A. M. T. (1992) Colliding winds from early-type stars in binary systems. ApJ, 386, 265–287. https://doi.org/10.1086/171013.
Usov, V. V. (1991) Stellar wind collision and dust formation in long-period, heavily interacting Wolf–Rayet binaries. MNRAS, 252, 49–52. https://doi.org/10.1093/mnras/252.1.49.
van der Hucht, K. A. (2001) The VIIth catalogue of galactic Wolf–Rayet stars. NewAR, 45(3), 135–232. https://doi.org/10.1016/S1387-6473(00)00112-3.
Williams, P. M. (1995) Dust formation around WC stars. In Wolf–Rayet Stars: Binaries, Colliding Winds, Evolution, edited by van der Hucht, K. A. and Williams, P. M., vol. 163 of IAUS, pp. 335–345. Kluwer Academic Publishers, Dordrecht (NL). https://doi.org/10.1007/978-94-011-0205-6_79.
Williams, P. M. (2014) Eclipses and dust formation by WC9 type Wolf–Rayet stars. MNRAS, 445(2), 1253–1260. https://doi.org/10.1093/mnras/stu1779.
Williams, P. M. (2019) Variable dust emission by WC type Wolf–Rayet stars observed in the NEOWISE-R survey. MNRAS, 488(1), 1282–1300. https://doi.org/10.1093/mnras/stz1784.
Williams, P. M., van der Hucht, K. A., Bouchet, P., Spoelstra, T. A. T., Eenens, P. R. J., Geballe, T. R., Kidger, M. R. and Churchwell, E. (1992) Condensation of dust around the Wolf–Rayet star WR 125. MNRAS, 258, 461–472. https://doi.org/10.1093/mnras/258.3.461.
Williams, P. M., van der Hucht, K. A., Kidger, M. R., Geballe, T. R. and Bouchet, P. (1994) The episodic dust-maker WR 125 – II. Spectroscopy and photometry during infrared maximum. MNRAS, 266, 247–254. https://doi.org/10.1093/mnras/266.1.247.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.