Aedes/physiology; Aedes/virology; Africa; Animals; Asia; Female; Humans; Male; Mice; Phylogeny; Virulence; Zika Virus/classification; Zika Virus/genetics; Zika Virus/pathogenicity; Zika Virus/physiology; Zika Virus Infection/mortality; Zika Virus Infection/transmission; Zika Virus Infection/virology; Aedes; Zika Virus; Zika Virus Infection; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Aubry, Fabien ✱; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
Jacobs, Sofie ✱; KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
Lequime, Sebastian ; KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium ; Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Delang, Leen ; KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
Fontaine, Albin; Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France ; IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France ; IHU Méditerranée Infection, Marseille, France
Jupatanakul, Natapong ; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France ; National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
Miot, Elliott F ; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
Dabo, Stéphanie; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
Manet, Caroline; Mouse Genetics Laboratory, Institut Pasteur, Paris, France
Montagutelli, Xavier ; Mouse Genetics Laboratory, Institut Pasteur, Paris, France
Baidaliuk, Artem ; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France ; Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
Gámbaro, Fabiana; Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
Simon-Lorière, Etienne ; Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
Gilsoul, Maxime ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Molecular Regulation of Neurogenesis
Romero-Vivas, Claudia M; Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla, Colombia
Cao-Lormeau, Van-Mai; Institut Louis Malardé, Papeete, Tahiti, French Polynesia
Jarman, Richard G; Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
Diagne, Cheikh T; Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
Faye, Oumar; Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
Faye, Ousmane; Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
Sall, Amadou A; Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
Neyts, Johan ; KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
Nguyen, Laurent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Kaptein, Suzanne J F ✱; KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium. suzanne.kaptein@kuleuven.be
Lambrechts, Louis ✱; Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France. louis.lambrechts@pasteur.fr
We thank Catherine Lallemand for assistance with mosquito rearing, the Institut Pasteur animal facility staff for the breeding of Ifnar1−/− mice. We thank Diego Ayala, Chris-tophe Paupy, and Davy Jiolle for initially providing the mosquito colony from Gabon and Anubis Vega-Rúa for initially providing the mosquito colony from Guadeloupe. We are grateful to the volunteers and the ICAReB staff for the human blood supply. We thank Elke Maas, Carolien De Keyzer, and Lindsey Bervoets for technical assistance with the AG129 mouse experiments, the KU Leuven Rega animal facility staff for breeding the AG129 mice, and Jelle Matthijnssens and Daan Jansen for resequencing the ZIKV strains at the KU Leuven Rega Institute. We thank Alexandre Hego and the GIGA-Imaging platform for their precious help and advice, and Christian Alfano and Ivan Gladwyn-Ng for their guidance with the vertical transmission experiments. This work was primarily funded by the European Union’s Horizon 2020 research and innovation program under ZikaPLAN grant agreement no. 734584 (to L.L. and J.N.) and under ZIKAlliance grant agreement no. 734548 (to L.N. and J.N.). This work was also supported by Agence Nationale de la Recherche (grants ANR-16-CE35-0004-01, ANR-17-ERC2-0016-01, and ANR-18-CE35-0003-01 to L.L.), the French Government’s Investissement d’Avenir program Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID to L.L. and X.M.), the Inception program (Investisse-ment d’Avenir grant ANR-16-CONV-0005 to L.L.), the Research Foundation Flanders (FWO Ph.D. fellowship 1S21918N to S.J.), and the Fonds de la Recherche Scientifique (FRIA Ph.D. fellowship to M.D.). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Boyer, S., Calvez, E., Chouin-Carneiro, T., Diallo, D. & Failloux, A. B. An overview of mosquito vectors of Zika virus. Microbes Infect. 20, 646–660 (2018). DOI: 10.1016/j.micinf.2018.01.006
Gutierrez-Bugallo, G. et al. Vector-borne transmission and evolution of Zika virus. Nat. Ecol. Evol. 3, 561–569 (2019). DOI: 10.1038/s41559-019-0836-z
Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952). DOI: 10.1016/0035-9203(52)90042-4
Musso, D. & Gubler, D. J. Zika virus. Clin. Microbiol. Rev. 29, 487–524 (2016). DOI: 10.1128/CMR.00072-15
Kindhauser, M. K., Allen, T., Frank, V., Santhana, R. S. & Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organ. 94, 675–686C (2016). DOI: 10.2471/BLT.16.171082
Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543 (2009). DOI: 10.1056/NEJMoa0805715
Cao-Lormeau, V. M. et al. Zika virus, French polynesia, South pacific, 2013. Emerg. Infect. Dis. 20, 1085–1086 (2014). DOI: 10.3201/eid2006.140138
Cao-Lormeau, V. M. & Musso, D. Emerging arboviruses in the Pacific. Lancet 384, 1571–1572 (2014). DOI: 10.1016/S0140-6736(14)61977-2
Musso, D., Ko, A. I. & Baud, D. Zika virus infection—after the pandemic. N. Engl. J. Med. 381, 1444–1457 (2019). DOI: 10.1056/NEJMra1808246
Cauchemez, S. et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet 387, 2125–2132 (2016). DOI: 10.1016/S0140-6736(16)00651-6
Oehler, E. et al. Zika virus infection complicated by Guillain-Barre syndrome–case report, French Polynesia, December 2013. Euro Surveill. 19, 20720 (2014). DOI: 10.2807/1560-7917.ES2014.19.9.20720
Haddow, A. D. et al. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 6, e1477 (2012). DOI: 10.1371/journal.pntd.0001477
Liu, Z. Y., Shi, W. F. & Qin, C. F. The evolution of Zika virus from Asia to the Americas. Nat. Rev. Microbiol. 17, 131–139 (2019). DOI: 10.1038/s41579-018-0134-9
Duong, V. et al. Low circulation of Zika Virus, Cambodia, 2007–2016. Emerg. Infect. Dis. 23, 296–299 (2017). DOI: 10.3201/eid2302.161432
Ruchusatsawat, K. et al. Long-term circulation of Zika virus in Thailand: an observational study. Lancet Infect. Dis. 19, 439–446 (2019). DOI: 10.1016/S1473-3099(18)30718-7
Maurer-Stroh, S. et al. South-east Asian Zika virus strain linked to cluster of cases in Singapore, August 2016. Euro Surveill. 21, 30347 (2016). DOI: 10.2807/1560-7917.ES.2016.21.38.30347
Chu, D. T., Ngoc, V. T. N. & Tao, Y. Zika virus infection in Vietnam: current epidemic, strain origin, spreading risk, and perspective. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2041–2042 (2017). DOI: 10.1007/s10096-017-3030-8
Grubaugh, N. D., Ishtiaq, F., Setoh, Y. X. & Ko, A. I. Misperceived risks of Zika-related Microcephaly in India. Trends Microbiol. 27, 381–383 (2019). DOI: 10.1016/j.tim.2019.02.004
Lan, P. T. et al. Fetal Zika virus infection in Vietnam. PLoS Curr. 9, 10.1371/currents.outbreaks.1c8f631e0ef8cd7777d639eba48647fa (2017).
Moi, M. L. et al. Zika virus infection and microcephaly in Vietnam. Lancet Infect. Dis. 17, 805–806 (2017). DOI: 10.1016/S1473-3099(17)30412-7
Kuadkitkan, A., Wikan, N., Sornjai, W. & Smith, D. R. Zika virus and microcephaly in Southeast Asia: a cause for concern? J. Infect. Public Health 13, 11–15 (2020). DOI: 10.1016/j.jiph.2019.09.012
Wongsurawat, T. et al. Case of Microcephaly after congenital infection with Asian lineage Zika virus, Thailand. Emerg. Infect. Dis. 24, 1758–1761 (2018). DOI: 10.3201/eid2409.180416
Lourenco, J. et al. Epidemiology of the Zika virus outbreak in the Cabo Verde Islands, West Africa. PLoS Curr. 10, 10.1371/currents.outbreaks.19433b1e4d007451c691f138e1e67e8c (2018).
Faye, O. et al. Genomic epidemiology of 2015–2016 Zika virus outbreak in Cape Verde. Emerg. Infect. Dis. 26, 1084–1090 (2020). DOI: 10.3201/eid2606.190928
Hill, S. C. et al. Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infect. Dis. 19, 1138–1147 (2019). DOI: 10.1016/S1473-3099(19)30293-2
Anfasa, F. et al. Phenotypic differences between Asian and African Lineage Zika Viruses in human neural progenitor cells. mSphere 2, e00292-17 (2017). DOI: 10.1128/mSphere.00292-17
Bowen, J. R. et al. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog. 13, e1006164 (2017). DOI: 10.1371/journal.ppat.1006164
Gabriel, E. et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397–406.e5 (2017). DOI: 10.1016/j.stem.2016.12.005
Hamel, R. et al. African and Asian Zika virus strains differentially induce early antiviral responses in primary human astrocytes. Infect. Genet. Evol. 49, 134–137 (2017). DOI: 10.1016/j.meegid.2017.01.015
Sheridan, M. A. et al. Vulnerability of primitive human placental trophoblast to Zika virus. Proc. Natl Acad. Sci. U.S.A. 114, E1587–E1596 (2017). DOI: 10.1073/pnas.1616097114
Simonin, Y. et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine 12, 161–169 (2016). DOI: 10.1016/j.ebiom.2016.09.020
Smith, D. R. et al. African and Asian Zika virus isolates display phenotypic differences both in vitro and in vivo. Am. J. Trop. Med. Hyg. 98, 432–444 (2018). DOI: 10.4269/ajtmh.17-0685
Pompon, J. et al. A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Sci. Rep. 7, 1215 (2017). DOI: 10.1038/s41598-017-01282-6
Weger-Lucarelli, J. et al. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl. Trop. Dis. 10, e0005101 (2016). DOI: 10.1371/journal.pntd.0005101
Liu, Z. et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China. Emerg. Infect. Dis. 23, 1085–1091 (2017). DOI: 10.3201/eid2307.161528
Roundy, C. M. et al. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerg. Infect. Dis. 23, 625–632 (2017). DOI: 10.3201/eid2304.161484
Calvez, E. et al. Differential transmission of Asian and African Zika virus lineages by Aedes aegypti from New Caledonia. Emerg. Microbes Infect. 7, 159 (2018). DOI: 10.1038/s41426-018-0166-2
Lazear, H. M. et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19, 720–730 (2016). DOI: 10.1016/j.chom.2016.03.010
Tripathi, S. et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog. 13, e1006258 (2017). DOI: 10.1371/journal.ppat.1006258
Widman, D. G. et al. A reverse genetics platform that spans the Zika virus family tree. MBio 8, e02014–16 (2017). DOI: 10.1128/mBio.02014-16
Dowall, S. D. et al. A Susceptible Mouse Model for Zika Virus infection. PLoS Negl. Trop. Dis. 10, e0004658 (2016). DOI: 10.1371/journal.pntd.0004658
Shao, Q. et al. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus. Development 144, 4114–4124 (2017). DOI: 10.1242/dev.156752
Jaeger, A. S. et al. Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Negl. Trop. Dis. 13, e0007343 (2019). DOI: 10.1371/journal.pntd.0007343
Goodfellow, F. T. et al. Strain-dependent consequences of Zika virus infection and differential impact on neural development. Viruses 10, 550 (2018). DOI: 10.3390/v10100550
Willard, K. A. et al. Zika virus exhibits lineage-specific phenotypes in cell culture, in Aedes aegypti mosquitoes, and in an embryo model. Viruses 9, 383 (2017). DOI: 10.3390/v9120383
Duggal, N. K. et al. Differential neurovirulence of African and Asian genotype Zika virus isolates in outbred immunocompetent mice. Am. J. Trop. Med. Hyg. 97, 1410–1417 (2017). DOI: 10.4269/ajtmh.17-0263
Aliota, M. T. et al. Heterologous protection against Asian Zika Virus challenge in Rhesus Macaques. PLoS Negl. Trop. Dis. 10, e0005168 (2016). DOI: 10.1371/journal.pntd.0005168
Rayner, J. O. et al. Comparative pathogenesis of Asian and African-Lineage Zika virus in Indian Rhesus Macaque’s and development of a non-human primate model suitable for the evaluation of new drugs and vaccines. Viruses 10, 229 (2018). DOI: 10.3390/v10050229
Koide, F. et al. Development of a Zika virus infection model in Cynomolgus Macaques. Front. Microbiol. 7, 2028 (2016). DOI: 10.3389/fmicb.2016.02028
Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016). DOI: 10.1038/nature18296
Liu, S., DeLalio, L. J., Isakson, B. E. & Wang, T. T. AXL-mediated productive infection of human endothelial cells by Zika virus. Circ. Res. 119, 1183–1189 (2016). DOI: 10.1161/CIRCRESAHA.116.309866
Faye, O. et al. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl. Trop. Dis. 8, e2636 (2014). DOI: 10.1371/journal.pntd.0002636
Simonin, Y., van Riel, D., Van de Perre, P., Rockx, B. & Salinas, S. Differential virulence between Asian and African lineages of Zika virus. PLoS Negl. Trop. Dis. 11, e0005821 (2017). DOI: 10.1371/journal.pntd.0005821
Lequime, S., Bastide, P., Dellicour, S., Lemey, P. & Baele, G. nosoi: A stochastic agent-based transmission chain simulation framework in R. Methods Ecol. Evol. 11, 1002–1007 (2020). DOI: 10.1111/2041-210X.13422
Tesla, B. et al. Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Negl. Trop. Dis. 12, e0006733 (2018). DOI: 10.1371/journal.pntd.0006733
Ogunrinade, A. The measurement of blood meal size in Aedes aegypti (L.). Afr. J. Med. Med. Sci. 9, 69–71 (1980).
Zmurko, J. et al. The viral polymerase inhibitor 7-Deaza-2’-C-Methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis. 10, e0004695 (2016). DOI: 10.1371/journal.pntd.0004695
Gladwyn-Ng, I. et al. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly. Nat. Neurosci. 21, 63–71 (2018). DOI: 10.1038/s41593-017-0038-4
Zhang, W. et al. In utero infection of Zika virus leads to abnormal central nervous system development in mice. Sci. Rep. 9, 7298 (2019). DOI: 10.1038/s41598-019-43303-6
Osuna, C. E. & Whitney, J. B. Nonhuman primate models of Zika virus infection, immunity, and therapeutic development. J. Infect. Dis. 216, S928–S934 (2017). DOI: 10.1093/infdis/jix540
Aliota, M. T. et al. Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl. Trop. Dis. 10, e0004682 (2016). DOI: 10.1371/journal.pntd.0004682
Rossi, S. L. & Vasilakis, N. Modeling Zika virus infection in mice. Cell Stem Cell 19, 4–6 (2016). DOI: 10.1016/j.stem.2016.06.009
Grant, A. et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890 (2016). DOI: 10.1016/j.chom.2016.05.009
Kumar, A. et al. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 17, 1766–1775 (2016). DOI: 10.15252/embr.201642627
Wu, Y. et al. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 3, 17006 (2017). DOI: 10.1038/celldisc.2017.6
Xia, H. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9, 414 (2018). DOI: 10.1038/s41467-017-02816-2
Seong, R. K., Lee, J. K. & Shin, O. S. Zika virus-induction of the suppressor of cytokine signaling 1/3 contributes to the modulation of viral replication. Pathogens 9, 163 (2020). DOI: 10.3390/pathogens9030163
Osterlund, P. et al. Asian and African lineage Zika viruses show differential replication and innate immune responses in human dendritic cells and macrophages. Sci. Rep. 9, 15710 (2019). DOI: 10.1038/s41598-019-52307-1
Weaver, S. C. Emergence of epidemic Zika virus transmission and congenital zika syndrome: are recently evolved traits to blame? mBio 8, e02063-16 (2017). DOI: 10.1128/mBio.02063-16
Haby, M. M., Pinart, M., Elias, V. & Reveiz, L. Prevalence of asymptomatic Zika virus infection: a systematic review. Bull. World Health Organ. 96, 402–413D (2018). DOI: 10.2471/BLT.17.201541
Herrera, B. B. et al. Continued transmission of Zika virus in humans in West Africa, 1992-2016. J. Infect. Dis. 215, 1546–1550 (2017). DOI: 10.1093/infdis/jix182
Kayiwa, J. T. et al. Confirmation of Zika virus infection through hospital-based sentinel surveillance of acute febrile illness in Uganda, 2014-2017. J. Gen. Virol. 99, 1248–1252 (2018). DOI: 10.1099/jgv.0.001113
Kisuya, B., Masika, M. M., Bahizire, E. & Oyugi, J. O. Seroprevalence of Zika virus in selected regions in Kenya. Trans. R. Soc. Trop. Med. Hyg. 113, 735–739 (2019). DOI: 10.1093/trstmh/trz077
Mathe, P. et al. Low Zika virus seroprevalence among pregnant women in North Central Nigeria, 2016. J. Clin. Virol. 105, 35–40 (2018). DOI: 10.1016/j.jcv.2018.05.011
Nurtop, E. et al. A report of Zika virus Seroprevalence in Republic of the Congo. Vector Borne Zoonotic Dis. 20, 40–42 (2020). DOI: 10.1089/vbz.2019.2466
L’Azou, M. et al. Dengue seroprevalence: data from the clinical development of a tetravalent dengue vaccine in 14 countries (2005–2014). Trans. R. Soc. Trop. Med. Hyg. 112, 158–168 (2018). DOI: 10.1093/trstmh/try037
Gake, B. et al. Low seroprevalence of Zika virus in Cameroonian blood donors. Braz. J. Infect. Dis. 21, 481–483 (2017). DOI: 10.1016/j.bjid.2017.03.018
Buchwald, A. G., Hayden, M. H., Dadzie, S. K., Paull, S. H. & Carlton, E. J. Aedes-borne disease outbreaks in West Africa: a call for enhanced surveillance. Acta Trop. 209, 105468 (2020). DOI: 10.1016/j.actatropica.2020.105468
Garske, T. et al. Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014). DOI: 10.1371/journal.pmed.1001638
Aubry, F. et al. Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations. Science 370, 991–996 (2020). DOI: 10.1126/science.abd3663
Gloria-Soria, A. et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25, 5377–5395 (2016). DOI: 10.1111/mec.13866
Kotsakiozi, P. et al. Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol. Evol. 8, 7835–7848 (2018). DOI: 10.1002/ece3.4278
Sassetti, M. et al. First case of confirmed congenital Zika syndrome in continental Africa. Trans. R. Soc. Trop. Med. Hyg. 112, 458–462 (2018). DOI: 10.1093/trstmh/try074
Rosenstierne, M. W. et al. Zika virus IgG in infants with microcephaly, Guinea-Bissau, 2016. Emerg. Infect. Dis. 24, 948–950 (2018). DOI: 10.3201/eid2405.180153
Pettersson, J. H. et al. How did Zika virus emerge in the Pacific Islands and Latin America? mBio 7, e01239-16 (2016). DOI: 10.1128/mBio.01239-16
Tsetsarkin, K. A. et al. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc. Natl Acad. Sci. U.S.A. 108, 7872–7877 (2011). DOI: 10.1073/pnas.1018344108
Syenina, A. et al. Positive epistasis between viral polymerase and the 3’ untranslated region of its genome reveals the epidemiologic fitness of dengue virus. Proc. Natl Acad. Sci. U.S.A. 117, 11038–11047 (2020). DOI: 10.1073/pnas.1919287117
Vermillion, M. S. et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat. Commun. 8, 14575 (2017). DOI: 10.1038/ncomms14575
Sheridan, M. A. et al. African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLoS ONE 13, e0200086 (2018). DOI: 10.1371/journal.pone.0200086
Tabata, T. et al. Zika virus replicates in proliferating cells in explants from first-trimester human placentas, potential sites for dissemination of infection. J. Infect. Dis. 217, 1202–1213 (2018). DOI: 10.1093/infdis/jix552
Tabata, T. et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 20, 155–166 (2016). DOI: 10.1016/j.chom.2016.07.002
Baidaliuk, A. et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J. Virol. 93, e00705-19 (2019). DOI: 10.1128/JVI.00705-19
Fontaine, A., Jiolle, D., Moltini-Conclois, I., Lequime, S. & Lambrechts, L. Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes. Sci. Rep. 6, 24885 (2016). DOI: 10.1038/srep24885
Lequime, S., Richard, V., Cao-Lormeau, V. M. & Lambrechts, L. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti. Virus Evol. 3, vex031 (2017). DOI: 10.1093/ve/vex031
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). DOI: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). DOI: 10.1038/nmeth.1923
Boisvert, S., Laviolette, F. & Corbeil, J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17, 1519–1533 (2010). DOI: 10.1089/cmb.2009.0238
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). DOI: 10.1101/gr.213959.116
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). DOI: 10.1016/S0022-2836(05)80360-2
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). DOI: 10.1093/molbev/mst010
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). DOI: 10.1038/nmeth.4285
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). DOI: 10.1093/molbev/msx281
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). DOI: 10.1093/molbev/msu300
Gong, Z., Xu, X. & Han, G. Z. The diversification of Zika virus: are there two distinct lineages? Genome Biol. Evol. 9, 2940–2945 (2017). DOI: 10.1093/gbe/evx223
Reed, L. J. & Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497 (1938).
Fontaine, A. et al. Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics. PLoS Pathog. 14, e1007187 (2018). DOI: 10.1371/journal.ppat.1007187
Yakob, L., Kucharski, A., Hue, S. & Edmunds, W. J. Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infect. Dis. 16, 1100–1102 (2016). DOI: 10.1016/S1473-3099(16)30324-3
Lequime, S. & Lambrechts, L. Vertical transmission of arboviruses in mosquitoes: a historical perspective. Infect. Genet. Evol. 28, 681–690 (2014). DOI: 10.1016/j.meegid.2014.07.025
Favier, C. et al. Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc. Biol. Sci. 272, 1171–1177 (2005).
Andraud, M., Hens, N., Marais, C. & Beutels, P. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS ONE 7, e49085 (2012). DOI: 10.1371/journal.pone.0049085
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2015). DOI: 10.1371/journal.pone.0146021