“Ageing and health,” (2023). Available online at: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
Deyle, G. D., “The role of MRI in musculoskeletal practice: a clinical perspective,” Journal of Manual & Manipulative Therapy 19(3), 152–161 (2011). PMID: 22851878.
Adams, C. R., Brady, P. C., Koo, S. S., Narbona, P., Arrigoni, P., Karnes, G. J., and Burkhart, S. S., “A Systematic Approach for Diagnosing Subscapularis Tendon Tears With Preoperative Magnetic Resonance Imaging Scans,” Arthroscopy: The Journal of Arthroscopic & Related Surgery 28(11), 1592–1600 (2012).
Furukawa, R., Morihara, T., Arai, Y., Ito, H., Kida, Y., Sukenari, T., Horii, M., Ikoma, K., Fujiwara, H., and Kubo, T., “Diagnostic accuracy of magnetic resonance imaging for subscapularis tendon tears using radial-slice magnetic resonance images,” Journal of Shoulder and Elbow Surgery 23(11), e283–e290 (2014).
Naimark, M., Zhang, A. L., Leon, I., Trivellas, A., Feeley, B. T., and Ma, C. B., “Clinical, Radiographic, and Surgical Presentation of Subscapularis Tendon Tears: A Retrospective Analysis of 139 Patients,” Arthroscopy: The Journal of Arthroscopic & Related Surgery 32(5), 747–752 (2016).
Parker, L., Nazarian, L. N., Carrino, J. A., Morrison, W. B., Grimaldi, G., Frangos, A. J., Levin, D. C., and Rao, V. M., “Musculoskeletal Imaging: Medicare Use, Costs, and Potential for Cost Substitution,” Journal of the American College of Radiology 5(3), 182–188 (2008).
James Davidson, J. F., Burkhart, S. S., Richards, D. P., and Campbell, S. E., “Use of Preoperative Magnetic Resonance Imaging to Predict Rotator Cuff Tear Pattern and Method of Repair,” Arthroscopy 21, 1428.e1–1428.e10 (Dec 2005).
de Jesus, J. O., Parker, L., Frangos, A. J., and Nazarian, L. N., “Accuracy of mri, mr arthrography, and ultrasound in the diagnosis of rotator cuff tears: A meta-analysis,” American Journal of Roentgenology 192(6), 1701–1707 (2009). PMID: 19457838.
Kim, M., Park, H.-m., Kim, J. Y., Kim, S. H., Hoeke, S., and De Neve, W., “MRI-based Diagnosis of Rotator Cuff Tears using Deep Learning and Weighted Linear Combinations,” in Proceedings of the 5th Machine Learning for Healthcare Conference, Doshi-Velez, F., Fackler, J., Jung, K., Kale, D., Ranganath, R., Wallace, B., and Wiens, J., eds., Proceedings of Machine Learning Research 126, 292–308, PMLR (07–08 Aug 2020).
Doi, K., “Computer-aided diagnosis in medical imaging: Historical review, current status and future potential,” Computerized Medical Imaging and Graphics 31(4), 198–211 (2007). Computer-aided Diagnosis (CAD) and Image-guided Decision Support.
Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., Bereket, M., Patel, B. N., Yeom, K. W., Shpanskaya, K., Halabi, S., Zucker, E., Fanton, G., Amanatullah, D. F., Beaulieu, C. F., Riley, G. M., Stewart, R. J., Blankenberg, F. G., Larson, D. B., Jones, R. H., Langlotz, C. P., Ng, A. Y., and Lungren, M. P., “Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet,” PLOS Medicine 15, 1–19 (11 2018).
Kang, H., Park, H., Ahn, Y., Van Messem, A., and De Neve, W., “Towards a quantitative analysis of class activation mapping for deep learning-based computer-aided diagnosis,” in Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, Samuelson, F. W. and Taylor-Phillips, S., eds., 11599, 115990M, International Society for Optics and Photonics, SPIE (2021).
Goodman, B. C. and Flaxman, S., “European Union regulations on algorithmic decision-making and a “right to explanation”,” AI Magazine 38(3), 50–57 (2017).
Vancura, D., Characterizing the Structural and Functional Anatomy Associated with Rotator Cuff Muscle Injury, Master’s thesis (2012).
Standring, S., Gray’s Anatomy: The Anatomical Basis of Clinical Practice, Elsevier Health Sciences (2015).
“MRI of the Shoulder,” (2023). Available online at: https://www.radiologyinfo.org/en/info/shouldermr.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” in 2017 IEEE International Conference on Computer Vision (ICCV), 618–626 (2017).
Lundberg, S. M. and Lee, S.-I., “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems 30, Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., eds., 4765–4774, Curran Associates, Inc. (2017).
Besbes, A., “MRNet: GitHub Repository,” (2019). Available online at: https://github.com/ahmedbesbes/mrnet.
Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, Pereira, F., Burges, C., Bottou, L., and Weinberger, K., eds., 25, Curran Associates, Inc. (2012).
Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L., “ImageNet: A Large-Scale Hierarchical Image Database,” CVPR09 (2009). Used for pretraining parameters in various models.
Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980 (2014).
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy_with_logits.html (2019). Accessed: January 11, 2024.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning representations by back-propagating errors,” nature 323(6088), 533–536 (1986).
Makino, T., Jastrzębski, S., Oleszkiewicz, W., Chacko, C., Ehrenpreis, R., Samreen, N., Chhor, C., Kim, E., Lee, J., Pysarenko, K., Reig, B., Toth, H., Awal, D., Du, L., Kim, A., Park, J., Sodickson, D. K., Heacock, L., Moy, L., Cho, K., and Geras, K. J., “Differences between human and machine perception in medical diagnosis,” Scientific Reports 12, 6877 (Apr 2022).