[en] Despite their economic value, sheep remain relatively poorly studied animals in terms of the number of known loci and genes associated with commercially important traits. This gap in our knowledge can be filled in by performing new genome-wide association studies (GWAS) or by re-analyzing previously documented data using novel powerful statistical methods. This study is focused on the search for new loci associated with meat productivity and carcass traits in sheep. With a multivariate approach applied to publicly available GWAS results, we identified eight novel loci associated with the meat productivity and carcass traits in sheep. Using an in silico follow-up approach, we prioritized 13 genes in these loci. One of eight novel loci near the FAM3C and WNT16 genes has been replicated in an independent sample of Russian sheep populations (N = 108). The novel loci were added to our regularly updated database increasing the number of known loci to more than 140.
Disciplines :
Genetics & genetic processes
Author, co-author :
Zlobin, Alexander ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics ; Kurchatov Genomics Center of IC&G, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
Nikulin, Pavel S; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
Volkova, Natalia A ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia
Zinovieva, Natalia A ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia
Iolchiev, Baylar S ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia
Bagirov, Vugar A; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia
Borodin, Pavel M ; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia ; Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
Aksenovich, Tatiana I; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia ; Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
Tsepilov, Yakov A ; Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia ; L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Moscow Region, Russia ; Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
Language :
English
Title :
Multivariate Analysis Identifies Eight Novel Loci Associated with Meat Productivity Traits in Sheep.
The work of Y.A.T., P.M.B., T.I.A., and N.A.V. was supported by Russian Science Foundation #18‐16‐00079. The work of A.S.Z. was supported by the Kurchatov Genomics Center of IC&G (075‐15‐2019‐1662). The work of N.A.Z., V.A.B., and B.S.I. was supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. 0445‐2021‐0005).Funding: The work of Y.A.T., P.M.B., T.I.A., and N.A.V. was supported by Russian Science Foun‐ dation #18‐16‐00079. The work of A.S.Z. was supported by the Kurchatov Genomics Center of IC&G (075‐15‐2019‐1662). The work of N.A.Z., V.A.B., and B.S.I. was supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. 0445‐2021‐0005).
Teixeira, A.; Silva, S.; Rodrigues, S. Advances in Sheep and Goat Meat Products Research, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 87; ISBN 9780128160497.
Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker‐assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196, doi:10.1007/s10681‐005‐ 1681‐5.
Zlobin, A.S.; Volkova, N.A.; Borodin, P.M.; Aksenovich, T.I.; Tsepilov, Y.A. Recent advances in understanding genetic variants associated with growth, carcass and meat productivity traits in sheep (Ovis aries): An update. Arch. Anim. Breed. 2019, 62, 579– 583, doi:10.5194/aab‐62‐579‐2019.
Chung, J.; Jun, G.R.; Dupuis, J.; Farrer, L.A. Comparison of methods for multivariate gene‐based association tests for complex diseases using common variants. Eur. J. Hum. Genet. 2019, 27, 811–823, doi:10.1038/s41431‐018‐0327‐8.
Shen, X.; Wang, X.; Ning, Z.; Tsepilov, Y.; Shirali, M.; Smith, B.H.; Hocking, L.J.; Padmanabhan, S.; Hayward, C.; Porteous, D.J. Simple multi‐trait analysis identifies novel loci associated with growth and obesity measures. bioRxiv 2015, 22269.
Stephens, M. A Unified Framework for Association Analysis with Multiple Related Phenotypes. PLoS ONE 2013, 8, e65245, doi:10.1371/journal.pone.0065245.
Shen, X.; Klarić, L.; Sharapov, S.; Mangino, M.; Ning, Z.; Wu, D.; Trbojević‐Akmačić, I.; Pučić‐Baković, M.; Rudan, I.; Polašek, O.; et al. Multivariate discovery and replication of five novel loci associated with Immunoglobulin G N‐glycosylation. Nat. Commun. 2017, 8, 447, doi:10.1038/s41467‐017‐00453‐3.
Timmers, P.R.H.J.; Wilson, J.F.; Joshi, P.K.; Deelen, J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat. Commun. 2020, 11, 1–10, doi:10.1038/s41467‐020‐17312‐3.
Brčić, L.; Barić, A.; Gračan, S.; Torlak, V.; Brekalo, M.; Škrabić, V.; Zemunik, T.; Barbalić, M.; Punda, A.; Boraska Perica, V. Genome‐wide association analysis suggests novel loci underlying thyroid antibodies in Hashimoto’s thyroiditis. Sci. Rep. 2019, 9, 1–10, doi:10.1038/s41598‐019‐41850‐6.
Bolormaa, S.; Hayes, B.J.; van der Werf, J.H.J.; Pethick, D.; Goddard, M.E.; Daetwyler, H.D. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genom. 2016, 17, doi:10.1186/s12864‐016‐2538‐0.
Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A new approach for efficient genotype imputation using information from relatives. BMC Genom. 2014, 15, doi:10.1186/1471‐2164‐15‐478.
Download Sheep Data Available online: http://bioinformatics.tecnoparco.org/SNPchimp/index.php/download/download-sheep‐data (accessed on 2 September 2020).
Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.
Klarić, L.; Tsepilov, Y.A.; Stanton, C.M.; Mangino, M.; Sikka, T.T.; Esko, T.; Pakhomov, E.; Salo, P.; Deelen, J.; McGurnaghan, S.J.; et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 2020, 6, 24, doi:10.1126/sciadv.aax0301.
Zhou, X.; Stephens, M. Genome‐wide efficient mixed‐model analysis for association studies. Nat. Genet. 2012, 44, 821–824, doi:10.1038/ng.2310.
Bolormaa, S.; Pryce, J.E.; Reverter, A.; Zhang, Y.; Barendse, W.; Kemper, K.; Tier, B.; Savin, K.; Hayes, B.J.; Goddard, M.E. A Multi‐Trait, Meta‐analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle. PLoS Genet. 2014, 10, e1004198, doi:10.1371/journal.pgen.1004198.
Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome‐wide association studies. Nat. Genet. 2010, 42, 348–354, doi:10.1038/ng.548.
Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and efficient meta‐analysis of genomewide association scans. Bioinformatics 2010, 26, 2190–2191, doi:10.1093/bioinformatics/btq340.
Sirmaci, A.; Walsh, T.; Akay, H.; Spiliopoulos, M.; Şakalar, Y.B.; Hasanefendioǧlu‐Bayrak, A.; Duman, D.; Farooq, A.; King, M.C.; Tekin, M. MASP1 mutations in patients with facial, umbilical, coccygeal, and auditory findings of carnevale, malpuech, OSA, and michels syndromes. Am. J. Hum. Genet. 2010, 87, 679–686, doi:10.1016/j.ajhg.2010.09.018.
Kearney, C.J.; Randall, K.L.; Oliaro, J. DOCK8 regulates signal transduction events to control immunity. Cell. Mol. Immunol. 2017, 14, 406–411, doi:10.1038/cmi.2017.9.
Moiseeva, E.P.; Belkin, A.M.; Spurr, N.K.; Koteliansky, V.E.; Critchley, D.R. A novel dystrophin/utrophin‐associated protein is an enzymatically inactive member of the phosphoglucomutase superfamily. Eur. J. Biochem. 1996, 235, 103–113, doi:10.1111/j.1432‐1033.1996.00103.x.
Huang, S.; Ye, L.; Chen, H. Sex determination and maintenance: The role of DMRT1 and FOXL2. Asian J. Androl. 2017, 19, 619– 624, doi:10.4103/1008‐682X.194420.
Guo, X.; Day, T.F.; Jiang, X.; Garrett‐Beal, L.; Topol, L.; Yang, Y. Wnt/β‐catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004, 18, 2404–2417, doi:10.1101/gad.1230704.
Gilbertson, R.J.; Clifford, S.C. PDGFRB is overexpressed in metastatic medulloblastoma. Nat. Genet. 2003, 35, 197–198.
Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.K.; Attar, N.; Sazegar, H.; et al. Melanomas acquire resistance to B‐RAF(V600E) inhibition by RTK or N‐RAS upregulation. Nature 2010, 468, 973–977, doi:10.1038/na-ture09626.
Lee, J.; Termglinchan, V.; Diecke, S.; Itzhaki, I.; Lam, C.K.; Garg, P.; Lau, E.; Greenhaw, M.; Seeger, T.; Wu, H.; et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 2019, 572, 335–340, doi:10.1038/s41586‐019‐1406‐x.
Bonner, C.A.; Loftus, S.K.; Wasmuth, J.J. Isolation, characterization, and precise physical localization of human CDX1, a caudal-type homeobox gene. Genomics 1995, 28, 206–211, doi:10.1006/geno.1995.1132.
Sanchez, E.; Laplace‐Builhé, B.; Mau‐Them, F.T.; Richard, E.; Goldenberg, A.; Toler, T.L.; Guignard, T.; Gatinois, V.; Vincent, M.; Blanchet, C.; et al. POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genet. Med. 2020, 22, 547– 556, doi:10.1038/s41436‐019‐0669‐9.