Felidae; Nimravidae; Convergence; 3D geometric morphometrics; integration; Disparity; Skull; Mandible; Rate of evolution
Abstract :
[en] The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct into the tempo and mode of cranio-mandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and sabertoothed species but also within sabertoothed morphotypes. To do so, we investigate morphological variation, convergence, phenotypic integration, and evolutionary rates, employing a comprehensive dataset of nearly 200 3D models encompassing mandibles and crania from both extinct and extant feline-like carnivorans, spanning their entire evolutionary timeline. Our results reject the hypothesis of a distinctive sabretooth morphology, revealing instead a continuous spectrum of feline-like phenotypes in both cranium and mandible, with sporadic instances of unequivocal convergence. Disparity peaked at the end of the Miocene and is usually higher in clades containing taxa with extreme sabertoothed adaptations. We show that taxa with saberteeth exhibit a lower degree of craniomandibular integration, allowing to exhibit a greater range of phenotypes. Those same groups usually show a burst of morphological evolutionary rate at the beginning of their evolutionary history. Consequently, we propose that a reduced degree of integration coupled with rapid evolutionary rates emerge as key components in the development of a sabertoothed morphology in multiple clades.
Disciplines :
Zoology Life sciences: Multidisciplinary, general & others Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Chatar, Narimane ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; UC Berkeley [US-CA] > Department of Integrative Biology > Functional Anatomy and Vertebrate Evolution Lab
Michaud, Margot ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; Université des Antilles et de la Guyane [FR] > Département Formation et Recherche Sciences et Technologie
Tamagnini, Davide; Sapienza - Sapienza Università di Roma [IT] > Department of Biology and Biotechnologies
Fischer, Valentin ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab
Language :
English
Title :
Evolutionary patterns of cat-like carnivorans unveils drivers of the sabertoothed morphology
Publication date :
2024
Journal title :
Current Biology
ISSN :
0960-9822
eISSN :
1879-0445
Publisher :
Cell Press, Cambridge, United States - Massachusetts
Volume :
34
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
SYNTHESYS Access Program
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BAEF - Belgian American Educational Foundation Sapienza - Sapienza Università di Roma FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Funding number :
FRIA FC 36251; MIS F.4511.19; CN00000033; ES-TAF-2750
Funding text :
NC was supported by a grant from the Fonds de la Recherche Scientifique F.R.S.–FNRS (FRIA grant number FRIA FC 36251) and is currently supported by a Belgian American Educational Foundation (BAEF) post-doctoral fellowship. VF is supported by a grant from the Fonds de la Recherche Scientifique F.R.S.–FNRS (MIS F.4511.19). DT is grateful to NBFC, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, “Dalla ricerca all’ impresa”, Investimento 1.4, Project CN00000033. DT also received support from ‘Avvio alla Ricerca 2019, 2020, and 2022’ funding, which is financed by the University of Rome ‘La Sapienza’. DT also received support from the SYNTHESYS Access Program that is financed by the European Community Research Infrastructure Action under the FP7 (ES-TAF-2750 awarded to DT).
Turner, A., Antón, M., The Big Cats and Their Fossil Relatives: an Illustrated Guide to Their Evolution and Natural History. 1997, Columbia University Press.
McGhee, G.R., The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces. 2006, Cambridge University Press.
Van Valkenburgh, B., Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47 (2007), 147–163, 10.1093/icb/icm016.
Anton, M., Sabertooth. Farlow, J.O., (eds.), 2013, Indiana University Press.
Turner, A., Antón, M., Salesa, M.J., Morales, J., Changing ideas about the evolution and functional morphology of Machairodontine felids. Estud. Geol. 67 (2011), 255–276, 10.3989/egeol.40590.188.
Van Valkenburgh, B., Jenkins, I., Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators. Paleontol. Soc. Pap. 8 (2002), 267–288, 10.1017/S1089332600001121.
Martin, L.D., Babiarz, J.P., Naples, V.L., Hearst, J., Three ways to be a saber-toothed cat. Naturwissenschaften 87 (2000), 41–44, 10.1007/s001140050007.
Akersten, W.A., Canine function in Smilodon (Mammalia; Felidae; Machairodontinae). Contrib. Sci. 356 (1985), 1–22, 10.5962/p.226830.
Antón, M., Galobart, A., Turner, A., Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quat. Sci. Rev. 24 (2005), 1287–1301, 10.1016/J.QUASCIREV.2004.09.008.
Antón, M., Siliceo, G., Pastor, J.F., Morales, J., Salesa, M.J., The early evolution of the sabre-toothed felid killing bite: the significance of the cervical morphology of Machairodus aphanistus (Carnivora: Felidae: Machairodontinae). Zool. J. Linn. Soc. 188 (2020), 319–342, 10.1093/zoolinnean/zlz086.
Meachen-Samuels, J., Van Valkenburgh, B., Forelimb indicators of prey-size preference in the felidae. J. Morphol. 270 (2009), 729–744, 10.1002/jmor.10712.
Chatar, N., Fischer, V., Tseng, Z.J., Many-to-one function of cat-like mandibles highlights a continuum of sabre-tooth adaptations. Proc. Biol. Sci., 289, 2022, 20221627, 10.1098/rspb.2022.1627.
Slater, G.J., Van Valkenburgh, B., Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34 (2008), 403–419, 10.1666/07061.1.
Figueirido, B., Lautenschlager, S., Pérez-Ramos, A., Van Valkenburgh, B., Distinct Predatory Behaviors in Scimitar- and Dirk-Toothed Sabertooth Cats. Curr. Biol. 28 (2018), 3260–3266.e3, 10.1016/j.cub.2018.08.012.
Andersson, K., Norman, D., Werdelin, L., Sabretoothed Carnivores and the Killing of Large Prey. PLoS One, 6, 2011, e24971, 10.1371/journal.pone.0024971.
Werdelin, L., Yamaguchi, N., Johnson, E., Brien, S.J.O., Phylogeny and evolution of cats (Felidae). Macdonald, D., Loveridge, A., (eds.) Biology and Conservation of Wild Felids, 2010, Oxford University Press, 59–82.
Sakamoto, M., Ruta, M., Convergence and Divergence in the Evolution of Cat Skulls: Temporal and Spatial Patterns of Morphological Diversity. PLoS One, 7, 2012, e39752, 10.1371/journal.pone.0039752.
Piras, P., Maiorino, L., Teresi, L., Meloro, C., Lucci, F., Kotsakis, T., Raia, P., Bite of the cats: Relationships between functional integration and mechanical performance as revealed by mandible geometry. Syst. Biol. 62 (2013), 878–900, 10.1093/sysbio/syt053.
Piras, P., Silvestro, D., Carotenuto, F., Castiglione, S., Kotsakis, A., Maiorino, L., Melchionna, M., Mondanaro, A., Sansalone, G., Serio, C., et al. Evolution of the sabertooth mandible: A deadly ecomorphological specialization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496 (2018), 166–174, 10.1016/j.palaeo.2018.01.034.
Romano, M., Cranial disparity versus diversity in sabertoothed felids: A case of late morphospace saturation. J. Mediterr. Earth Sci. 11 (2019), 81–92, 10.3304/JMES.2019.006.
Christiansen, P., Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS One, 3, 2008, e2807, 10.1371/journal.pone.0002807.
Stayton, C.T., What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution. Interface Focus, 5, 2015, 20150039, 10.1098/RSFS.2015.0039.
Castiglione, S., Serio, C., Tamagnini, D., Melchionna, M., Mondanaro, A., Di Febbraro, M., Profico, A., Piras, P., Barattolo, F., Raia, P., A new, fast method to search for morphological convergence with shape data. PLoS One, 14, 2019, e0226949, 10.1371/JOURNAL.PONE.0226949.
Goswami, A., Watanabe, A., Felice, R.N., Bardua, C., Fabre, A.C., Polly, P.D., High-Density Morphometric Analysis of Shape and Integration: The Good, the Bad, and the Not-Really-a-Problem. Integr. Comp. Biol. 59 (2019), 669–683, 10.1093/icb/icz120.
Watanabe, A., Fabre, A.C., Felice, R.N., Maisano, J.A., Müller, J., Herrel, A., Goswami, A., Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl. Acad. Sci. USA 116 (2019), 14688–14697, 10.1073/pnas.1820967116.
Cheverud, J.M., Phenotypic, Genetic, and Environmental Morphological Integration in the Cranium. Evolution 36 (1982), 499–516, 10.1111/j.1558-5646.1982.tb05070.x.
Hallgrímsson, B., Willmore, K., Dorval, C., Cooper, D.M.L., Craniofacial variability and modularity in macaques and mice. J. Exp. Zool. B Mol. Dev. Evol. 302 (2004), 207–225, 10.1002/jez.b.21002.
Wagner, G.P., Homologues, Natural Kinds and the Evolution of Modularity. Am. Zool. 36 (1996), 36–43, 10.1093/icb/36.1.36.
Goswami, A., Polly, P.D., Methods For studyIng MorPhologIcal IntegratIon and ModularIty. Paleontol. Soc. Pap. 16 (2010), 213–243, 10.1017/S1089332600001881.
Klingenberg, C.P., Evolution and development of shape: integrating quantitative approaches. Nat. Rev. Genet. 11 (2010), 623–635, 10.1038/nrg2829.
Felice, R.N., Randau, M., Goswami, A., A fly in a tube: Macroevolutionary expectations for integrated phenotypes. Evolution 72 (2018), 2580–2594, 10.1111/EVO.13608.
Christiansen, P., Sabertooth characters in the clouded leopard (Neofelis nebulosa Griffiths 1821). J. Morphol. 267 (2006), 1186–1198, 10.1002/jmor.10468.
Christiansen, P., Evolutionary convergence of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus ogygia compared. J. Mammal. Evol. 15 (2008), 155–179, 10.1007/s10914-007-9069-z.
Harano, T., Kutsukake, N., Directional selection in the evolution of elongated upper canines in clouded leopards and sabre-toothed cats. J. Evol. Biol. 31 (2018), 1268–1283, 10.1111/jeb.13309.
Seidensticker, J., On the Ecological Separation between Tigers and Leopards. Biotropica 8 (1976), 225–234, 10.2307/2989714.
Bailey, T.N., The African Leopard: Ecology and Behavior of a Solitary Felid. 1993, Columbia University Press.
Law, C.J., Blackwell, E.A., Curtis, A.A., Dickinson, E., Hartstone-Rose, A., Santana, S.E., Decoupled evolution of the cranium and mandible in carnivoran mammals. Evolution 76 (2022), 2959–2974, 10.1111/EVO.14578.
Welsh, E., Boyd, C.A., Spearing, K., Split carinae on a specimen of false saber-toothed cat (Carnivora: Nimravidae) and the implications for analogous tooth abnormality formation in mammals and theropod dinorsaurs. Proc. S. Dak. Acad. Sci. 99 (2020), 69–82.
Cope, E.D., On the extinct cats of America. Am. Nat. 14 (1880), 833–858, 10.1086/272672.
Welsh, E., Boyad, C.A., Spearing, K., Barrett, P.Z., Stratigraphic and taxonomic revision of a north american false saber-toothed cat cub. Proc. S. Dak. Acad. Sci. 94 (2015), 141–153.
Anton, M., Salesa, M.J., Morales, J., Turner, A., First known complete skulls of the scimitar-toothed cat Machairodus aphanistus (Felidae, Carnivora) from the Spanish late Miocene site of Batallones-1. J. Vertebr. Paleontol. 24 (2004), 957–969, 10.1671/0272-4634(2004)024[0957:FKCSOT]2.0.CO;2.
Antón, M., Galobart, À., Neck function and predatory behavior in the scimitar toothed cat Homotherium latidens (Owen). J. Vertebr. Paleontol. 19 (1999), 771–784, 10.1080/02724634.1999.10011190.
Meachen-Samuels, J.A., van Valkenburgh, B., Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis. PLoS One, 5, 2010, e11412, 10.1371/JOURNAL.PONE.0011412.
Chatar, N., Fischer, V., Siliceo, G., Antón, M., Morales, J., Salesa, M.J., Morphometric Analysis of the Mandible of Primitive Sabertoothed Felids from the late Miocene of Spain. J. Mammal. Evol. 28 (2021), 753–771, 10.1007/s10914-021-09541-0.
Salesa, M.J., Antón, M., Turner, A., Morales, J., Inferred behaviour and ecology of the primitive sabre-toothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the Late Miocene of Spain. J. Zool. 268 (2006), 243–254, 10.1111/j.1469-7998.2005.00032.x.
Li, Y., Spassov, N., A new species of Paramachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision of Promegantereon Kretzoi, 1938 and Paramachaerodus Pilgrim, 1913. PalZ 91 (2017), 409–426, 10.1007/s12542-017-0371-7.
Monescillo, M.F.G., Salesa, M.J., Antón, M., Siliceo, G., Morales, J., Machairodus aphanistus (Felidae, Machairodontinae, Homotherini) from the late Miocene (Vallesian, MN 10) site of Batallones-3 (Torrejón de Velasco, Madrid, Spain). J. Vertebr. Paleontol. 34 (2014), 699–709, 10.1080/02724634.2013.804415.
Salesa, M.J., Antón, M., Turner, A., Morales, J., Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: Implications for the origins of the machairodont killing bite. Zool. J. Linn. Soc. 144 (2005), 363–377, 10.1111/j.1096-3642.2005.00174.x.
Averianov, A., Obraztsova, E., Danilov, I., Skutschas, P., Jin, J., First nimravid skull from Asia. Sci. Rep., 6, 2016, 25812, 10.1038/srep25812.
Peigné, S., A primitive nimravine skull from the Quercy fissures, France: implications for the origin and evolution of Nimravidae (Carnivora). Zool. J. Linn. Soc. 132 (2001), 401–410, 10.1111/j.1096-3642.2001.tb02467.x.
Bryant, H.N., Phylogenetic Relationships and Systematics of the Nimravidae (Carnivora). J. Mammal. 72 (1991), 56–78, 10.2307/1381980.
Melchionna, M., Profico, A., Castiglione, S., Serio, C., Mondanaro, A., Modafferi, M., Tamagnini, D., Maiorano, L., Raia, P., Witmer, L.M., et al. A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth. Palaeontology 64 (2021), 573–584, 10.1111/pala.12542.
Dayan, T., Simberloff, D., Tchernov, E., Yom-Tov, Y., Feline Canines: Community-Wide Character Displacement Among the Small Cats of Israel. Am. Nat. 136 (1990), 39–60, 10.1086/285081.
Peigné, S., Proailurus, l'un des plus anciens Felidae (Carnivora) d'Eurasie: systématique et évolution. Bull. Soc. Hist. Nat. Toulouse 135 (1999), 125–134.
de Beaumont, G., Recherches sur Felis attica Wagner du Pontien eurasiatique avec quelques observations sur les genres Pseudaelurus Gervais et Proailurus Filhol. Nouvelles archives du Muséum d'histoire naturelle de Lyon 6 (1961), 1X–45.
Sunquist, M., Sunquist, F., Wild Cats of the World. 2002, University of Chicago Press.
Peterhans, J.C.K., Wrangham, R.W., Carter, M.L., Hauser, M.D., A contribution to tropical rain forest taphonomy: retrieval and documentation of chimpanzee remains from Kibale Forest, Uganda. J. Hum. Evol. 25 (1993), 485–514, 10.1006/jhev.1993.1063.
Behrensmeyer, A.K., Western, D., Boaz, D.E.D., New Perspectives in Vertebrate Paleoecology from a Recent Bone Assemblage. Paleobiology 5 (1979), 12–21, 10.1017/S0094837300006254.
Turner, A., Antón, M., Climate and evolution: implications of some extinction patterns in African and European Machairodontine Cats of the Plio-Pleistocene. Estudios Geológicos 54 (1998), 209–230.
Christiansen, P., Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29 (2012), 543–559.
Stuart, A.J., Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50 (2015), 338–363, 10.1002/GJ.2633.
Hetherington, A.J., Sherratt, E., Ruta, M., Wilkinson, M., Deline, B., Donoghue, P.C.J., Do cladistic and morphometric data capture common patterns of morphological disparity?. Palaeontology 58 (2015), 393–399, 10.1111/pala.12159.
Wills, M.A., Briggs, D.E.G., Fortey, R.A., Disparity as an Evolutionary Index: A Comparison of Cambrian and Recent Arthropods. Paleobiology 20 (1994), 93–130, 10.1017/S009483730001263X.
Hughes, M., Gerber, S., Wills, M.A., Clades reach highest morphological disparity early in their evolution. Proc. Natl. Acad. Sci. USA 110 (2013), 13875–13879, 10.1073/pnas.1302642110.
Schlager, S., Profico, A., Di Vincenzo, F., Manzi, G., Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho”. 2018, 10.1371/journal.pone.0194073.
Meloro, C., Slater, G.J., Covariation in the Skull Modules of Cats: The challenge of growing saber-like canines. J. Vertebr. Paleontol. 32 (2012), 677–685, 10.1080/02724634.2012.649328.
Tamagnini, D., Michaud, M., Meloro, C., Raia, P., Soibelzon, L., Tambusso, P.S., Varela, L., Maiorano, L., Conical and sabertoothed cats as an exception to craniofacial evolutionary allometry. Sci. Rep., 13, 2023, 13571, 10.1038/s41598-023-40677-6.
R Core Team. R: A Language and Environment for Statistical Computing. 2021, R Foundation for Statistical Computing.
AMETEK Inc. VXmodel. 2023 https://www.creaform3d.com/en.
Blender Online Community. Blender - a 3D modelling and rendering package. 2023, Blender Institute https://manpages.ubuntu.com/manpages/xenial/en/man1/blender.1.html.
Cigoni, P., Callieri, M., Corsini, M., Meshlab: an open-source mesh processing tool. ERCIM NEWS 73 (2008), 47–48.
Schlager, S., Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations. Stat. Shape Deform. Anal.: Methods Implement. Appl., 2017, 217–256, 10.1016/B978-0-12-810493-4.00011-0.
Robles, J.M., Alba, D.M., Fortuny, J., De Esteban-Trivigno, S.D., Rotgers, C., Balaguer, J., Carmona, R., Galindo, J., Almécija, S., Bertó, J.V., et al. New craniodental remains of the barbourofelid Albanosmilus jourdani (Filhol, 1883) from the Miocene of the Vallès-Penedès Basin (NE Iberian Peninsula) and the phylogeny of the Barbourofelini. J. Syst. Palaeontol. 11 (2013), 993–1022, 10.1080/14772019.2012.724090.
Tseng, Z.J., Wang, X., Slater, G.J., Takeuchi, G.T., Li, Q., Liu, J., Xie, G., Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc. Biol. Sci., 281, 2014, 20132686, 10.1098/rspb.2013.2686.
Spassov, N., Geraads, D., A New Felid from the Late Miocene of the Balkans and the Contents of the Genus Metailurus Zdansky, 1924 (Carnivora, Felidae). J. Mammal. Evol. 22 (2015), 45–56, 10.1007/s10914-014-9266-5.
Adams, J.W., Olah, A., McCurry, M.R., Potze, S., Surface Model and Tomographic Archive of Fossil Primate and Other Mammal Holotype and Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS One, 10, 2015, e0139800, 10.1371/journal.pone.0139800.
Geraads, D., Spassov, N., A skull of Machairodus Kaup, 1833 (Felidae, Mammalia) from the late Miocene of Hadjidimovo (Bulgaria), and its place in the evolution of the genus. Geodiversitas 42 (2020), 123–137, 10.5252/geodiversitas2020v42a9.
Wang, X., White, S.C., Guan, J., A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids. J. Syst. Palaeontol. 18 (2020), 783–803, 10.1080/14772019.2019.1691066.
Bookstein, F., Morphometric Tools for Landmark Data: Geometry and Biology. 1991, Camridge University Press.
Adams, D.C., Otárola-Castillo, E., geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4 (2013), 393–399, 10.1111/2041-210X.12035.
Barrett, P.Z., The largest hoplophonine and a complex new hypothesis of nimravid evolution. Sci. Rep., 11, 2021, 21078, 10.1038/s41598-021-00521-1.
Jiangzuo, Q., Werdelin, L., Sun, Y., A dwarf sabertooth cat (Felidae: Machairodontinae) from Shanxi, China, and the phylogeny of the sabertooth tribe Machairodontini. Quat. Sci. Rev., 284, 2022, 107517, 10.1016/j.quascirev.2022.107517.
Slater, G.J., Friscia, A.R., Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia). Evolution 73 (2019), 524–539, 10.1111/evo.13689.
Paradis, E., Schliep, K., Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 (2019), 526–528, 10.1093/bioinformatics/bty633.
Chatar, N., Michaud, M., Fischer, V., Not a jaguar after all? Phylogenetic affinities and morphology of the Pleistocene felid Panthera gombaszoegensis. Pap. Palaeontol., 8, 2022, e1464, 10.1002/spp2.1464.
Rothwell, T., Phylogenetic systematics of North American Pseudaelurus (Carnivora: Felidae). Am. Mus. Novit. 3403 (2003), 1–64, 10.1206/0003-0082(2003)403<0001:PSONAP>2.0.CO;2.
Collier, G.E., O'Brien, S.J., A molecular phylogeny of the Felidae: immunological distance. Evolution 39 (1985), 473–487, 10.1111/J.1558-5646.1985.TB00389.X.
Johnson, W.E., Eizirik, E., Pecon-Slattery, J., Murphy, W.J., Antunes, A., Teeling, E., O'Brien, S.J., The late miocene radiation of modern felidae: A genetic assessment. Science 311 (2006), 73–77, 10.1126/science.1122277.
Figueiró, H.V., Li, G., Trindade, F.J., Assis, J., Pais, F., Fernandes, G., Santos, S.H.D., Hughes, G.M., Komissarov, A., Antunes, A., et al. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv., 3, 2017, e1700299, 10.1126/sciadv.1700299.
Bapst, D.W., paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3 (2012), 803–807, 10.1111/j.2041-210X.2012.00223.x.
Barrett, P.Z., Hopkins, S.S.B., Price, S.A., How many sabertooths? Reevaluating the number of carnivoran sabretooth lineages with total-evidence Bayesian techniques and a novel origin of the Miocene Nimravidae. J. Vertebr. Paleontol. 41 (2021), 1–15, 10.1080/02724634.2021.1923523.
Sakamoto, M., Lloyd, G.T., Benton, M.J., Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance. J. Evol. Biol. 23 (2010), 463–478, 10.1111/j.1420-9101.2009.01922.x.
Madurell-Malapeira, J., Rodríguez-Hidalgo, A., Aouraghe, H., Haddoumi, H., Lucenti, S.B., Oujaa, A., Saladié, P., Bengamra, S., Marín, J., Souhir, M., et al. First small-sized Dinofelis: Evidence from the Plio-Pleistocene of North Africa. Quat. Sci. Rev., 265, 2021, 107028, 10.1016/J.QUASCIREV.2021.107028.
Christiansen, P., Adolfssen, J.S., Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). J. Zool. 266 (2005), 133–151, 10.1017/S0952836905006643.
Slater, G.J., Van Valkenburgh, B., Allometry and performance: The evolution of skull form and function in felids. J. Evol. Biol. 22 (2009), 2278–2287, 10.1111/j.1420-9101.2009.01845.x.
Tamagnini, D., Meloro, C., Cardini, A., Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae. Evol. Biol. 44 (2017), 476–495, 10.1007/S11692-017-9421-Z.
Guillerme, T., dispRity: A modular R package for measuring disparity. Methods Ecol. Evol. 9 (2018), 1755–1763, 10.1111/2041-210X.13022.
Brusatte, S.L., Butler, R.J., Prieto-Márquez, A., Norell, M.A., Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Commun., 3, 2012, 804, 10.1038/ncomms1815.
Butler, R.J., Brusatte, S.L., Andres, B., Benson, R.B.J., How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution 66 (2012), 147–162, 10.1111/J.1558-5646.2011.01415.X.
Prentice, K.C., Ruta, M., Benton, M.J., Evolution of morphological disparity in pterosaurs. J. Syst. Palaeontol. 9 (2011), 337–353, 10.1080/14772019.2011.565081.
Grossnickle, D.M., Brightly, W.H., Weaver, L.N., Stanchak, K.E., Roston, R.A., Pevsner, S.K., Stayton, C.T., Roston, R.A., Law, C.J., A cautionary note on quantitative measures of phenotypic convergence. BioRxiv, 2022, 10.1101/2022.10.18.512739.
Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., Carotenuto, F., Di Febbraro, M., Profico, A., Tamagnini, D., Raia, P., Ancestral State Estimation with Phylogenetic Ridge Regression. Evol. Biol. 47 (2020), 220–232, 10.1007/s11692-020-09505-x.