[en] The intestinal barrier plays a central role in sustaining gut homeostasis and, when dysfunctional, may contribute to diseases. Dietary flavonoids derived from Citrus genus represent one of the main naturally occurring phytochemicals with multiple potential benefits for the intestinal barrier function. In the intestine, citrus flavonoids (CFs) undergo ingestion from the lumen, biotransformation in the epithelial cells and/or crosstalk with luminal microbiota to afford various metabolites that may in turn exert protective actions on gut barrier along with their parental compounds. Specifically, the health-promoting properties of CFs and their metabolic bioactives for the intestinal barrier include their capacity to (a) modulate barrier permeability; (b) protect mucus layer; (c) regulate intestinal immune system; (d) fight against oxidative stress; and (e) positively shape microbiome and metabolome. Notably, local effects of CFs can also generate systemic benefits, for instance, improvement of gut microbial dysbiosis helpful to orchestrate gut homeostasis and leading to alleviation of systemic dysmetabolism. Given the important role of the intestinal barrier in overall health, further understanding of underlying action mechanisms and ultimate health effects of CFs as well as their metabolites on the intestine is of great significance to future application of citrus plants and their bioactives as dietary supplements and/or functional ingredients in medical foods.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Wang, Meiyan ; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
Zhao, Hui; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
Wen, Xiang ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Medical Chemistry ; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China ; Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China
Ho, Chi-Tang; Department of Food Science, Rutgers University, New Brunswick, New Jersey
Li, Shiming; Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China ; Department of Food Science, Rutgers University, New Brunswick, New Jersey
Language :
English
Title :
Citrus flavonoids and the intestinal barrier: Interactions and effects.
Publication date :
January 2021
Journal title :
Comprehensive Reviews in Food Science and Food Safety
NSCF - National Natural Science Foundation of China
Funding text :
This work was financially supported by the National Natural
Science Foundation of China (Grant No. 81803548),
Tianjin Innovative Research Team Grant (TD13-5087),
Hubei Province Technical Innovation Special Project
(2019ABA100), and Natural Science Foundation of Tianjin
(19JCQNJC12400).
Abuelsaad, A. S., Mohamed, I., Allam, G., & Al-Solumani, A. A. (2013). Antimicrobial and immunomodulating activities of hesperidin and ellagic acid against diarrheic Aeromonas hydrophila in a murine model. Life Sciences, 93(20), 714–722.
Almeida, A. F., Borge, G. I. A., Piskula, M., Tudose, A., Tudoreanu, L. Valentová, K., … Santos, C. N. (2018). Bioavailability of quercetin in humans with a focus on interindividual variation. Comprehensive Reviews in Food Science & Food Safety, 17(3), 714–731.
Ameer, B., Weintraub, R. A., Johnson, J. V., Yost, R. A., & Rouseff, R. L. (1996). Flavanone absorption after naringin, hesperidin, and citrus administration. Clinical Pharmacology and Therapeutics, 60(1), 34–40.
Anhê, F. F., Pilon, G., Roy, D., Desjardins, Y., Levy, E., & Marette, A. (2016). Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes, 7(2), 146–153.
Aura, A. M., O'Leary, K. A., Williamson, G., Ojala, M., Bailey, M., Puupponen-Pimia, R., … Poutanen, K. (2002). Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. Journal of Agricultural and Food Chemistry, 50(6), 1725–1730.
Auricchio, S., Rubino, A., Landolt, M., Semenza, G., & Prader, A. (1963). Isolated intestinal lactase deficiency in the adult. Lancet, 2(7303), 324–326.
Awad, W. A., Hess, C., & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins (Basel), 9(2), 60.
Azuma, T., Shigeshiro, M., Kodama, M., Tanabe, S., & Suzuki, T. (2013). Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. Journal of Nutrition, 143(6), 827–834.
Bang, S. H., Hyun, Y. J., Shim, J., Hong, S. W., & Kim, D. H. (2015). Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. Journal of Microbiology and Biotechnology, 25(1), 18–25.
Bekiares, N., Krueger, C. G., Meudt, J. J., Shanmuganayagam, D., & Reed, J. D. (2018). Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects. OMICS: A Journal of Integrative Biology, 22(2), 145–153.
Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology & Hepatology, 12(5), 303–310.
Bloomgarden, Z. (2018). Diabetes and branched-chain amino acids: What is the link? Journal of Diabetes, 10(5), 350–352.
Boeing, T., de Souza, P., Speca, S., Somensi, L. B., Mariano, L. N. B., Cury, B. J., … de Andrade, S. F. (2020). Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. British Journal of Pharmacology, 177(10), 2393–2408. doi: https://doi.org/10.1111/bph.14987
Borges, G., Lean, M. E., Roberts, S. A., & Crozier, A. (2013). Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food & Function, 4(5), 754–762.
Borges, G., Mullen, W., Mullan, A., Lean, M. E., Roberts, S. A., & Crozier, A. (2010). Bioavailability of multiple components following acute ingestion of a polyphenol-rich juice drink. Molecular Nutrition & Food Research, 54(Suppl 2), S268–277.
Brand, W., Oosterhuis, B., Krajcsi, P., Barron, D., Dionisi, F., van Bladeren, P. J., … Williamson, G. (2011). Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells. Biopharmaceutics and Drug Disposition, 32(9), 530–535.
Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes, 7(3), 216–234.
Braune, A., Gütschow, M., Engst, W., & Blaut, M. (2001). Degradation of quercetin and luteolin by Eubacterium ramulus. Applied and Environmental Microbiology, 67(12), 5558–5567.
Bredsdorff, L., Nielsen, I. L., Rasmussen, S. E., Cornett, C., Barron, D., Bouisset, F., … Williamson, Gary. (2010). Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from alpha-rhamnosidase-treated orange juice in human subjects. British Journal of Nutrition, 103(11), 1602–1609.
Brett, G. M., Hollands, W., Needs, P. W., Teucher, B., Dainty, J. R., Davis, B. D., … Kroon, Paul A. (2009). Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. British Journal of Nutrition, 101(5), 664–675.
Burapan, S., Kim, M., & Han, J. (2017). Demethylation of Polymethoxyflavones by human gut bacterium, Blautia sp. MRG-PMF1. Journal of Agricultural and Food Chemistry, 65(8), 1620–1629.
Caderni, G., Femia, A. P., Giannini, A., Favuzza, A., Luceri, C., Salvadori, M., Dolara, P. (2003). Identification of mucin-depleted foci in the unsectioned colon of azoxymethane-treated rats: Correlation with carcinogenesis. Cancer Research, 63(10), 2388–2392.
Camilleri, M. (2019). Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut, 68(8), 1516–1526.
Camps-Bossacoma, M., Franch, A., Perez-Cano, F. J., & Castell, M. (2017). Influence of hesperidin on the systemic and intestinal rat immune response. Nutrients, 9(6), 580.
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.
Cao, H., Chen, X., Jassbi, A. R., & Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 33(1), 214–223.
Cao, H., Liu, J., Shen, P., Cai, J., Han, Y., Zhu, K., … Cao, Yongguo (2018). Protective effect of naringin on DSS-induced ulcerative colitis in mice. Journal of Agricultural and Food Chemistry, 66(50), 13133–13140.
Cermak, R., Landgraf, S., & Wolffram, S. (2004). Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. British Journal of Nutrition, 91(6), 849–855.
Chambers, C. S., Viktorova, J., Rehorova, K., Biedermann, D., Turkova, L., Macek, T., … Valentová, Kateřina. (2020). Defying multidrug resistance! modulation of related transporters by flavonoids and flavonolignans. Journal of Agricultural and Food Chemistry, 68(7), 1763–1779.
Chang, J., Leong, R. W., Wasinger, V. C., Ip, M., Yang, M., & Phan, T. G. (2017). Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology, 153(3), 723–731.e1.
Chávez-Talavera, O., Tailleux, A., Lefebvre, P., & Staels, B. (2017). Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 152(7), 1679–1694.e3.
Chen, P. Y., Li, S., Koh, Y. C., Wu, J. C., Yang, M. J., Ho, C. T., & Pan, Min-Hsiung. (2019). Oolong tea extract and citrus peel polymethoxyflavones reduce transformation of L-carnitine to trimethylamine-N-oxide and decrease vascular inflammation in l-carnitine feeding mice. Journal of Agricultural and Food Chemistry, 67(28), 7869–7879.
Chiou, Y. S., Wu, J. C., Huang, Q., Shahidi, F., Wang, Y. J., Ho, C. T., & Pan, M.-H. (2014). Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. Journal of Functional Foods, 7, 3–25.
Choi, W., Yeruva, S., & Turner, J. R. (2017). Contributions of intestinal epithelial barriers to health and disease. Experimental Cell Research, 358, 71–77.
Chun, O. K., Chung, S. J., & Song, W. O. (2007). Estimated dietary flavonoid intake and major food sources of U.S. adults. Journal of Nutrition, 137(5), 1244–1252.
Cirmi, S., Ferlazzo, N., Lombardo, G. E., Maugeri, A., Calapai, G., Gangemi, S., & Navarra, Michele. (2016). Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients, 8(11), 698.
Clemente-Postigo, M., Oliva-Olivera, W., Coin-Aragüez, L., Ramos-Molina, B., Giraldez-Perez, R. M., Lhamyani, S., … Tinahones, F. J. (2019). Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. American Journal of Physiology: Endocrinology and Metabolism, 316(2), E319–E332.
Conner, E. M., Brand, S. J., Davis, J. M., Kang, D. Y., & Grisham, M. B. (1996). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: Toxins, mediators, and modulators of gene expression. Inflammatory Bowel Diseases, 2(2), 133–147.
Cornick, S., Kumar, M., Moreau, F., Gaisano, H., & Chadee, K. (2019). VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nature Communications, 10(1), 4306.
Cox, A. J., West, N. P., & Cripps, A. W. (2015). Obesity, inflammation, and the gut microbiota. Lancet Diabetes & Endocrinology, 3(3), 207–215.
Cremonini, E., Daveri, E., Mastaloudis, A., Adamo, A. M., Mills, D., Kalanetra, K., … Oteiza, P. I. (2019). Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biology, 26, 101269.
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221–1227.
Cuyckens, F., & Claeys, M. (2005). Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. Journal of Mass Spectrometry, 40(3), 364–372.
Dabke, K., Hendrick, G., & Devkota, S. (2019). The gut microbiome and metabolic syndrome. Journal of Clinical Investigation, 129(10), 4050–4057.
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478.
Damiano, S., Sasso, A., De Felice, B., Di Gregorio, I., La Rosa, G., Lupoli, G. A., … Santillo, M. (2018). Quercetin increases MUC2 and MUC5AC gene expression and secretion in intestinal goblet cell-like LS174T via PLC/PKCα/ERK1-2 pathway. Frontiers in Physiology, 9, 357.
Daniels, L. B., Coyle, P. J., Chiao, Y. B., Glew, R. H., & Labow, R. S. (1981). Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. Journal of Biological Chemistry, 256(24), 13004–13013.
Daveri, E., Cremonini, E., Mastaloudis, A., Hester, S. N., Wood, S. M., Waterhouse, A. L., … Oteiza, Patricia I. (2018). Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology, 18, 16–24.
Davis, C., Bryan, J., Hodgson, J., & Murphy, K. (2015). Definition of the Mediterranean diet: A literature review. Nutrients, 7(11), 9139–9153.
Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M., Rhodes, M. J., Morgan, M. R., & Williamson, Gary. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Letters, 436(1), 71–75.
Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T., & Williamson, G. (2003). Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochemical Pharmacology, 65(7), 1199–1206.
De Lisle, R. C., Roach, E., & Jansson, K. (2007). Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. American Journal of Physiology: Gastrointestinal and Liver Physiology, 293(3), 577–584.
Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, 18(14), 1818–1892.
Deprez, S., Mila, I., Huneau, J. F., Tome, D., & Scalbert, A. (2001). Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxidants and Redox Signaling, 3(6), 957–967.
Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 5), 1469–1476.
Dugas, L. R., Lie, L., Plange-Rhule, J., Bedu-Addo, K., Bovet, P., Lambert, E. V., … Layden, Brian T. (2018). Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: The METS-Microbiome study protocol. BMC Public Health, 18(1), 978.
Estruel-Amades, S., Massot-Cladera, M., Perez-Cano, F. J., Franch, A., Castell, M., & Camps-Bossacoma, M. (2019). Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients, 11(2), 324.
Eun, S. H., Woo, J. T., & Kim, D. H. (2017). Tangeretin inhibits IL-12 expression and NF-kappaB activation in dendritic cells and attenuates colitis in mice. Planta Medica, 83(6), 527–533.
Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., … Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071.
Felgines, C., Texier, O., Morand, C., Manach, C., Scalbert, A., Regerat, F., Rémésy, C. (2000). Bioavailability of the flavanone naringenin and its glycosides in rats. American Journal of Physiology: Gastrointestinal and Liver Physiology, 279(6), G1148–1154.
Fridge, J. L., Conrad, C., Gerson, L., Castillo, R. O., & Cox, K. (2007). Risk factors for small bowel bacterial overgrowth in cystic fibrosis. Journal of Pediatric Gastroenterology and Nutrition, 44(2), 212–218.
Galleano, M., Verstraeten, S. V., Oteiza, P. I., & Fraga, C. G. (2010). Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501(1), 23–30.
Gattuso, G., Caristi, C., Gargiulli, C., Bellocco, E., Toscano, G., & Leuzzi, U. (2006). Flavonoid glycosides in bergamot juice (Citrus bergamia Risso). Journal of Agricultural and Food Chemistry, 54(11), 3929–3935.
Gervais, L., & Bardin, A. J. (2017). Tissue homeostasis and aging: New insight from the fly intestine. Current Opinion in Cell Biology, 48, 97–105.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., … Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502.
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401–1412.
Gil-Cardoso, K., Gines, I., Pinent, M., Ardevol, A., Blay, M., & Terra, X. (2016). Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutrition Research Reviews, 29(2), 234–248.
Groschwitz, K. R., & Hogan, S. P. (2009). Intestinal barrier function: Molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology, 124(1), 3–22.
Gu, M., Zhao, P., Huang, J., Zhao, Y., Wang, Y., Li, Y., … Huang, C. (2016). Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Frontiers in Pharmacology, 7, 345.
Guirro, M., Gual-Grau, A., Gibert-Ramos, A., Alcaide-Hidalgo, J. M., Canela, N., Arola, L., Mayneris-Perxachs, J. (2020). Metabolomics elucidates dose-dependent molecular beneficial effects of hesperidin supplementation in rats fed an obesogenic diet. Antioxidants (Basel), 9(1), 79.
Guo, S., Qiu, P., Xu, G., Wu, X., Dong, P., Yang, G., … Xiao, H. (2012). Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells. Journal of Agricultural and Food Chemistry, 60(9), 2157–2164.
Guo, S., Wu, X., Zheng, J., Charoensinphon, N., Dong, P., Qiu, P., … Xiao, H. (2018). Anti-inflammatory effect of xanthomicrol, a major colonic metabolite of 5-demethyltangeretin. Food & Function, 9(6), 3104–3113.
He, B., Nohara, K., Park, N., Park, Y. S., Guillory, B., Zhao, Z., … Chen, Z. (2016). The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metabolism, 23(4), 610–621.
Heazlewood, C. K., Cook, M. C., Eri, R., Price, G. R., Tauro, S. B., Taupin, D., … Mcguckin, M. A. (2008). Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Medicine, 5(3), e54.
Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., Mengelers, M. J., & Katan, M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. American Journal of Clinical Nutrition, 62(6), 1276–1282.
Honda, K., & Littman, D. R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature, 535(7610), 75–84.
Hu, H., Zhang, S., Liu, F., Zhang, P., Muhammad, Z., & Pan, S. (2019). Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 mice. Journal of Agricultural and Food Chemistry, 67(43), 11922–11930.
Hung, W. L., Chang, W. S., Lu, W. C., Wei, G. J., Wang, Y., Ho, C. T., & Hwang, L. S. (2018). Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat. Journal of Food and Drug Analysis, 26(2), 849–857.
Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey, G. Jr., Goh, Y. J., … Sanders, M. E. (2016). Prebiotics: Why definitions matter. Current Opinion in Biotechnology, 37, 1–7.
Ijssennagger, N., van der Meer, R., & van Mil, S. W. C. (2016). Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends in Molecular Medicine, 22(3), 190–199.
Jayaraman, R., Subramani, S., Sheik Abdullah, S. H., & Udaiyar, M. (2018). Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomedicine and Pharmacotherapy, 97, 98–106.
Jin, M. J., Kim, U., Kim, I. S., Kim, Y., Kim, D. H., Han, S. B., … Yoo, H. H. (2010). Effects of gut microflora on pharmacokinetics of hesperidin: A study on non-antibiotic and pseudo-germ-free rats. Journal of Toxicology and Environmental Health. Part A, 73(21-22), 1441–1450.
Johansson, M. E., Sjovall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10(6), 352–361.
Junyuan, Z., Hui, X., Chunlan, H., Junjie, F., Qixiang, M., Yingying, L., … Yue, Z. (2018). Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38 MAPK and ERS inhibition. Pancreatology, 18(7), 742–752.
Kanaze, F. I., Bounartzi, M. I., Georgarakis, M., & Niopas, I. (2007). Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. European Journal of Clinical Nutrition, 61(4), 472–477.
Khounlotham, M., Kim, W., Peatman, E., Nava, P., Medina-Contreras, O., Addis, C., … Parkos, C. A. (2012). Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity, 37(3), 563–573.
Kim, M., Kim, N., & Han, J. (2014). Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1. Journal of Agricultural and Food Chemistry, 62(51), 12377–12383.
Kimball, S. R., & Jefferson, L. S. (2006). Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. Journal of Nutrition, 136(Suppl 1), 227S–231S.
Klepsch, V., Gerner, R. R., Klepsch, S., Olson, W. J., Tilg, H., Moschen, A. R., … Hermann-Kleiter, N. (2018). Nuclear orphan receptor NR2F6 as a safeguard against experimental murine colitis. Gut, 67(8), 1434–1444.
Koga, N., Ohta, C., Kato, Y., Haraguchi, K., Endo, T., Ogawa, K., … Yano, M. (2011). In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica, 41(11), 927–933.
Lai, C. S., Tsai, M. L., Cheng, A. C., Li, S., Lo, C. Y., Wang, Y., … Pan, M.-H. (2011). Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice. Molecular Nutrition & Food Research, 55(2), 278–290.
Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 17(4), 223–237.
Lavoie, S., Chun, E., Bae, S., Brennan, C. A., Gallini Comeau, C. A., Lang, J. K., … Garrett, W. S. (2020). Expression of FFAR2 by dendritic cells prevents their expression of IL27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice. Gastroenterology, 158(5), 1359–1372.
Lee, J. Y., Hall, J. A., Kroehling, L., Wu, L., Najar, T., Nguyen, H. H., … Littman, Dan R. (2020). Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell, 180(1), 79–91.
Leese, H. J., & Semenza, G. (1973). On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. Journal of Biological Chemistry, 248(23), 8170–8173.
Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070–11075.
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023.
Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W., & Xu, A. (2016). Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation, 133(24), 2434–2446.
Li, S., Wang, Z., Sang, S., Huang, M. T., & Ho, C. T. (2006). Identification of nobiletin metabolites in mouse urine. Molecular Nutrition & Food Research, 50(3), 291–299.
Lima, A. C. D., Cecatti, C., Fidelix, M. P., Adorno, M. A. T., Sakamoto, I. K., Cesar, T. B., & Sivieri, K. (2019). Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: Controlled clinical trials. Journal of Medicinal Food, 22(2), 202–210.
Lin, N., Sato, T., Takayama, Y., Mimaki, Y., Sashida, Y., Yano, M., & Ito, A. (2003). Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochemical Pharmacology, 65(12), 2065–2071.
Lissner, D., Schumann, M., Batra, A., Kredel, L.-I., Kühl, A. A., Erben, U., … Siegmund, B. (2015). Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflammatory Bowel Diseases, 21(6), 1297–1305.
Liu, L., Liu, Z., Li, H., Cao, Z., Li, W., Song, Z., … Liu, Y. (2020). Naturally occurring TPE-CA maintains gut microbiota and bile acids homeostasis via FXR signaling modulation of the liver-gut axis. Frontiers in Pharmacology, 11, 12.
Liu, X., Lin, C., Ma, X., Tan, Y., Wang, J., & Zeng, M. (2018). Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Frontiers in Plant Science, 9, 166.
Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, global distribution, and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545.
Liu, Z., & Hu, M. (2007). Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism & Toxicology, 3(3), 389–406.
Lordan, C., Thapa, D., Ross, R. P., & Cotter, P. D. (2020). Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes, 11(1), 1–20.
Lorenzo-Zúñiga, V., Bartolí, R., Planas, R., Hofmann, A. F., Viñado, B., Hagey, L. R. … Gassull, M. A. (2003). Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology, 37(3), 551–557.
Lu, J., Gu, Y., Liu, H., Wang, L., Li, W., Li, W., … Hu, G. (2020). Daily branched-chain amino acid intake and risks of obesity and insulin resistance in children: A cross-sectional study. Obesity (Silver Spring), 28(7), 1310–1316.
Luca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Wozniak, K., Aprotosoaie, A. C., & Trifan, A. (2020). Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition, 60(4), 626–659.
Manach, C., Morand, C., Gil-Izquierdo, A., Bouteloup-Demange, C., & Remesy, C. (2003). Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. European Journal of Clinical Nutrition, 57(2), 235–242.
Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., … Evans, R. M. (1995). The nuclear receptor superfamily: The second decade. Cell, 83(6), 835–839.
Martens, E. C., Neumann, M., & Desai, M. S. (2018). Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nature Reviews: Microbiology, 16(8), 457–470.
Matsumoto, H., Ikoma, Y., Sugiura, M., Yano, M., & Hasegawa, Y. (2004). Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. Journal of Agricultural and Food Chemistry, 52(21), 6653–6659.
Mellor, J. D., & Layne, D. S. (1971). Steroid-D-glucosidase activity in rabbit tissues. Journal of Biological Chemistry, 246(14), 4377–4380.
Merken, H. M., & Beecher, G. R. (2000). Measurement of food flavonoids by high-performance liquid chromatography: A review. Journal of Agricultural and Food Chemistry, 48(3), 577–599.
Meslier, V., Laiola, M., Roager, H. M., De Filippis, F., Roume, H., Quinquis, B., … Ercolini, D. (2020). Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 69(7), 1258–1268.
Miyake, Y., Shimoi, K., Kumazawa, S., Yamamoto, K., Kinae, N., & Osawa, T. (2000). Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. Journal of Agricultural and Food Chemistry, 48(8), 3217–3224.
Miyake, Y., Yamamoto, K., & Osawa, T. (1997). Metabolism of antioxidant in lemon fruit (Citrus limon BURM. f.) by human intestinal bacteria. Journal of Agricultural and Food Chemistry, 45, 3738–3742.
Murakami, A., Koshimizu, K., Ohigashi, H., Kuwahara, S., Kuki, W., Takahashi, Y., … Matsuoka, Y. (2002). Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. Biofactors, 16(3–4), 73–82.
Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., … Ota, T. (2017). Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes, 66(5), 1222–1236.
Navarra, M., Femia, A. P., Romagnoli, A., Tortora, K., Luceri, C., Cirmi, S., … Caderni, G. (2020). A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apc(am1137)). European Journal of Nutrition, 59(3), 885–894.
Nectoux, A. M., Abe, C., Huang, S. W., Ohno, N., Tabata, J., Miyata, Y., … Matsui, T. (2019). Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague–Dawley rats. Journal of Agricultural and Food Chemistry, 67(35), 9812–9819.
Neis, E. P., Dejong, C. H., & Rensen, S. S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930–2946.
Nielsen, I. L., Chee, W. S., Poulsen, L., Offord-Cavin, E., Rasmussen, S. E., Frederiksen, H., … Williamson, G. (2006). Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. Journal of Nutrition, 136(2), 404–408.
Nielsen, S. E., Breinholt, V., Cornett, C., & Dragsted, L. O. (2000). Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus. Food and Chemical Toxicology, 38(9), 739–746.
Nielsen, S. E., Breinholt, V., Justesen, U., Cornett, C., & Dragsted, L. O. (1998). In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica, 28(4), 389–401.
Odenwald, M. A., & Turner, J. R. (2017). The intestinal epithelial barrier: A therapeutic target? Nature Reviews Gastroenterology & Hepatology, 14(1), 9–21.
O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7, 688–693.
Orrego-Lagarón, N., Vallverdú-Queralt, A., Martínez-Huélamo, M., Lamuela-Raventos, R. M., & Escribano-Ferrer, E. (2016). Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 120, 38–45.
Pavlick, K. P., Laroux, F. S., Fuseler, J., Wolf, R. E., Gray, L., Hoffman, J., & Grisham, M. B. (2002). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radical Biology and Medicine, 33(3), 311–322.
Pearce, S. C., Al-Jawadi, A., Kishida, K., Yu, S., Hu, M., Fritzky, L. F., … Ferraris, R. P. (2018). Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biology, 16(1), 19.
Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159.
Pepe, G., Pagano, F., Adesso, S., Sommella, E., Ostacolo, C., Manfra, M., … Campiglia, P. (2017). Bioavailable Citrus sinensis extract: Polyphenolic composition and biological activity. Molecules, 22(4), 623.
Pereira-Caro, G., Borges, G., van der Hooft, J., Clifford, M. N., Del Rio, D., Lean, M. E., … Crozier, Alan. (2014). Orange juice (poly)phenols are highly bioavailable in humans. American Journal of Clinical Nutrition, 100(5), 1378–1384.
Pereira-Caro, G., Fernandez-Quiros, B., Ludwig, I. A., Pradas, I., Crozier, A., & Moreno-Rojas, J. M. (2018). Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. European Journal of Nutrition, 57(1), 231–242.
Pereira-Caro, G., Ludwig, I. A., Polyviou, T., Malkova, D., Garcia, A., Moreno-Rojas, J. M., & Crozier, A. (2016). Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: Analysis by high-performance liquid chromatography-high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 64(28), 5724–5735.
Pereira-Caro, G., Polyviou, T., Ludwig, I. A., Nastase, A. M., Moreno-Rojas, J. M., Garcia, A. L., … Crozier, A. (2017). Bioavailability of orange juice (poly)phenols: The impact of short-term cessation of training by male endurance athletes. American Journal of Clinical Nutrition, 106(3), 791–800.
Pero, R. W. (2010). Health consequences of catabolic synthesis of hippuric acid in humans. Current Clinical Pharmacology, 5(1), 67–73.
Png, C. W., Lindén, S. K., Gilshenan, K. S., Zoetendal, E. G., McSweeney, C. S., Sly, L. I., … Florin, T. H. J. (2010). Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. American Journal of Gastroenterology, 105(11), 2420–2428.
Porras, D., Nistal, E., Martinez-Florez, S., Olcoz, J. L., Jover, R., Jorquera, F., … Sánchez-Campos, S. (2019). Functional interactions between gut microbiota transplantation, quercetin, and high-fat diet determine non-alcoholic fatty liver disease development in germ-free mice. Molecular Nutrition & Food Research, 63(8), e1800930.
Rehman, M. U., Rahman Mir, M. U., Farooq, A., Rashid, S. M., Ahmad, B., Bilal Ahmad, S., … Ahmad Ganaie, M. (2018). Naringenin (4,5,7-trihydroxyflavanone) suppresses the development of precancerous lesions via controlling hyperproliferation and inflammation in the colon of Wistar rats. Environmental Toxicology, 33(4), 422–435.
Rera, M., Clark, R. I., & Walker, D. W. (2012). Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21528–21533.
Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, Kieran. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
Saad, M. J., Santos, A., & Prada, P. O. (2016). Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda), 31(4), 283–293.
Sanna, S., van Zuydam, N. R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., … Mccarthy, M. I. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 51(4), 600–605.
Schneider, H., & Blaut, M. (2000). Anaerobic degradation of flavonoids by Eubacterium ramulus. Archives of Microbiology, 173(1), 71–75.
Schoefer, L., Mohan, R., Schwiertz, A., Braune, A., & Blaut, M. (2003). Anaerobic degradation of flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology, 69(10), 5849–5854.
Sesink, A. L., Arts, I. C., Faassen-Peters, M., & Hollman, P. C. (2003). Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. Journal of Nutrition, 133(3), 773–776.
Shakour, Z. T. A., Fayek, N. M., & Farag, M. A. (2020). How do biocatalysis and biotransformation affect Citrus dietary flavonoids chemistry and bioactivity? A review. Critical Reviews in Biotechnology, 40(5), 1–26. doi: https://doi.org/10.1080/07388551.2020.1753648,.
Shen, C. Y., Wan, L., Wang, T. X., & Jiang, J. G. (2019). Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1 cells and Caenorhabditis elegans and prevented obesity in high-fat diet-fed mice. Pharmacological Research, 147, 104347.
Silberberg, M., Morand, C., Mathevon, T., Besson, C., Manach, C., Scalbert, A., & Remesy, C. (2006). The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. European Journal of Nutrition, 45(2), 88–96.
Stevens, Y., Rymenant, E. V., Grootaert, C., Camp, J. V., Possemiers, S., Masclee, A., & Jonkers, Daisy. (2019). The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients, 11(7), 1464.
Sukkar, S. G., Schenone, E., Foppiani, L., & Nobile, M. T. (2004). Experimental assessment of chemotherapy-induced early intestinal damage in colon cancer the lactulose-mannitol permeability test. Tumori, 90(5), 461–463.
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.
Teodoro, J. S., Rolo, A. P., & Palmeira, C. M. (2011). Hepatic FXR: Key regulator of whole-body energy metabolism. Trends in Endocrinology and Metabolism, 22(11), 458–466.
Thaiss, C. A., Levy, M., Grosheva, I., Zheng, D., Soffer, E., Blacher, E., … Elinav, E. (2018). Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science, 359(6382), 1376–1383.
Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., … Bowdish, D. M. E. (2017). Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe, 21(4), 455–466.e4.
Thilakarathna, S. H., & Rupasinghe, H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367–3387.
Treml, J., & Smejkal, K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science & Food Safety, 15(4), 720–738.
Tresserra-Rimbau, A., Rimm, E. B., Medina-Remon, A., Martinez-Gonzalez, M. A., Lopez-Sabater, M. C., Covas, M. I., … Lamuela-Raventós, R. M. (2014). Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial. BMC Medicine, 12, 77.
Tung, Y. C., Chang, W. T., Li, S., Wu, J. C., Badmeav, V., Ho, C. T., Pan, M.-H. (2018). Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food & Function, 9(6), 3363–3373.
Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4), 213–223.
Unno, T., Hisada, T., & Takahashi, S. (2015). Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. Journal of Agricultural and Food Chemistry, 63(36), 7952–7957.
Walgren, R. A., Karnaky, K. J. Jr., Lindenmayer, G. E., & Walle, T. (2000). Efflux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. Journal of Pharmacology and Experimental Therapeutics, 294(3), 830–836.
Walgren, R. A., Lin, J. T., Kinne, R. K., & Walle, T. (2000). Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. Journal of Pharmacology and Experimental Therapeutics, 294(3), 837–843.
Walker, E. H., Pacold, M. E., Perisic, O., Stephens, L., Hawkins, P. T., Wymann, M. P., & Williams, R. L. (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular Cell, 6(4), 909–919.
Wang, M., Meng, D., Zhang, P., Wang, X., Du, G., Brennan, C., … Zhao, H. (2018). Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 66(12), 3155–3160.
Wang, W. W., Smith, D. L., & Zucker, S. D. (2004). Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology, 40(2), 424–433.
Wang, Z., & Zhao, Y. (2018). Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell, 9(5), 416–431.
Wei, G. J., Sheen, J. F., Lu, W. C., Hwang, L. S., Ho, C. T., & Lin, C. I. (2013). Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 61(21), 5016–5021.
Wen, X., & Walle, T. (2006). Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 34(10), 1786–1792.
Wen, X., Zhao, H., Wang, L., Wang, L., Du, G., Guan, W., … Li, S. (2020). Nobiletin attenuates DSS-induced intestinal barrier damage through the HNF4alpha-claudin-7 signaling pathway. Journal of Agricultural and Food Chemistry, 68(16), 4641–4649.
Williamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science & Food Safety, 17, 1054–1112.
Wolak-Dinsmore, J., Gruppen, E. G., Shalaurova, I., Matyus, S. P., Grant, R. P., Gegen, R., … Dullaart, R. P. F. (2018). A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. Clinical Biochemistry, 54, 92–99.
Wolffram, S., Block, M., & Ader, P. (2002). Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. Journal of Nutrition, 132(4), 630–635.
Wong, Y. C., Zhang, L., Lin, G., & Zuo, Z. (2009). Structure-activity relationships of the glucuronidation of flavonoids by human glucuronosyltransferases. Expert Opinion on Drug Metabolism & Toxicology, 5(11), 1399–1419.
Wu, G. A., Terol, J., Ibanez, V., Lopez-Garcia, A., Perez-Roman, E., Borreda, C., … Talon, M. (2018). Genomics of the origin and evolution of Citrus. Nature, 554(7692), 311–316.
Wu, X., Song, M., Gao, Z., Sun, Y., Wang, M., Li, F., … Xiao, H. (2017). Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression. Journal of Nutritional Biochemistry, 42, 17–25.
Wu, X., Song, M., Rakariyatham, K., Zheng, J., Guo, S., Tang, Z., … Xiao, H. (2015). Anti-inflammatory effects of 4'-demethylnobiletin, a major metabolite of nobiletin. Journal of Functional Foods, 19(Pt A), 278–287.
Wu, X., Song, M., Rakariyatham, K., Zheng, J., Wang, M., Xu, F., … Xiao, H. (2015). Inhibitory effects of 4'-demethylnobiletin, a metabolite of nobiletin, on 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mouse ears. Journal of Agricultural and Food Chemistry, 63(51), 10921–10927.
Wu, X., Song, M., Wang, M., Zheng, J., Gao, Z., Xu, F., … Xiao, H. (2015b). Chemopreventive effects of nobiletin and its colonic metabolites on colon carcinogenesis. Molecular Nutrition & Food Research, 59(12), 2383–2394.
Yang, G., Bibi, S., Du, M., Suzuki, T., & Zhu, M. J. (2017). Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Critical Reviews in Food Science and Nutrition, 57(18), 3830–3839.
Zeng, S. L., Li, S. Z., Xiao, P. T., Cai, Y. Y., Chu, C., Chen, B. Z., … Liu, E.-H. (2020). Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Science Advances, 6(1), eaax6208.
Zeng, X., Su, W., Bai, Y., Chen, T., Yan, Z., Wang, J., … Yao, H. (2017). Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS. Journal of Chromatography. B: Analytical Technologies in the Biomedical and Life Sciences, 1061–1062, 79–88.
Zeng, X., Su, W., Zheng, Y., He, Y., He, Y., Rao, H., … Yao, H. (2019). Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Frontiers in Pharmacology, 10, 34.
Zhang, J., Lei, H., Hu, X., & Dong, W. (2020). Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. European Journal of Pharmacology, 873, 172992.
Zhang, M., Zhu, J., Zhang, X., Zhao, D. G., Ma, Y. Y., Li, D., … Huang, Q. (2020). Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food & Function, 11(3), 2667–2678.
Zhao, Y., Hu, X., Zuo, X., & Wang, M. (2018). Chemopreventive effects of some popular phytochemicals on human colon cancer: A review. Food & Function, 9(9), 4548–4568.
Zheng, J., Bi, J., Johnson, D., Sun, Y., Song, M., Qiu, P., … Xiao, H. (2015). Analysis of 10 metabolites of polymethoxyflavones with high sensitivity by electrochemical detection in high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 63(2), 509–516.
Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., … Colgan, S. P. (2017). Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. Journal of Immunology, 199(8), 2976–2984.
Zheng, Y. Y., Zeng, X., Peng, W., Wu, Z., & Su, W. W. (2019). Characterisation and classification of Citri Reticulatae Pericarpium varieties based on UHPLC-Q-TOF-MS/MS combined with multivariate statistical analyses. Phytochemical Analysis, 30(3), 278–291.