[en] The integrity of the intestinal barrier is critical for homeostasis. In this study, we investigated the protective effect of pterostilbene (PTE) on the intestinal epithelium barrier. In vitro results of transepithelial electrical resistance (TEER) in Caco-2 cells indicated that PTE counteracted tumor necrosis factor α (TNFα)-induced barrier damage. In vivo PTE pretreatment markedly ameliorated intestinal barrier dysfunction induced by dextran sulfate sodium (DSS). Notably, intestinal epithelial tight junction (TJ) molecules were restored by PTE in mice exposed to DSS. The mechanism study revealed that PTE prevented myosin light-chain kinase (MLCK) from driving phosphorylation of MLC (p-MLC), which is crucial for maintaining intestinal TJ stability. Furthermore, PTE blunted translocation of NF-κB subunit p65 into the nucleus to downregulate MLCK expression and then to safeguard TJs and barrier integrity. These findings suggest that PTE protected the intestinal epithelial barrier through the NF-κB- MLCK/p-MLC signal pathway.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Wang, Juan; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Zhao, Hui ; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Lv, Ke; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China ; Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
Zhao, Wei; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Zhang, Ning; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Yang, Fan; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Wen, Xiang ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Medical Chemistry ; Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Jiang, Xiaohua; Department of Histololgy and Embrylolgy, School of Basic Medicine, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei 063210, China
Tian, Jingrui; Department of Histololgy and Embrylolgy, School of Basic Medicine, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, Hebei 063210, China
Liu, Xinjuan; Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing100024, China
Ho, Chi-Tang ; Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
Li, Shiming; Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China ; Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
Language :
English
Title :
Pterostilbene Ameliorates DSS-Induced Intestinal Epithelial Barrier Loss in Mice via Suppression of the NF-κB-Mediated MLCK-MLC Signaling Pathway.
NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by grants from the National Natural Science Foundation of China (82070559), the Tianjin Innovative Team Project (TD13-5087), the Tianjin Natural Science Foundation (19JCQNJC12400), the Shangrao Crucial Research and Development Project (19A005), and the Grant from Hubei Province, China (GRANT number 2019ABA100).
Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799-809, 10.1038/nri2653
Ray, K. Intestinal tract: A breach in the intestinal barrier during hyperglycaemia. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 255, 10.1038/nrgastro.2018.26
Odenwald, M. A.; Turner, J. R. The intestinal epithelial barrier: a therapeutic target?. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 9-21, 10.1038/nrgastro.2016.169
Ma, T. Y.; Iwamoto, G. K.; Hoa, N. T.; Akotia, V.; Pedram, A.; Boivin, M. A.; Said, H. M. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am. J. Physiol.: Gastrointest. Liver Physiol. 2004, 286, G367-G376, 10.1152/ajpgi.00173.2003
Massey, V. L.; Arteel, G. E. Acute alcohol-induced liver injury. Front Physiol. 2012, 3, 193 10.3389/fphys.2012.00193
Moreira, A. P. B.; Texeira, T. F.; Ferreira, A. B.; Peluzio Mdo, C.; Alfenas Rde, C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 2012, 108, 801-809, 10.1017/S0007114512001213
Pendyala, S.; Walker, J. M.; Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012, 142, 1100-1101.e2, 10.1053/j.gastro.2012.01.034
Salim, S. Y.; Söderholm, J. D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflammatory Bowel Dis. 2011, 17, 362-381, 10.1002/ibd.21403
Zhuang, S.; Zhong, J.; Zhou, Q.; Zhong, Y.; Liu, P.; Liu, Z. Rhein protects against barrier disruption and inhibits inflammation in intestinal epithelial cells. Int. Immunopharmacol. 2019, 71, 321-327, 10.1016/j.intimp.2019.03.030
Okumura, R.; Takeda, K. Maintenance of intestinal homeostasis by mucosal barriers. Inflammation Regener. 2018, 38, 5 10.1186/s41232-018-0063-z
Dokladny, K.; Zuhl, M. N.; Moseley, P. L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. 2016, 120, 692-701, 10.1152/japplphysiol.00536.2015
Wen, X.; Zhao, H.; Wang, L.; Wang, L.; Du, G.; Guan, W.; Liu, J.; Cao, X.; Jiang, X.; Tian, J.; Wang, M.; Ho, C. T.; Li, S. Nobiletin Attenuates DSS-Induced Intestinal Barrier Damage through the HNF4α-Claudin-7 Signaling Pathway. J. Agric. Food Chem. 2020, 68, 4641-4649, 10.1021/acs.jafc.0c01217
Valdez, J. C.; Bolling, B. W. Anthocyanins and intestinal barrier function: a review. J. Food Bioact. 2019, 5, 18-30, 10.31665/JFB.2019.5175
Su, L.; Nalle, S. C.; Shen, L.; Turner, E. S.; Singh, G.; Breskin, L. A.; Khramtsova, E. A.; Khramtsova, G.; Tsai, P. Y.; Fu, Y. X.; Abraham, C.; Turner, J. R. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013, 145, 407-15, 10.1053/j.gastro.2013.04.011
Yeo, S. C. M.; Ho, P. C.; Lin, H.-S. Pharmacokinetics of pterostilbene in Sprague-Dawley rats: the impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. Mol. Nutr. Food Res. 2013, 57, 1015-1025, 10.1002/mnfr.201200651
Lin, H. S.; Yue, B. D.; Ho, P. C. Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed. Chromatogr. 2009, 23, 1308-1315, 10.1002/bmc.1254
Perečko, T.; Drabikova, K.; Rackova, L.; Ciz, M.; Podborska, M.; Lojek, A.; Harmatha, J.; Smidrkal, J.; Nosal, R.; Jancinova, V. Molecular targets of the natural antioxidant pterostilbene: effect on protein kinase C, caspase-3 and apoptosis in human neutrophils in vitro. Neuroendocrinol. Lett. 2010, 31, 84-90
Kapetanovic, I. M.; Muzzio, M.; Huang, Z.; Thompson, T. N.; McCormick, D. L. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 2011, 68, 593-601, 10.1007/s00280-010-1525-4
Mayangsari, Y.; Suzuki, T. Resveratrol enhances intestinal barrier function by ameliorating barrier disruption in Caco-2 cell monolayers. J. Funct. Foods 2018, 51, 39-46, 10.1016/j.jff.2018.10.009
Kim, J. Y.; Le, T. A. N.; Lee, S. Y.; Song, D. G.; Hong, S. C.; Cha, K. H.; Lee, J. W.; Pan, C. H.; Kang, K. 3,3′-Diindolylmethane Improves Intestinal Permeability Dysfunction in Cultured Human Intestinal Cells and the Model Animal Caenorhabditis elegans. J. Agric. Food Chem. 2019, 67, 9277-9285, 10.1021/acs.jafc.9b03039
Polewski, M. A.; Esquivel-Alvarado, D.; Wedde, N. S.; Kruger, C. G.; Reed, J. D. Isolation and Characterization of Blueberry Polyphenolic Components and Their Effects on Gut Barrier Dysfunction. J. Agric. Food Chem. 2020, 68, 2940-2947, 10.1021/acs.jafc.9b01689
Wu, J.; Li, M.; He, J.; Lv, K.; Wang, M.; Guan, W.; Liu, J.; Tao, Y.; Li, S.; Ho, C. T.; Zhao, H. Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct. 2019, 10, 7308-7314, 10.1039/C9FO01405E
Gonzalez-Rey, E.; Delgado, M. Therapeutic application of mesenchymal stromal cells in murine models of inflammatory bowel disease. Methods Mol. Biol. 2014, 1213, 331-339, 10.1007/978-1-4939-1453-1_27
Hoffman, J. M.; Baritaki, S.; Ruiz, J. J.; Sideri, A.; Pothoulakis, C. Corticotropin-Releasing Hormone Receptor 2 Signaling Promotes Mucosal Repair Responses after Colitis. Am. J. Pathol. 2016, 186, 134-144, 10.1016/j.ajpath.2015.09.013
Hovhannisyan, Z.; Liu, N.; Khalil-Aguero, S.; Panea, C.; VanValkenburgh, J.; Zhang, R.; Lim, W. K.; Bai, Y.; Fury, W.; Huang, T.; Garnova, E.; Fairhurst, J.; Kim, J.; Aryal, S.; Ajithdoss, D.; Oyejide, A.; Del Pilar Molina-Portela, M.; E, H.; Poueymirou, W.; Oristian, N. S.; Brydges, S.; Liu, X.; Olson, W.; Yancopoulos, G.; Murphy, A. J.; Sleeman, M. A.; Haxhinasto, S. Enhanced IL-36R signaling promotes barrier impairment and inflammation in skin and intestine. Sci. Immunol. 2020, 5, eaax1686 10.1126/sciimmunol.aax1686
Stevenson, B. R. Understanding tight junction clinical physiology at the molecular level. J. Clin. Invest. 1999, 104, 3-4, 10.1172/JCI7599
Sawada, N. Tight junction-related human diseases. Pathol. Int. 2013, 63, 1-12, 10.1111/pin.12021
Raju, P.; Shashikanth, N.; Tsai, P. Y.; Pongkorpsakol, P.; Chanez-Paredes, S.; Steinhagen, P. R.; Kuo, W. T.; Singh, G.; Tsukita, S.; Turner, J. R. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J. Clin. Invest. 2020, 130, 5197-5208, 10.1172/JCI138697
Graham, W. V.; He, W.; Marchiando, A. M.; Zha, J.; Singh, G.; Li, H. S.; Biswas, A.; Ong, M.; Jiang, Z. H.; Choi, W.; Zuccola, H.; Wang, Y.; Griffith, J.; Wu, J.; Rosenberg, H. J.; Wang, Y.; Snapper, S. B.; Ostrov, D.; Meredith, S. C.; Miller, L. W.; Turner, J. R. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat. Med. 2019, 25, 690-700, 10.1038/s41591-019-0393-7
Cao, M.; Wang, P.; Sun, C.; He, W.; Wang, F. Amelioration of IFN-γand TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 2013, 8, e61944 10.1371/journal.pone.0061944
Suzuki, M.; Nagaishi, T.; Yamazaki, M.; Onizawa, M.; Watabe, T.; Sakamaki, Y.; Ichinose, S.; Totsuka, M.; Oshima, S.; Okamoto, R.; Shimonaka, M.; Yagita, H.; Nakamura, T.; Watanabe, M. Myosin light chain kinase expression induced via tumor necrosis factor receptor 2 signaling in the epithelial cells regulates the development of colitis-associated carcinogenesis. PLoS One 2014, 9, e88369 10.1371/journal.pone.0088369
Al-Sadi, R.; Guo, S.; Ye, D.; Rawat, M.; Ma, T. Y. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway. Am. J. Pathol. 2016, 186, 1151-1165, 10.1016/j.ajpath.2015.12.016
Graham, W. V.; Wang, F.; Clayburgh, D. R.; Cheng, J. X.; Yoon, B.; Wang, Y.; Lin, A.; Turner, J. R. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem. 2006, 281, 26205-26215, 10.1074/jbc.M602164200
López-Otín, C.; Kroemer, G. Hallmarks of Health. Cell 2020, 184, 33-63, 10.1016/j.cell.2020.11.034
Hering, N. A.; Fromm, M.; Schulzke, J. D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 2012, 590, 1035-1044, 10.1113/jphysiol.2011.224568
Oshima, T.; Miwa, H. Gastrointestinal mucosal barrier function and diseases. J. Gastroenterol. 2016, 51, 768-78, 10.1007/s00535-016-1207-z
Li, X.; Wei, X.; Sun, Y.; Du, J.; Li, X.; Xun, Z.; Li, Y. C. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am. J. Physiol.: Gastrointest. Liver Physiol. 2019, 317, G453-g462, 10.1152/ajpgi.00103.2019
Nascimento, J. C.; Matheus, V. A.; Oliveira, R. B.; Tada, S. F. S.; Collares-Buzato, C. B. High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Dig. Dis. Sci. 2020, 1-16, 10.1007/s10620-020-06664-x
Dreher, M. L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833 10.3390/nu10121833
Visitchanakun, P.; Saisorn, W.; Wongphoom, J.; Chatthanathon, P.; Somboonna, N.; Svasti, S.; Fucharoen, S.; Leelahavanichkul, A. Gut leakage enhances sepsis susceptibility in iron-overloaded β-thalassemia mice through macrophage hyperinflammatory responses. Am. J. Physiol.: Gastrointest. Liver Physiol. 2020, 318, G966-G979, 10.1152/ajpgi.00337.2019
Sharma, L.; Riva, A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2?. Microorganisms 2020, 8, 1744 10.3390/microorganisms8111744
Marchiando, A. M.; Shen, L.; Graham, W. V.; Edelblum, K. L.; Duckworth, C. A.; Guan, Y.; Montrose, M. H.; Turner, J. R.; Watson, A. J. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011, 140, 1208-1218.e2, 10.1053/j.gastro.2011.01.004
Yu, D.; Marchiando, A. M.; Weber, C. R.; Raleigh, D. R.; Wang, Y.; Shen, L.; Turner, J. R. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 8237-41, 10.1073/pnas.0908869107
Arita, Y.; Ito, T.; Oono, T.; Kawabe, K.; Hisano, T.; Takayanagi, R. Lysophosphatidic acid induced nuclear translocation of nuclear factor-kappaB in Panc-1 cells by mobilizing cytosolic free calcium. World J. Gastroenterol. 2008, 14, 4473-9, 10.3748/wjg.14.4473
Ma, T. Y.; Boivin, M. A.; Ye, D.; Pedram, A.; Said, H. M. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol.: Gastrointest. Liver Physiol. 2005, 288, G422-G430, 10.1152/ajpgi.00412.2004
Wang, L.; Zhao, H.; Wang, L.; Tao, Y.; Du, G.; Guan, W.; Liu, J.; Brennan, C.; Ho, C. T.; Li, S. Effects of Selected Resveratrol Analogues on Activation and Polarization of Lipopolysaccharide-Stimulated BV-2 Microglial Cells. J. Agric. Food Chem. 2020, 68, 3750-3757, 10.1021/acs.jafc.0c00498
Li, F.; Han, Y.; Cai, X.; Gu, M.; Sun, J.; Qi, C.; Goulette, T.; Song, M.; Li, Z.; Xiao, H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food Funct. 2020, 11, 1063-1073, 10.1039/C9FO01519A
Chen, Y.; Park, J.; Joe, Y.; Park, H. J.; Jekal, S. J.; Sato, D.; Hamada, H.; Chung, H. T. Pterostilbene 4′-β-Glucoside Protects against DSS-Induced Colitis via Induction of Tristetraprolin. Oxid. Med. Cell. Longevity 2017, 2017, 9427583 10.1155/2017/9427583