infrasound; lava lake; Nyiragongo; open-vent; volcano; Air pressure waves; Atmospheric disturbance; Effusive eruptions; Human ear; Infra sound; Infrasound monitoring; Lava lake; Near sources; Open-vent; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] During eruptions, volcanoes produce air-pressure waves inaudible for the human ear called infrasound, which are very helpful for detecting early signs of magma at the surface. Compared to violent ash-rich explosions, recording more discrete atmospheric disturbances from effusive eruptions remains a practical challenge depending on the distance to the source. At Nyiragongo volcano (D.R. Congo), towering above a 1-million urban area, we analyzed local infrasonic records between January 2018 and April 2022. An acoustic signature from this open-vent volcano is detected up to the volcano observatory facilities in Goma city center about 17 km from its crater. We compared infrasound signals with space-based observations of the intra-crater activity (SO2 emissions, thermal anomalies, crater depth/radius). We thus obtain a comprehensive picture of Nyiragongo's eruptive activity during this period, encompassing the drainage of its lava lake during its third known flank eruption on 22 May 2021.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barrière, Julien ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
Oth, Adrien ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
d’Oreye, Nicolas ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg ; Department of Geophysics/Astrophysics, National Museum of Natural History, Luxembourg City, Luxembourg
Subira Muhindo, Josué ; Université de Liège - ULiège > Sphères ; Goma Volcano Observatory ; RMCA - Royal Museum for Central Africa [BE]
Smittarello, Delphine ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
Brenot, Hugues ; Royal Belgian Institute for Space Aeronomy, Uccle, Belgium
Theys, Nicolas ; Royal Belgian Institute for Space Aeronomy, Uccle, Belgium
Smets, Benoît ; Natural Hazards and Cartography Service, Royal Museum for Central Africa, Tervuren, Belgium ; Cartography and GIS Research Group, Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Language :
English
Title :
Local Infrasound Monitoring of Lava Eruptions at Nyiragongo Volcano (D.R. Congo) Using Urban and Near-Source Stations
We would like to thank the people at GVO involved in the operation of KivuSNet (infrasound stations) and the sentinels of the monitoring stations. We thank T. Nyandwi for providing us his photos of Nyiragongo's crater and the Virunga National Park for hosting the stations KBTI and NYI. We thank the MONUSCO (UN stabilization mission in Congo) for organizing helicopter flights to Nyiragongo's crater for GVO. We are grateful to the European Space Agency (ESA) and the United States Geological Survey (USGS) for providing the Sentinel-2 and Landsat-8/9 products for free, respectively, to Belgian Science Policy Office (BELSPO) and the Virunga Supersite Initiative for funding COSMOSkyMed images (ISA - Italian Space Agency). The work related to TROPOMI SO2 data was performed in the frame of the TROPOMI project. We acknowledge financial support from ESA's Sentinel-5P and Belgium's Prodex TRACE-S5P projects. Thermal and SO2 data were processed in the frame of the VeRSUS project (BELSPO, STEREO-III Programme, Contract SR/00/382). The array processing of infrasound records has been adapted from the software implementation of least-square beamforming provided by De Angelis et al. (2020), available at https://github.com/silvioda/Infrasound-Array-Processing-Matlab. The authors would like to thank two anonymous reviewers for their constructive comments that have helped us improve the former manuscript.We would like to thank the people at GVO involved in the operation of KivuSNet (infrasound stations) and the sentinels of the monitoring stations. We thank T. Nyandwi for providing us his photos of Nyiragongo's crater and the Virunga National Park for hosting the stations KBTI and NYI. We thank the MONUSCO (UN stabilization mission in Congo) for organizing helicopter flights to Nyiragongo's crater for GVO. We are grateful to the European Space Agency (ESA) and the United States Geological Survey (USGS) for providing the Sentinel‐2 and Landsat‐8/9 products for free, respectively, to Belgian Science Policy Office (BELSPO) and the Virunga Supersite Initiative for funding COSMOSkyMed images (ISA ‐ Italian Space Agency). The work related to TROPOMI SO data was performed in the frame of the TROPOMI project. We acknowledge financial support from ESA's Sentinel‐5P and Belgium's Prodex TRACE‐S5P projects. Thermal and SO data were processed in the frame of the VeRSUS project (BELSPO, STEREO‐III Programme, Contract SR/00/382). The array processing of infrasound records has been adapted from the software implementation of least‐square beamforming provided by De Angelis et al. ( 2020 ), available at https://github.com/silvioda/Infrasound-Array-Processing-Matlab . The authors would like to thank two anonymous reviewers for their constructive comments that have helped us improve the former manuscript. 2 2
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Barrière, J., d’Oreye, N., Oth, A., Theys, N., Mashagiro, N., Subira, J., et al. (2019). Seismicity and outgassing dynamics of Nyiragongo volcano. Earth and Planetary Science Letters, 528, 115821. https://doi.org/10.1016/j.epsl.2019.115821
Barrière, J., Nicolas, D., Smets, B., Oth, A., Delhaye, L., Subira, J., et al. (2022). Intra-Crater eruption dynamics at Nyiragongo (D.R. Congo), 2002–2021. Journal of Geophysical Research: Solid Earth, 127(4), 2002–2021. https://doi.org/10.1029/2021JB023858
Barrière, J., Oreye, N., Oth, A., Geirsson, H., Mashagiro, N., Johnson, J. B., et al. (2018). Single-station seismo-acoustic monitoring of Nyiragongo's lava lake activity, D.R. Congo. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00082
Barrière, J., Oth, A., Subira, J., Smets, B., & D’Oreye, N. (2023). Infrasonic noise from lava eruptions at Nyiragongo volcano, D.R. Congo. In SSA 2023 annual meeting, seismological Research Letters (Vol. 94, p. 1157). https://doi.org/10.1785/0220230054
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10). https://doi.org/10.18637/jss.v031.i10
Bowman, J. R., Baker, G. E., & Bahavar, M. (2005). Ambient infrasound noise. Geophysical Research Letters, 32(9), 1–5. https://doi.org/10.1029/2005GL022486
Burgi, P. Y., Valade, S., Coppola, D., Boudoire, G., Mavonga, G., Rufino, F., & Tedesco, D. (2021). Unconventional filling dynamics of a pit crater. Earth and Planetary Science Letters, 576, 117230. https://doi.org/10.1016/j.epsl.2021.117230
Carn, S. A., Clarisse, L., & Prata, A. J. (2016). Multi-decadal satellite measurements of global volcanic degassing. Journal of Volcanology and Geothermal Research, 311, 99–134. https://doi.org/10.1016/j.jvolgeores.2016.01.002
Dabrowa, A. L., Green, D. N., Johnson, J. B., Phillips, J. C., & Rust, A. C. (2014). Comparing near-regional and local measurements of infrasound from Mount Erebus, Antarctica: Implications for monitoring. Journal of Volcanology and Geothermal Research, 288, 46–61. https://doi.org/10.1016/j.jvolgeores.2014.10.001
De Angelis, S., Haney, M. M., Lyons, J. J., Wech, A., Fee, D., Diaz-Moreno, A., & Zuccarello, L. (2020). Uncertainty in detection of volcanic activity using infrasound arrays: Examples from Mt. Etna, Italy. Frontiers in Earth Science, 8(May), 1–11. https://doi.org/10.3389/feart.2020.00169
Fee, D., & Garcés, M. (2007). Infrasonic tremor in the diffraction zone. Geophysical Research Letters, 34(16), 1–5. https://doi.org/10.1029/2007GL030616
Fee, D., Garcés, M., Patrick, M., Chouet, B., Dawson, P., & Swanson, D. (2010). Infrasonic harmonic tremor and degassing bursts from Halema'uma'u Crater, Kilauea Volcano, Hawaii. Journal of Geophysical Research, 115(11), 1–15. https://doi.org/10.1029/2010JB007642
Fee, D., & Matoza, R. S. (2013). An overview of volcano infrasound: From Hawaiian to Plinian, local to global. Journal of Volcanology and Geothermal Research, 249, 123–139. https://doi.org/10.1016/j.jvolgeores.2012.09.002
Fee, D., Toney, L., Kim, K., Sanderson, R. W., Iezzi, A. M., Matoza, R. S., et al. (2021). Local explosion detection and infrasound localization by reverse time migration using 3-D finite-difference wave propagation. Frontiers in Earth Science, 9(February), 1–14. https://doi.org/10.3389/feart.2021.620813
Garcés, M., Harris, A., Hetzer, C., Johnson, J., Rowland, S., Marchetti, E., & Okubo, P. (2003). Infrasonic tremor observed at Kīlauea Volcano, Hawai'i. Geophysical Research Letters, 30(20), 2023. https://doi.org/10.1029/2003GL018038
Global Volcanism Program. (2021). Report on Nyiragongo (D.R. Congo), bulletin of the global volcanism network (Vol. 46, p. 12).
Global Volcanism Program. (2023). Report on Nyiragongo (D.R. Congo). In S. K. Sennert (Ed.), Weekly volcanic activity report, 22 February-28 February 2023. Smithsonian Institution and US Geological Survey.
Johnson, J. B., Anderson, J., Marcillo, O., & Arrowsmith, S. (2012). Probing local wind and temperature structure using infrasound from Volcan Villarrica (Chile). Journal of Geophysical Research, 117(D17), D17107. https://doi.org/10.1029/2012JD017694
Johnson, J. B., & Ronan, T. J. (2015). Infrasound from volcanic rockfalls. Journal of Geophysical Research: Solid Earth, 120(12), 8223–8239. https://doi.org/10.1002/2015JB012436
Johnson, J. B., Watson, L. M., Palma, J. L., Dunham, E. M., & Anderson, J. F. (2018). Forecasting the eruption of an open-vent volcano using resonant infrasound tones. Geophysical Research Letters, 45(5), 2213–2220. https://doi.org/10.1002/2017GL076506
Lacanna, G., & Ripepe, M. (2013). Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. Journal of Volcanology and Geothermal Research, 250, 9–18. https://doi.org/10.1016/j.jvolgeores.2012.10.005
Lyons, J. J., Dietterich, H. R., Patrick, M. P., & Fee, D. (2021). High-speed lava flow infrasound from Kīlauea's fissure 8 and its utility in monitoring effusion rate. Bulletin of Volcanology, 83(11), 66. https://doi.org/10.1007/s00445-021-01488-7
Marchese, F., Genzano, N., Neri, M., Falconieri, A., Mazzeo, G., & Pergola, N. (2019). A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data. Remote Sensing, 11(23), 2876. https://doi.org/10.3390/rs11232876
Marchetti, E., Ripepe, M., Campus, P., Le Pichon, A., Vergoz, J., Lacanna, G., et al. (2019). Long range infrasound monitoring of Etna volcano. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-54468-5
Marcillo, O., Arrowsmith, S., Blom, P., & Jones, K. (2015). On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. Journal of Geophysical Research: Atmosphere, 120(19), 9855–9868. https://doi.org/10.1002/2014JD022821
Massimetti, F., Coppola, D., Laiolo, M., Valade, S., Cigolini, C., & Ripepe, M. (2020). Volcanic hot-spot detection using SENTINEL-2: A comparison with MODIS–MIROVA thermal data series. Remote Sensing, 12(5), 820. https://doi.org/10.3390/rs12050820
Matoza, R. S., Fee, D., & Garcs, M. A. (2010). Infrasonic tremor wavefield of the Pu'u “O” crater complex and lava tube system, Hawaii, in April 2007. Journal of Geophysical Research, 115(12), 1–16. https://doi.org/10.1029/2009JB007192
McComas, S., Arrowsmith, S., Hayward, C., Stump, B., & McKenna Taylor, M. H. (2022). Quantifying low-frequency acoustic fields in urban environments. Geophysical Journal International, 229(2), 1152–1174. https://doi.org/10.1093/gji/ggab525
Michellier, C., Syavulisembo, A. M., Lagmouch, M., & Kervyn, F. (2016). Limites administratives - Ville de Goma - Province du Nord-Kivu (République Démocratique du Congo) (Series ‘Pr). Musée Royal de l’Afrique Centrale.
Moore, C., Wright, T., Hooper, A., & Biggs, J. (2019). The 2017 eruption of Erta 'Ale volcano, Ethiopia: Insights into the shallow axial plumbing system of an incipient mid-ocean ridge. Geochemistry, Geophysics, Geosystems, 20(12), 5727–5743. https://doi.org/10.1029/2019GC008692
Murphy, S. W., de Souza Filho, C. R., Wright, R., Sabatino, G., & Correa Pabon, R. (2016). HOTMAP: Global hot target detection at moderate spatial resolution. Remote Sensing of Environment, 177, 78–88. https://doi.org/10.1016/j.rse.2016.02.027
Oth, A., Barrière, J., D’Oreye, N., Mavonga, G., Subira, J., Mashagiro, N., et al. (2017). KivuSNet: The first dense broadband seismic network for the Kivu rift region (Western Branch of East African rift). Seismological Research Letters, 88(1), 49–60. https://doi.org/10.1785/0220160147
Patrick, M. R., Orr, T., Sutton, A. J., Lev, E., Thelen, W., & Fee, D. (2016). Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kilauea Volcano. Earth and Planetary Science Letters, 433(November), 326–338. https://doi.org/10.1016/j.epsl.2015.10.052
Richardson, J. P., Waite, G. P., & Palma, J. L. (2014). Varying seismic-acoustic properties of the fluctuating lava lake at Villarrica volcano, Chile. Journal of Geophysical Research: Solid Earth, 119(7), 5560–5573. https://doi.org/10.1002/2014JB011002
Ripepe, M., Marchetti, E., Bonadonna, C., Harris, A. J. L., Pioli, L., & Ulivieri, G. (2010). Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile. Geophysical Research Letters, 37(15), 2–7. https://doi.org/10.1029/2010GL043516
Rosenblatt, B. B., Johnson, J. B., Anderson, J. F., Kim, K., & Gauvain, S. J. (2022). Controls on the frequency content of near-source infrasound at open-vent volcanoes: A case study from Volcán Villarrica, Chile. Bulletin of Volcanology, 84(12), 1–17. https://doi.org/10.1007/s00445-022-01607-y
Smink, M. M. E., Assink, J. D., Bosveld, F. C., Smets, P. S. M., & Evers, L. G. (2019). A three-dimensional array for the study of infrasound propagation through the atmospheric boundary layer. Journal of Geophysical Research: Atmospheres, 124(16), 9299–9313. https://doi.org/10.1029/2019JD030386
Smittarello, D., Grandin, R., Jaspard, M., Derauw, D., Oreye, F., Shreve, T., et al. (2023). Nyiragongo crater collapses measured by multi-sensor SAR amplitude time series. Authorea, 26. https://doi.org/10.22541/essoar.167979224.40405342/v1
Smittarello, D., Smets, B., Barrière, J., Michellier, C., Oth, A., Shreve, T., et al. (2022). Precursor-free eruption triggered by edifice rupture at Nyiragongo volcano. Nature, 609(7925), 83–88. https://doi.org/10.1038/s41586-022-05047-8
Syavulisembo, A. M., Kervyn, F., Lennert, M., Wolff, E., & Michellier, C. (2021). Spatio-temporal location of population: Strengthening the capacities of sudden hazards risk management in Goma, DRC. International Journal of Disaster Risk Reduction, 66, 102565. https://doi.org/10.1016/j.ijdrr.2021.102565
Thelen, W., Waite, G., Lyons, J., & Fee, D. (2022). Infrasound observations and constraints on the 2018 eruption of Kīlauea Volcano, Hawaii. Bulletin of Volcanology, 84(8), 1–24. https://doi.org/10.1007/s00445-022-01583-3
Theys, N., Brenot, H., Smedt, I. D., Lcrot, C., Hedelt, P., Loyola, D., et al. (2021). Global monitoring of volcanic SO2 degassing using Sentinel-5 precursor Tropomi. In 2021 IEEE International geoscience and remote sensing symposium IGARSS (pp. 1911–1914). https://doi.org/10.1109/IGARSS47720.2021.9554664
Theys, N., De Smedt, I., Yu, H., Danckaert, T., Van Gent, J., Hörmann, C., et al. (2017). Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmospheric Measurement Techniques, 10(1), 119–153. https://doi.org/10.5194/amt-10-119-2017
Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., et al. (2019). Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific Reports, 9(1), 2643. https://doi.org/10.1038/s41598-019-39279-y
Ulivieri, G., Ripepe, M., & Marchetti, E. (2013). Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning. Geophysical Research Letters, 40(12), 3008–3013. https://doi.org/10.1002/grl.50592
Valade, S., Ripepe, M., Giuffrida, G., Karume, K., & Tedesco, D. (2018). Dynamics of Mount Nyiragongo lava lake inferred from thermal imaging and infrasound array. Earth and Planetary Science Letters, 500, 192–204. https://doi.org/10.1016/j.epsl.2018.08.004
Walwer, D., Wauthier, C., Barrière, J., Smittarello, D., Smets, B., & d’Oreye, N. (2023). Modeling the intermittent lava lake drops occurring between 2015 and 2021 at Nyiragongo volcano. Geophysical Research Letters, 50(8), e2022GL102365. https://doi.org/10.1029/2022GL102365
Watson, L. M., Dunham, E. M., & Johnson, J. B. (2019). Simulation and inversion of harmonic infrasound from open-vent volcanoes using an efficient quasi-1D crater model. Journal of Volcanology and Geothermal Research, 380, 64–79. https://doi.org/10.1016/j.jvolgeores.2019.05.007
Wright, R., Blackett, M., & Hill-Butler, C. (2015). Some observations regarding the thermal flux from Earth's erupting volcanoes for the period of 2000 to 2014. Geophysical Research Letters, 42(2), 282–289. https://doi.org/10.1002/2014GL061997
Yamakawa, K., Ichihara, M., Ishii, K., Aoyama, H., Nishimura, T., & Ripepe, M. (2018). Azimuth estimations from a small aperture infrasonic array: Test observations at Stromboli volcano, Italy. Geophysical Research Letters, 45(17), 8931–8938. https://doi.org/10.1029/2018GL078851
Yang, Y., & Ritzwoller, M. H. (2008). Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems, 9(2), Q02008. https://doi.org/10.1029/2007GC001814
McNamara, D. E., & Buland, R. P. (2004). Ambient noise levels in the continental United-States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.