[en] The comfort sensation of pedestrians outdoors greatly impacts residents' happiness and standard of living. With the Earth's temperature expected to rise due to global warming, people's outdoor activities will be limited. Therefore, it's essential to intensify the evaluation of the effects of heat reduction strategies on outdoor thermal comfort in cities to enhance human well-being. At the same time, safeguarding historical and cultural heritage as required by Sustainable Development Goal 11. Across the literature, a limited number of studies have investigated the implementation of nature-based solutions as heat mitigation strategies in historical cities. This research investigates the influence of combining different nature-based solutions and scenarios. Combining NBS involves modifying the urban morphology, street and facade surfaces, and vegetation intensity to examine the cooling impact and enhancement of thermal comfort. The research methodology involves conducting in situ measurements in a traditional urban fabric in Algiers's old city fabric, which is classified as a world heritage site. The research assesses the climatic conditions during a typical summer heat wave using the Physiological Equivalent Temperature (PET). Then, numerical simulations are performed using CFD software Envi-met for different scenarios. The results highlight that combining mitigation strategies shows limited improvement, with the outcome primarily influenced by one or two parameters. Also, In some instances, the use of nature-based solutions to reduce the heat has a slightly better cooling effect (ΔPET = 16.8 °C) compared to morphological reconstruction (ΔPET = 15.2 °C), yielding a difference of 1.6 °C in PET values. The reported results offer practical guidance for stakeholders who renovate traditional cities in Mediterranean climates to make informed decisions about urban heat mitigation methods. This research presents innovative perspectives by analyzing nature-based solutions at two different levels. First, individually, to gauge their impact and by combining strategies of the same category. Then by combining the most favorable scenarios for an in-depth examination. The research also balances the reduction of urban heat with the preservation of cultural heritage.
Disciplines :
Architecture
Author, co-author :
Arrar, Fawzi Hicham ; Université de Liège - ULiège > Urban and Environmental Engineering
Kaoula, Dalel; Environnement et Technologie pour L’Architecture et le Patrimoine (ETAP), Institute of Architecture and Urbanism, University of Blida1, Blida, 0900, Algeria
Mattheos, Santamouris; Faculty of Built Environment, University of New South Wales, Sydney, NSW, 2052, Australia
Amina, Foufa-Abdessemed; Environnement et Technologie pour L’Architecture et le Patrimoine (ETAP), Institute of Architecture and Urbanism, University of Blida1, Blida, 0900, Algeria
Emmanuel, Rohinton; The Research Centre for Built Environment Asset Management (BEAM), Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
Matallah, Mohamed Elhadi ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Atef, Ahriz; Department of Architecture, University of Tebessa, Constantine Road, Tebessa, 12000, Algeria
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments ; Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Coupling of different nature base solutions for pedestrian thermal comfort in a Mediterranean climate
Alternative titles :
[fr] Couplage de différentes solutions de base nature pour le confort thermique des piétons dans un climat méditerranéen
Original title :
[en] Coupling of different nature base solutions for pedestrian thermal comfort in a Mediterranean climate
United Nations. World's Population Increasingly Urban with More than Half Living in Urban Areas. 2014, World Population Prospects (United Nations https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html.
Seto, Karen C., Güneralp, Burak, Hutyra, et Lucy R., Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109:40 (2012), 16083–16088, 10.1073/pnas.1211658109.
Kjellstrom, Tord, McMichael, et Anthony J., Climate change threats to population health and well-being: the imperative of protective solutions that will last. Glob. Health Action, 6(1), 2013, 20816, 10.3402/gha.v6i0.20816.
Jamei, Elmira, Rajagopalan, Priyadarsini, Seyedmahmoudian, Mohammadmehdi, et Yashar, Jamei, Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 54:février (2016), 1002–1017, 10.1016/j.rser.2015.10.104.
Hoof, Joost van, Thermal comfort: research and practice. Front. Biosci., 15(1), 2010, 765, 10.2741/3645.
Johansson, Erik, Thorsson, Sofia, Emmanuel, Rohinton, Krüger, et Eduardo, Instruments and methods in outdoor thermal comfort studies – the need for standardization. Urban Clim. 10:décembre (2014), 346–366, 10.1016/j.uclim.2013.12.002.
Lai, Dayi, Liu, Wenyu, Gan, Tingting, Liu, Kuixing, Chen, et Qingyan, A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661:avril (2019), 337–353, 10.1016/j.scitotenv.2019.01.062.
Lin, Tzu-Ping, Tsai, Kang-Ting, Hwang, Ruey-Lung, Matzarakis, et Andreas, Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc. Urban Plann. 107:2 (2012), 137–146, 10.1016/j.landurbplan.2012.05.011.
Nikolopoulou, Marialena, et Spyros, Lykoudis, Use of outdoor spaces and microclimate in a mediterranean urban area. Build. Environ. 42:10 (2007), 3691–3707, 10.1016/j.buildenv.2006.09.008.
Berardi, Umberto, The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 121:juin (2016), 217–229, 10.1016/j.enbuild.2016.03.021.
Kong, Fanhua, Sun, Changfeng, Liu, Fengfeng, Yin, Haiwei, Jiang, Fei, Pu, Yingxia, Cavan, Gina, Skelhorn, Cynthia, Middel, Ariane, et Iryna, Dronova, Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Appl. Energy 183:décembre (2016), 1428–1440, 10.1016/j.apenergy.2016.09.070.
Evola, G., Gagliano, A., Fichera, A., Marletta, L., Martinico, F., Nocera, F., Pagano, et A., UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia, Sustainability in Energy and Buildings 2017: Proceedings of the Ninth KES International Conference, Chania, Greece, 5-7 July 2017, vol. 134, 2017, 692–701, 10.1016/j.egypro.2017.09.589 (octobre).
He, Bao-Jie, Ding, Lan, et Deo, Prasad, Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc., 60(septembre), 2020, 102289, 10.1016/j.scs.2020.102289.
Taleghani, Mohammad, Kleerekoper, Laura, Tenpierik, Martin, Dobbelsteen, et Andy van den, Outdoor thermal comfort within five different urban forms in The Netherlands. Build. Environ. 83:janvier (2015), 65–78, 10.1016/j.buildenv.2014.03.014.
Johansson, Erik, et Rohinton, Emmanuel, The influence of urban design on outdoor thermal comfort in the hot, humid city of colombo, Sri Lanka. Int. J. Biometeorol. 51:2 (2006), 119–133, 10.1007/s00484-006-0047-6.
Charalampopoulos, Ioannis, Tsiros, Ioannis, Chronopoulou-Sereli, Aikaterini, Matzarakis, et Andreas, Analysis of thermal bioclimate in various urban configurations in athens, Greece. Urban Ecosyst. 16:2 (2013), 217–233, 10.1007/s11252-012-0252-5.
Krüger, E.L., Minella, F.O., Rasia, et F., Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in curitiba, Brazil. Build. Environ. 46:3 (2011), 621–634, 10.1016/j.buildenv.2010.09.006.
Ali-Toudert, Fazia, Mayer, et Helmut, Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 41:2 (2006), 94–108, 10.1016/j.buildenv.2005.01.013.
He, Xiaodong, Miao, Shiguang, Shen, Shuanghe, Li, Ju, Zhang, Benzhi, Zhang, Ziyue, Chen, et Xiujie, Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int. J. Biometeorol. 59:3 (2015), 285–297, 10.1007/s00484-014-0841-5.
Deng, Ji-Yu, Wong, et Nyuk Hien, Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc., 53(février), 2020, 101966, 10.1016/j.scs.2019.101966.
Johansson, Erik, Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build. Environ. 41:10 (2006), 1326–1338, 10.1016/j.buildenv.2005.05.022.
Nasrollahi, Nazanin, Namazi, Yasaman, Taleghani, et Mohammad, The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: a case study of ahvaz, Iran. Sustain. Cities Soc., 65(février), 2021, 102638, 10.1016/j.scs.2020.102638.
Taleghani, Mohammad, Outdoor thermal comfort by different heat mitigation strategies- A review. Renew. Sustain. Energy Rev. 81:janvier (2018), 2011–2018, 10.1016/j.rser.2017.06.010.
Lobaccaro, Gabriele, Acero, et Juan A., Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 14:décembre (2015), 251–267, 10.1016/j.uclim.2015.10.002.
Liu, Zhixin, Cheng, Wenwen, Jim, C.Y., Eniolu Morakinyo, Tobi, Shi, Yuan, Ng, et Edward, Heat mitigation benefits of urban green and blue infrastructures: a systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ., 200(août), 2021, 107939, 10.1016/j.buildenv.2021.107939.
Lin, Tzu-Ping, Matzarakis, Andreas, Hwang, et Ruey-Lung, Shading effect on long-term outdoor thermal comfort. Build. Environ. 45:1 (2010), 213–221, 10.1016/j.buildenv.2009.06.002.
Gómez, Francisco, Gil, Luisa, Jabaloyes, et José, Experimental investigation on the thermal comfort in the city: relationship with the green areas, interaction with the urban microclimate. Build. Environ. 39:9 (2004), 1077–1086, 10.1016/j.buildenv.2004.02.001.
Yu, Chen, et Wong, Nyuk Hien, Thermal benefits of city parks. Energy Build. 38:2 (2006), 105–120, 10.1016/j.enbuild.2005.04.003.
Hwang, Yun Hye, Lum, Qin Jie Geraldine, Chan, et Yeow Kwang Derek, Micro-scale thermal performance of tropical urban parks in Singapore. Build. Environ. 94:décembre (2015), 467–476, 10.1016/j.buildenv.2015.10.003.
Rosso, Federica, Golasi, Iacopo, Castaldo, Veronica Lucia, Piselli, Cristina, Pisello, Anna Laura, Salata, Ferdinando, Ferrero, Marco, Franco, Cotana, Vollaro, et Andrea de Lieto, On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew. Energy 118:avril (2018), 825–839, 10.1016/j.renene.2017.11.074.
Santamouris, M., Cooling the cities – a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103:mai (2014), 682–703, 10.1016/j.solener.2012.07.003.
Sailor, David J., Simulated urban climate response to modifications in surface albedo and vegetative cover. J. Appl. Meteorol. 34:7 (1995), 1694–1704, 10.1175/1520-0450-34.7.1694.
Jacobson, Mark Z., Ten Hoeve, et John E., Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 25:3 (2012), 1028–1044, 10.1175/JCLI-D-11-00032.1.
Nasrollahi, Nazanin, Ghosouri, Amir, Khodakarami, Jamal, Taleghani, et Mohammad, Heat-mitigation strategies to improve pedestrian thermal comfort in urban environments: a review. Sustainability, 12(23), 2020, 10000, 10.3390/su122310000.
Darbani, Elham Sanagar, Rafieian, Mojtaba, Monsefi Parapari, Danial, Guldmann, et Jean-Michel, Urban design strategies for summer and winter outdoor thermal comfort in arid regions: the case of historical, contemporary and modern urban areas in mashhad, Iran. Sustainable Cities and Society, décembre, 2022, 104339, 10.1016/j.scs.2022.104339.
Markham, S.F., Climate and the Energy of Nations. 1942.
Ali-Toudert, F., Djenane, M., Bensalem, R., Mayer, et H., Outdoor thermal comfort in the old desert city of beni-isguen, Algeria. Clim. Res. 28 (2005), 243–256, 10.3354/cr028243.
Bigio, Anthony Gad, Historic cities and climate change. Reconnecting the City, édité par Francesco Bandarin et Ron van Oers, vols. 113–28, 2014, Wiley & Sons, Ltd, Oxford, UK: John, 10.1002/9781118383940.ch4.
UN Habitat, UNESCO. Historic Districts for All - a Social and Human Approach for Sustainable Revitalization. 2008.
Laureti, Flavia, Martinelli, Letizia, et Alessandra, Battisti, Assessment and mitigation strategies to counteract overheating in urban historical areas in rome. Climate, 6(1), 2018, 18, 10.3390/cli6010018.
Su, Wangxin, Zhang, Liukuan, Chang, et Qing, Nature-based solutions for urban heat mitigation in historical and cultural block: the case of Beijing old city. Build. Environ., 225(novembre), 2022, 109600, 10.1016/j.buildenv.2022.109600.
Potchter, Oded, Cohen, Pninit, Lin, Tzu-Ping, Matzarakis, et Andreas, Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Sci. Total Environ. 631–632:août (2018), 390–406, 10.1016/j.scitotenv.2018.02.276.
Chen, Liang, Ng, et Edward, Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29:2 (2012), 118–125, 10.1016/j.cities.2011.08.006.
Santamouris, M., Synnefa, A., Karlessi, et T., Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 85:12 (2011), 3085–3102, 10.1016/j.solener.2010.12.023.
Matallah, Mohamed Elhadi, Alkama, Djamel, Teller, Jacques, Ahriz, Atef, Attia, et Shady, Quantification of the outdoor thermal comfort within different oases urban fabrics. Sustainability, 13(6), 2021, 3051, 10.3390/su13063051.
Matallah, Mohamed Elhadi, Waqas, Ahmed Mahar, Bughio, Mushk, Alkama, Djamel, Ahriz, Atef, et Soumia, Bouzaher, Prediction of climate change effect on outdoor thermal comfort in arid region. Energies, 14(16), 2021, 4730, 10.3390/en14164730.
UNESCO. s. d. UNESCO Centre du patrimoine mondial 1992-2022, La liste du patrimoine mondial, Casbah d'Alger. https://whc.unesco.org/fr/list/565/.
Amireche, Louisa, Cote, et Marc, De la medina a la metropole dynamiques spatiales d'alger a trois niveaux. Sciences & TechnologieD, 2007, 2007 26 édition.
Abdessemed-Foufa, Amina, Le manuel de réhabilitation comme outil de conservation dans le cadre du plan permanent 711 de sauvegarde de la Casbah d‘Alger., 2011, RehabiMed édition. 2011.
Arrar, Fawzi Hicham, Kaoula, Dalel, Matallah, Mohamed Elhadi, Abdessemed-Foufa, Amina, Taleghani, Mohammad, Attia, et Shady, Quantification of outdoor thermal comfort levels under sea breeze in the historical city fabric: the case of Algiers Casbah. Atmosphere, 13(4), 2022, 575, 10.3390/atmos13040575.
Giorgi, Filippo, et Piero, Lionello, Climate change projections for the mediterranean region. Global Planet. Change 63:2–3 (2008), 90–104, 10.1016/j.gloplacha.2007.09.005.
Lionello, Piero, Abrantes, Fatima, Congedi, Letizia, Dulac, Francois, Gacic, Miro, Gomis, Damià, Goodess, Clare, et al. Introduction: mediterranean climate—background information. The Climate Of the Mediterranean Region, Xxxv-Xc, 2012, Elsevier, 10.1016/B978-0-12-416042-2.00012-4.
Gatto, Elisa, Ippolito, Fabio, Rispoli, Gennaro, Carlo, Oliver Savio, Santiago, Jose Luis, Aarrevaara, Eeva, Emmanuel, Rohinton, et Riccardo, Buccolieri, Analysis of urban greening scenarios for improving outdoor thermal comfort in neighbourhoods of lecce (southern Italy). Climate, 9(7), 2021, 116, 10.3390/cli9070116.
Stewart, I.D., Oke, et T.R., Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93:12 (2012), 1879–1900, 10.1175/BAMS-D-11-00019.1.
He, Bao-Jie, Ding, Lan, Prasad, et Deo, Outdoor thermal environment of an open space under sea breeze: a mobile experience in a coastal city of sydney, Australia. Urban Clim., 31(mars), 2020, 100567, 10.1016/j.uclim.2019.100567.
Ali-Toudert, Fazia, Mayer, et Helmut, Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 81:6 (2007), 742–754, 10.1016/j.solener.2006.10.007.
Arrar, Fawzi Hicham, Kaoula, Dalel, Attia, et Shady, Measured comfort data - Casbah. Harvard Dataverse, 2022, 10.7910/DVN/R0AYI7.
Arrar, Fawzi Hicham, Kaoula, Dalel, Attia, et Shady, Thermal comfort sentation survey - in the Casbah of Algiers. Harvard Dataverse, 2022, 10.7910/DVN/JGBSLY.
Huttner, S., Bruse, et M., Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities., octobre 2008. Mayer, H., Matzarakis, A., (eds.) 5th Japanese-German Meeting on Urban Climatology, 2008 édition.
Tsoka, S., Tsikaloudaki, A., Theodosiou, et T., Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 43:novembre (2018), 55–76, 10.1016/j.scs.2018.08.009.
Shinzato, Paula, Simon, Helge, Duarte, Denise Helena Silva, Bruse, et Michael, Calibration process and parametrization of tropical plants using ENVI-met V4 – sao paulo case study. Architect. Sci. Rev. 62:2 (2019), 112–125, 10.1080/00038628.2018.1563522.
Tseliou, A., Koletsis, I., Pantavou, K., Thoma, E., Lykoudis, S., Tsiros, et I.X., Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in athens, Greece. Urban Clim., 44(juillet), 2022, 101217, 10.1016/j.uclim.2022.101217.
Arrar, Fawzi Hicham, Kaoula, Dalel, Foufa-Abdessemed, Amina, Attia, et Shady, Replication data for: outdoor thermal comfort dataset in the Casbah, Algeria. Harvard Dataverse, 2023, 10.7910/DVN/E4A30J.
Attia, Shady, Ahmed, Mustafa, Giry, Nicolas, Popineau, Mathieu, Cuchet, Mathilde, Gulirmak, et Numan, Developing two benchmark models for post-world war II residential buildings. Energy Build., 244(août), 2021, 111052, 10.1016/j.enbuild.2021.111052.
Taleghani, Mohammad, Sailor, David J., Tenpierik, Martin, Dobbelsteen, et Andy van den, Thermal assessment of heat mitigation strategies: the case of portland state university, Oregon, USA. Build. Environ. 73:mars (2014), 138–150, 10.1016/j.buildenv.2013.12.006.
Taleghani, Mohammad, Tenpierik, Martin, Dobbelsteen, Andy van den, Sailor, et David J., Heat in courtyards: a validated and calibrated parametric study of heat mitigation strategies for urban courtyards in The Netherlands. Sol. Energy 103:mai (2014), 108–124, 10.1016/j.solener.2014.01.033.
Sodoudi, Sahar, Zhang, Huiwen, Chi, Xiaoli, Müller, Felix, Li, et Huidong, The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 34:août (2018), 85–96, 10.1016/j.ufug.2018.06.002.
Hien, Wong Nyuk, Ignatius, Marcel, Eliza, Anseina, Jusuf, Steve Kardinal, et Rosita, Samsudin, Comparison of STEVE and ENVI-met as temperature prediction models for Singapore context. International Journal of Sustainable Building Technology and Urban Development 3:3 (2012), 197–209, 10.1080/2093761X.2012.720224.
Ali-Toudert, Fazia, Dependence of outdoor thermal comfort on street design in hot and dry climate. Berichte des Meteorol. Institutes der Univ. Freibg. Nr., 15, 2005, 2005.
Emmanuel, R., Fernando, et Hjs, Urban heat islands in humid and arid climates: role of urban form and thermal properties in colombo, Sri Lanka and Phoenix, USA. Clim. Res. 34:septembre (2007), 241–251, 10.3354/cr00694.
Yang, Xiaoshan, Zhao, Lihua, Bruse, Michael, Meng, et Qinglin, Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build. Environ. 60:février (2013), 93–104, 10.1016/j.buildenv.2012.11.008.
Santamouris, M., Energy and Climate in the Urban Built Environment. 2013, Routledge, London, 10.4324/9781315073774 éd.
Roshan, Gholamreza, Moghbel, Masoumeh, et Shady, Attia, Evaluating the wind cooling potential on outdoor thermal comfort in selected Iranian climate types. J. Therm. Biol., 92(août), 2020, 102660, 10.1016/j.jtherbio.2020.102660.
Andreou, E., Thermal comfort in outdoor spaces and urban canyon microclimate. Renew. Energy 55:juillet (2013), 182–188, 10.1016/j.renene.2012.12.040.
Zölch, Teresa, Maderspacher, Johannes, Wamsler, Christine, Pauleit, et Stephan, Using green infrastructure for urban climate-proofing: an evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 20:décembre (2016), 305–316, 10.1016/j.ufug.2016.09.011.
Shashua-Bar, Limor, Pearlmutter, David, et Evyatar, Erell, The influence of trees and grass on outdoor thermal comfort in a hot-arid environment: influence of trees and grass on outdoor thermal comfort. Int. J. Climatol. 31:10 (2011), 1498–1506, 10.1002/joc.2177.
Dimoudi, Argiro, et Marialena, Nikolopoulou, Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build. 35:1 (2003), 69–76, 10.1016/S0378-7788(02)00081-6.
Klemm, Wiebke, Heusinkveld, Bert G., Lenzholzer, Sanda, van Hove, et Bert, Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plann. 138:juin (2015), 87–98, 10.1016/j.landurbplan.2015.02.009.
Klemm, Wiebke, Heusinkveld, Bert G., Lenzholzer, Sanda, Jacobs, Maarten H., Hove, et Bert Van, Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build. Environ. 83:janvier (2015), 120–128, 10.1016/j.buildenv.2014.05.013.
Morakinyo, Tobi Eniolu, Kong, Ling, Lau, Kevin Ka-Lun, Yuan, Chao, Ng, et Edward, A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Build. Environ. 115:avril (2017), 1–17, 10.1016/j.buildenv.2017.01.005.
Fahmy, M., Mahdy, M., Mahmoud, S., Abdelalim, M., Ezzeldin, S., Attia, et S., Influence of urban canopy green coverage and future climate change scenarios on energy consumption of new sub-urban residential developments using coupled simulation techniques: a case study in alexandria, Egypt. Energy Rep. 6:février (2020), 638–645, 10.1016/j.egyr.2019.09.042.
Besir, Ahmet B., et Erdem, Cuce, Green roofs and facades: a comprehensive review. Renew. Sustain. Energy Rev. 82:février (2018), 915–939, 10.1016/j.rser.2017.09.106.
Manso, Maria, Castro-Gomes, et João, Green wall systems: a review of their characteristics. Renew. Sustain. Energy Rev. 41:janvier (2015), 863–871, 10.1016/j.rser.2014.07.203.
Salata, Ferdinando, Golasi, Iacopo, Petitti, Davide, Vollaro, Emanuele de Lieto, Coppi, Massimo, Vollaro, et Andrea de Lieto, Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 30:avril (2017), 79–96, 10.1016/j.scs.2017.01.006.
Raji, Babak, Tenpierik, Martin J., Dobbelsteen, et Andy van den, The impact of greening systems on building energy performance: a literature review. Renew. Sustain. Energy Rev. 45:mai (2015), 610–623, 10.1016/j.rser.2015.02.011.
Oleson, K.W., Bonan, G.B., Feddema, et J., Effects of white roofs on urban temperature in a global climate model: effects of white roofs on temperature. Geophys. Res. Lett., 37(3), 2010, 10.1029/2009GL042194 n/a-n/a.
Synnefa, A., Santamouris, M., Apostolakis, et K., On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 81:4 (2007), 488–497, 10.1016/j.solener.2006.08.005.
Morini, Elena, Touchaei, Ali Gholizade, Rossi, Federico, Franco, Cotana, Akbari, et Hashem, Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 24:juin (2018), 551–566, 10.1016/j.uclim.2017.08.001.
Pisello, Anna Laura, State of the art on the development of cool coatings for buildings and cities. Sol. Energy 144:mars (2017), 660–680, 10.1016/j.solener.2017.01.068.
Mohajerani, Abbas, Bakaric, Jason, Jeffrey-Bailey, et Tristan, The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 197:juillet (2017), 522–538, 10.1016/j.jenvman.2017.03.095.
Chen, Y.-C., Matzarakis, et A., Modification of Physiologically Equivalent Temperature. 2014, Journal of Heat Island Institute Internationa édition.
Matzarakis, A., RayMan Pro - A Tool for Applied Climatology : Modelling of Mean Radiant Temperature and Thermal Indices. 2018.
Fröhlich, Dominik, Matzarakis, et Andreas, A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in doha, Qatar. Theor. Appl. Climatol. 124:1–2 (2016), 179–187, 10.1007/s00704-015-1410-5.
Höppe, P., The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 43:2 (1999), 71–75, 10.1007/s004840050118.
Wang, Yupeng, Berardi, Umberto, Akbari, et Hashem, Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 114:février (2016), 2–19, 10.1016/j.enbuild.2015.06.046.
Xu, Xin, AzariJafari, Hessam, Gregory, Jeremy, Norford, Leslie, Kirchain, et Randolph, An integrated model for quantifying the impacts of pavement albedo and urban morphology on building energy demand. Energy Build., 211(mars), 2020, 109759, 10.1016/j.enbuild.2020.109759.
Aboelata, Amir, Reducing outdoor air temperature, improving thermal comfort, and saving buildings' cooling energy demand in arid cities – cool paving utilization. Sustain. Cities Soc., 68(mai), 2021, 102762, 10.1016/j.scs.2021.102762.
Andreou, E., Axarli, et K., Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew. Energy 43:juillet (2012), 354–363, 10.1016/j.renene.2011.11.038.
Qin, Yinghong, Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 96:juin (2015), 86–94, 10.1016/j.enbuild.2015.03.005.
Yang, Xinyan, Li, et Yuguo, The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 90:août (2015), 146–156, 10.1016/j.buildenv.2015.03.037.
Kondo, Akira, Ueno, Megumi, Kaga, Akikazu, Yamaguchi, et Katsuhito, The influence of urban canopy configuration on urban albedo. Boundary-Layer Meteorol. 100:2 (2001), 225–242, 10.1023/A:1019243326464.
Nazarian, Negin, Dumas, Nathalie, Kleissl, Jan, Norford, et Leslie, Effectiveness of cool walls on cooling load and urban temperature in a tropical climate. Energy Build. 187:mars (2019), 144–162, 10.1016/j.enbuild.2019.01.022.
Taleghani, Mohammad, The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Clim. 24:juin (2018), 175–184, 10.1016/j.uclim.2018.03.001.
Jamei, Elmira, et Priyadarsini, Rajagopalan, Urban development and pedestrian thermal comfort in Melbourne. Sol. Energy 144:mars (2017), 681–698, 10.1016/j.solener.2017.01.023.
Alexandri, Eleftheria, Jones, et Phil, Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 43:4 (2008), 480–493, 10.1016/j.buildenv.2006.10.055.
Zhang, Anxiao, Bokel, Regina, van den Dobbelsteen, Andy, Sun, Yanchen, Huang, Qiong, et Qi, Zhang, An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in northern China. Build. Environ. 124:novembre (2017), 369–387, 10.1016/j.buildenv.2017.08.024.
Saadatian, Omidreza, Sopian, K., Salleh, E., Lim, C.H., Riffat, Safa, Saadatian, Elham, Toudeshki, Arash, Sulaiman, et M.Y., A review of energy aspects of green roofs. Renew. Sustain. Energy Rev. 23:juillet (2013), 155–168, 10.1016/j.rser.2013.02.022.
Castleton, H.F., Stovin, V., Beck, S.B.M., Davison, et J.B., Green roofs; building energy savings and the potential for retrofit. Energy Build. 42:10 (2010), 1582–1591, 10.1016/j.enbuild.2010.05.004.
Gong, Fang-Ying, Zeng, Zhao-Cheng, Ng, Edward, Norford, et Leslie K., Spatiotemporal patterns of street-level solar radiation estimated using google street view in a high-density urban environment. Build. Environ. 148:janvier (2019), 547–566, 10.1016/j.buildenv.2018.10.025.
Thorsson, Sofia, Lindberg, Fredrik, Björklund, Jesper, Holmer, Björn, Rayner, et David, Potential changes in outdoor thermal comfort conditions in gothenburg, Sweden due to climate change: the influence of urban geometry. Int. J. Climatol. 31:2 (2011), 324–335, 10.1002/joc.2231.
Chatzidimitriou, Angeliki, et Kleo, Axarli, Street canyon geometry effects on microclimate and comfort; A case study in thessaloniki. Procedia Environmental Sciences 38 (2017), 643–650, 10.1016/j.proenv.2017.03.144.
Achour-Younsi, Safa, et Fakher, Kharrat, Outdoor thermal comfort: impact of the geometry of an urban street canyon in a mediterranean subtropical climate – case study Tunis, Tunisia. Procedia - Social and Behavioral Sciences 216:janvier (2016), 689–700, 10.1016/j.sbspro.2015.12.062.
Shooshtarian, Salman, Rajagopalan, et Priyadarsini, Study of thermal satisfaction in an Australian educational precinct. Build. Environ. 123:octobre (2017), 119–132, 10.1016/j.buildenv.2017.07.002.
Sharmin, Tania, Steemers, Koen, Matzarakis, et Andreas, Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 34:octobre (2017), 293–308, 10.1016/j.scs.2017.07.006.