This is the author version of the published paper. The published version of this paper (i.e. with the layout of the publisher) is available on Elsevier website (see doi link)
[en] Global warming can either promote or constrain the invasive potential of alien species. In ectotherm invaders that exhibit a complex life cycle, success is inherently dependent on the capacity of each developmental stage to cope with environmental change. This is particularly relevant for invasive anurans, which disperse on land while requiring water for reproduction. However, it remains unknown how the different life stages respond in terms of energy expenditure under different climate change scenarios. We here quantified the oxygen uptake of frogs at rest (a proxy of the standard metabolic rate) in the aquatic phase (at the tadpole and climax, i.e. during metamorphosis, stages) and in the terrestrial phase (metamorphosed stage) at three environmental temperatures. To do so, we used marsh frogs (Pelophylax ridibundus), an amphibian with the largest invasive range within the palearctic realm and for which their adaptation to global warming might be key to their invasion success. Beyond an increase of metabolic rate with temperature, our data show variation in thermal adaptation across life stages and a higher metabolic cost during metamorphosis. These results suggest that the cost to shift habitat and face changes in temperature may be a constraint on the invasive potential of species with a complex life cycle which may be particularly vulnerable during metamorphosis.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Padilla, Pablo ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA) ; UMR 7179, Département Adaptations du Vivant, Paris, France
Herrel, Anthony ; UMR 7179, Département Adaptations du Vivant, Paris, France ; Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium ; Department of Biology, University of Antwerp, Wilrijk, Belgium ; Naturhistorisches Museum Bern, Bern, Switzerland
Denoël, Mathieu ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Language :
English
Title :
Invading new climates at what cost? Ontogenetic differences in the thermal dependence of metabolic rate in an invasive amphibian
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N., Le Cozannet, G., Lionello, P., Cross-chapter paper 4: mediterranean region. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., (eds.) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022, Cambridge Univ. Press, Cambridge, UK and New York, NY, 2233–2272, 10.1017/9781009325844.021.
Angilletta, M.J., Niewiarowski, P.H., Navas, C.A., The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27 (2002), 249–268, 10.2741/E148.
Araspin, L., Martinez, A.S., Wagener, C., Courant, J., Louppe, V., Padilla, P., Measey, J., Herrel, A., Rapid shifts in the temperature dependence of locomotor performance in an invasive frog, xenopus laevis, implications for conservation. Integr. Comp. Biol. 60 (2020), 456–466, 10.1093/icb/icaa010.
Arrhenius, S., Über die Reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch säuren. Z. Phys. Chem. 4U (1889), 226–248, 10.1515/zpch-1889-041.
Barton, K., Package ‘ MuMIn ’ Multi-Model Interface. 2023, R Interface.
Beck, C.W., Congdon, J.D., Energetics of metamorphic climax in the southern toad (Bufo terrestris). Oecologia 137 (2003), 344–351, 10.1007/s00442-003-1374-5.
Beck, C.W., Congdon, J.D., Effects of age and size at metamorphosis on performance and metabolic rates of southern toad, Bufo terrestris, metamorphs. Funct. Ecol. 14 (2000), 32–38, 10.1046/j.1365-2435.2000.00386.x.
Cabrera-Guzmán, E., Crossland, M.R., Brown, G.P., Shine, R., Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS One 8, 2013, e70121, 10.1371/journal.pone.0070121.
Christy, M.T., The efficacy of using passive integrated transponder (PIT) tags without anaesthetic in free-living frogs. Aust. Zool. 30 (1996), 139–142, 10.7882/AZ.1996.004.
Denoël, M., Duret, C., Lorrain-Soligon, L., Padilla, P., Pavis, J., Tendron, P., Ficetola, G.F., Falaschi, M., High habitat invasibility unveils the invasiveness potential of water frogs. Biol. Invasions 24 (2022), 3447–3459, 10.1007/s10530-022-02849-9.
Dodd, M.H.I., Dodd, J.M., The biology of metamorphosis. Lofts, B., (eds.) Physiology of the Amphibia, 1976, Academic Press, New York, 467–599, 10.1016/B978-0-12-455403-0.50015-3.
Donnelly, M.A., Guyer, C., Juterbock, J.E., Alford, R.A., Techniques for marking amphibians. Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.-A.C., Foster, (eds.) Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians, 1994, Smithsonian Institution Press, Washington DC, 277–284.
Dufresnes, C., Denoël, M., di Santo, L., Dubey, S., Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci. Rep., 7, 2017, 6506, 10.1038/s41598-017-06655-5.
Dufresnes, C., Monod-Broca, B., Bellati, A., Canestrelli, D., Ambu, J., Wielstra, B., Dubey, S., Crochet, P.A., Denoël, M., Jablonski, D., Piecing the barcoding puzzle of Palearctic water frogs (Pelophylax) sheds light on amphibian biogeography and global invasions. Global Change Biol., 30, 2024, e17180, 10.1111/gcb.17180.
Evans, T.G., Diamond, S.E., Kelly, M.W., Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3 (2015), 1–16, 10.1093/conphys/cov056.
Ginal, P., Mokhatla, M., Kruger, N., Secondi, J., Herrel, A., Measey, J., Rödder, D., Ecophysiological models for global invaders: is Europe a big playground for the African clawed frog?. J. Exp. Zool. Part A Ecol. Integr. Physiol. 335 (2021), 158–172, 10.1002/jez.2432.
Gosner, K.L., A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16 (1960), 183–190.
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change., 2022, Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 10.1017/9781009325844.
Kelley, A.L., The role thermal physiology plays in species invasion. Conserv. Physiol. 2 (2014), 1–14, 10.1093/conphys/cou045.
Kern, P., Cramp, R.L., Franklin, C.E., Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218 (2015), 3068–3076, 10.1242/jeb.123166.
Kim, B., Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18 (2008), 141–144, 10.1089/thy.2007.0266.
Kirschman, L.J., McCue, M.D., Boyles, J.G., Warne, R.W., Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis. J. Exp. Biol. 220 (2017), 3391–3397, 10.1242/jeb.164830.
Kruger, N., Secondi, J., du Preez, L., Herrel, A., Measey, J., Phenotypic variation in Xenopus laevis tadpoles from contrasting climatic regimes is the result of adaptation and plasticity. Oecologia 200 (2022), 37–50, 10.1007/s00442-022-05240-6.
Laudet, V., The origins and evolution of vertebrate metamorphosis. Curr. Biol. 21 (2011), R726–R737, 10.1016/j.cub.2011.07.030.
Laurence, G.C., Laboratory growth and metabolism of the winter flounder Pseudopleuronectes americanus from hatching through metamorphosis at three temperatures. Mar. Biol. 32 (1975), 223–229, 10.1007/BF00399202.
Lenth, R.V., Emmeans: estimated marginal means, aka least-squares means. R package version 1.8.7 https://CRAN.R-project.org/package=emmeans, 2023.
Lighton, J.R., Measuring Metabolic Rates. A Manual for Scientists. second ed., 2008, Oxford Univ. Press, Oxford.
Lowe, W.H., Martin, T.E., Skelly, D.K., Woods, H.A., Metamorphosis in an era of increasing climate variability. Trends Ecol. Evol. 36 (2021), 360–375, 10.1016/j.tree.2020.11.012.
Magnus-Levy, A., Ueber den respiratorischen Gaswechsel unter Einfluss de Thyroidea sowie unter verschiedenen pathologische Zustand. Berlin Klin. Wochschr. 32 (1895), 650–652.
Marchetti, J.R., Beard, K.H., Virgin, E.E., Lewis, E.L., Hess, S.C., Ki, K.C., Sermersheim, L.O., Furtado, A.P., French, S.S., Invasive frogs show persistent physiological differences to elevation and acclimate to colder temperatures. J. Therm. Biol., 114, 2023, 103590, 10.1016/j.jtherbio.2023.103590.
McCann, S.M., Kosmala, G.K., Greenlees, M.J., Shine, R., Physiological plasticity in a successful invader: rapid acclimation to cold occurs only in cool-climate populations of cane toads (Rhinella marina). Conserv. Physiol., 6, 2018, cox072, 10.1093/conphys/cox072.
Michaels, C.J., Försäter, K., Captive breeding of Pelophylax water frogs under controlled conditions indoors. Herpetol. Bull. 142 (2017), 29–34.
Moore, M.P., Martin, R.A., On the evolution of carry-over effects. J. Anim. Ecol. 88 (2019), 1832–1844, 10.1111/1365-2656.13081.
Navas, C.A., Gomes, F.R., Carvalho, J.E., Thermal relationships and exercise physiology in anuran amphibians: integration and evolutionary implications. Comp. Biochem. Physiol. Mol. Integr. Physiol. 151 (2008), 344–362, 10.1016/j.cbpa.2007.07.003.
Orlofske, S.A., Hopkins, W.A., Energetics of metamorphic climax in the pickerel frog (Lithobates palustris). Comp. Biochem. Physiol. Mol. Integr. Physiol. 154 (2009), 191–196, 10.1016/j.cbpa.2009.06.001.
Padilla, P., Herrel, A., Denoël, M., May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 202 (2023), 227–238, 10.1007/s00442-023-05402-0.
Pandian, A.T.J., Marian, M.P., Time and energy costs of metamorphosis in the Indian bullfrog Rana tigrina. Copeia, 1985, 653–662, 10.2307/1444758.
Pille, F., Pinto, L., Denoël, M., Predation pressure of invasive marsh frogs: a threat to native amphibians?. Diversity, 13, 2021, 595, 10.3390/d13110595.
Pille, F., Pinto, L., Denoël, M., Functional and temporal facets of predation by marsh frogs across the aquatic–terrestrial ecotone of ponds and implications in the context of biological invasions. Freshw. Biol. 68 (2023), 2184–2196, 10.1111/fwb.14186.
Robert, J., Ohta, Y., Comparative and developmental study of the immune system in Xenopus. Dev. Dynam. 238 (2009), 1249–1270, 10.1002/dvdy.21891.
Rollins-Smith, L.A., Metamorphosis and the amphibian immune system. Immunol. Rev. 166 (1998), 221–230, 10.1111/j.1600-065x.1998.tb01265.x.
Ruthsatz, K., Dausmann, K.H., Reinhardt, S., Robinson, T., Sabatino, N.M., Peck, M.A., Glos, J., Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J. Comp. Physiol. B 190 (2020), 297–315, 10.1007/s00360-020-01271-8.
Shewade, L.H., Schoephoerster, J.A., Patmann, M.D., Kulkarni, S.S., Buchholz, D.R., Corticosterone is essential for survival through frog metamorphosis. Endocrinol 161 (2020), 1–15, 10.1210/endocr/bqaa193.
Shi, Y.B., Fu, L., Hsia, S.C.V., Tomita, A., Buchholz, D., Thyroid hormone regulation of apoptotic tissue remodeling during anuran metamorphosis. Cell Res. 11 (2001), 245–252, 10.1038/sj.cr.7290093.
Shine, R., Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5 (2012), 107–116, 10.1111/j.1752-4571.2011.00201.x.
Sinai, N., Glos, J., Mohan, A.V., Lyra, M.L., Riepe, M., Thöle, E., Zummach, C., Ruthsatz, K., Developmental plasticity in amphibian larvae across the world: investigating the roles of temperature and latitude. J. Therm. Biol., 106, 2022, 103233, 10.1016/j.jtherbio.2022.103233.
Steyermark, A.C., A high standard metabolic rate constrains juvenile growth. Zoology 105 (2002), 147–151, 10.1078/0944-2006-00055.
Székely, D., Cogǎlniceanu, D., Székely, P., Armijos-Ojeda, D., Espinosa-Mogrovejo, V., Denoël, M., How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol., 20, 2020, 24, 10.1186/s12898-020-00291-w.
Vitt, L.J., Caldwell, J.P., Herpetology: an Introductory Biology of Amphibians and Reptiles. 2013, Academic press.
Wagener, C., Kruger, N., Measey, J., Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J. Exp. Biol., 224, jeb23303, 2021, 10.1242/jeb.233031.
Wassersug, R.J., Sperry, D.G., The relationships of locomotion to differential predation on Pseudacris triseriata (Anura: hylidae). Ecology 58 (1977), 830–839, 10.2307/1936218.
Zechini, L., Lilley, A., Downie, J.R., Walsh, P.T., Why do frog and toad forelimbs suddenly (but asynchronously) appear, every time metamorphosis is near?. Funct. Ecol. 29 (2015), 816–822, 10.1111/1365-2435.12386.
Zerebecki, R.A., Sorte, C.J.B., Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One, 6, 2011, e14806, 10.1371/journal.pone.0014806.