conjugated polyamines; functional properties; nutraceuticals; spermidine; Polyamines; Spermidine; Spermine; Animals; Plants; Tandem Mass Spectrometry; 'current; Conjugated polyamine; Health benefits; Microbial origins; Plant origin; Recent researches; Chemistry (all); Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences; General Chemistry
Abstract :
[en] Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Disciplines :
Food science
Author, co-author :
Qiao, Jiangtao ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Cai, Wenwen; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China ; College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
Wang, Kai ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Haubruge, Eric; Université de Liège - ULiège
Dong, Jie; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China ; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
El-Seedi, Hesham R; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden ; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China ; Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
Xu, Xiang; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Zhang, Hongcheng ; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
Language :
English
Title :
New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives.
CSC - China Scholarship Council CAAS - Chinese Academy of Agricultural Sciences
Funding text :
This research was supported by the Modern Agro-industry Technology Research System (CARS-45-KXJ19), the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2019-IAR) from the Ministry of Agriculture of P.R. China, a postgraduate international exchange grant from the Chinese Academy of Agricultural Sciences and the China Scholarship Council (CSC). The authors also thank the Teaching and Research Center, Gembloux, Belgium.
Bachrach, U. The early history of polyamine research. Plant Physiology and Biochemistry 2010, 48 ( 7), 490- 495, 10.1016/j.plaphy.2010.02.003
Muñoz-Esparza, N. C.; Latorre-Moratalla, M. L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M. T.; Vidal-Carou, M. C. Polyamines in food. Frontiers in nutrition 2019, 6, 108, 10.3389/fnut.2019.00108
Hirano, R.; Shirasawa, H.; Kurihara, S. Health-promoting effects of dietary polyamines. Medical Sciences 2021, 9 ( 1), 8, 10.3390/medsci9010008
Larqué, E.; Sabater-Molina, M.; Zamora, S. Biological significance of dietary polyamines. Nutrition 2007, 23 ( 1), 87- 95, 10.1016/j.nut.2006.09.006
Muñoz-Esparza, N. C.; Comas-Basté, O.; Vásquez-Garibay, E. M.; Veciana-Nogués, M. T.; Latorre-Moratalla, M. L.; Vidal-Carou, M. C. Polyamines in Human Milk and Their Benefits for Infant Health. Infant Nutrition and Feeding; IntechOpen: 2023. 10.5772/intechopen.110868
Wang, W.; Snooks, H. D.; Sang, S. The chemistry and health benefits of dietary phenolamides. Journal of agricultural and food chemistry 2020, 68 ( 23), 6248- 6267, 10.1021/acs.jafc.0c02605
Roumani, M.; Besseau, S.; Gagneul, D.; Robin, C.; Larbat, R. Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes. Journal of Experimental Botany 2021, 72 ( 7), 2334- 2355, 10.1093/jxb/eraa582
Li, Z.; Zhao, C.; Zhao, X.; Xia, Y.; Sun, X.; Xie, W.; Ye, Y.; Lu, X.; Xu, G. Deep annotation of hydroxycinnamic acid amides in plants based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry and its in silico database. Analytical chemistry 2018, 90 ( 24), 14321- 14330, 10.1021/acs.analchem.8b03654
Madeo, F.; Bauer, M. A.; Carmona-Gutierrez, D.; Kroemer, G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans?. Autophagy 2019, 15 ( 1), 165- 168, 10.1080/15548627.2018.1530929
Madeo, F.; Hofer, S. J.; Pendl, T.; Bauer, M. A.; Eisenberg, T.; Carmona-Gutierrez, D.; Kroemer, G. Nutritional aspects of spermidine. Annual review of nutrition 2020, 40, 135- 159, 10.1146/annurev-nutr-120419-015419
Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800, 10.1016/j.foodchem.2022.134800
NAKASE, K.; KIMURA, I.; KIMURA, M. Effects of pollen-extract components, diamines and derivatives of feruloylputrescine on isolated bladder and urethral smooth muscles of mice. Japanese Journal of Pharmacology 1990, 53 ( 2), 157- 164, 10.1254/jjp.53.157
Zhang, X.; Yu, M.; Zhu, X.; Liu, R.; Lu, Q. Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen. Food Chem. 2022, 389, 133071, 10.1016/j.foodchem.2022.133071
Alcázar, R.; Fortes, A. M.; Tiburcio, A. F. Polyamines in plant biotechnology, food nutrition, and human health. Frontiers Media SA: 2020; Vol. 11, p 120.
Muñoz-Esparza, N. C.; Comas-Basté, O.; Latorre-Moratalla, M. L.; Veciana-Nogués, M. T.; Vidal-Carou, M. C. Differences in polyamine content between human milk and infant formulas. Foods 2021, 10 ( 11), 2866, 10.3390/foods10112866
Liu, H.; Liu, Y.; Han, H.; Lu, C.; Chen, H.; Chai, Y. Identification and characterization of phenolamides in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry. Food Chem. 2023, 424, 136402, 10.1016/j.foodchem.2023.136402
Zhang, X.; Wu, X.; Xiao, G.; Liu, G.; Dong, H.; Liu, R.; Lu, Q. Phenolamide extract of apricot bee pollen alleviates glucolipid metabolic disorders and modulates the gut microbiota and metabolites in high-fat diet-induced obese mice. Food & Function 2023, 14 ( 10), 4662- 4680, 10.1039/D3FO01016C
Hou, Y.; He, W.; Hu, S.; Wu, G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019, 51, 1153- 1165, 10.1007/s00726-019-02751-0
Veeranagamallaiah, G.; Sudhakar, C. Determination of polyamines by dansylation, benzoylation, and capillary electrophoresis. Plant Stress Tolerance: Methods and Protocols 2017, 1631, 313- 323, 10.1007/978-1-4939-7136-7_20
Yu, Z.; Huang, H.; Zhang, H.; Kessler, B. M. Improved profiling of polyamines using two-dimensional gas chromatography mass spectrometry. Talanta 2019, 199, 184- 188, 10.1016/j.talanta.2019.02.062
DeFelice, B. C.; Fiehn, O. Rapid LC-MS/MS quantification of cancer related acetylated polyamines in human biofluids. Talanta 2019, 196, 415- 419, 10.1016/j.talanta.2018.12.074
Baratella, D.; Bonaiuto, E.; Magro, M.; de Almeida Roger, J.; Kanamori, Y.; Lima, G. P. P.; Agostinelli, E.; Vianello, F. Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids 2018, 50, 1187- 1203, 10.1007/s00726-018-2617-4
Kalač, P.; Křıžek, M.; Pelikánová, T.; Langová, M.; Veškrna, O. Contents of polyamines in selected foods. Food Chem. 2005, 90 ( 4), 561- 564, 10.1016/j.foodchem.2004.05.019
Cipolla, B.; Havouis, R.; Moulinoux, J.-P. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino acids 2007, 33, 203- 212, 10.1007/s00726-007-0524-1
Nishibori, N.; Fujihara, S.; Akatuki, T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007, 100 ( 2), 491- 497, 10.1016/j.foodchem.2005.09.070
Dadáková, E.; Pelikánová, T.; Kalač, P. Content of biogenic amines and polyamines in some species of European wild-growing edible mushrooms. European Food Research and Technology 2009, 230, 163- 171, 10.1007/s00217-009-1148-3
Galgano, F.; Caruso, M.; Condelli, N.; Favati, F. Focused review: agmatine in fermented foods. Frontiers in Microbiology 2012, 3, 199, 10.3389/fmicb.2012.00199
Toro-Funes, N.; Bosch-Fuste, J.; Latorre-Moratalla, M.; Veciana-Nogués, M.; Vidal-Carou, M. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chem. 2015, 173, 1119- 1124, 10.1016/j.foodchem.2014.10.118
Kralj Cigić, I.; Rupnik, S.; Rijavec, T.; Poklar Ulrih, N.; Cigić, B. Accumulation of agmatine, spermidine, and spermine in sprouts and microgreens of alfalfa, fenugreek, lentil, and daikon radish. Foods 2020, 9 ( 5), 547, 10.3390/foods9050547
Eliassen, K. A.; Reistad, R.; Risøen, U.; Rønning, H. F. Dietary polyamines. Food Chem. 2002, 78 ( 3), 273- 280, 10.1016/S0308-8146(01)00405-8
Santos, W. C.; Souza, M. R.; Cerqueira, M. M.; Glória, M. B. A. Bioactive amines formation in milk by Lactococcus in the presence or not of rennet and NaCl at 20 and 32 C. Food chemistry 2003, 81 ( 4), 595- 606, 10.1016/S0308-8146(02)00502-2
Nishimura, K.; Shiina, R.; Kashiwagi, K.; Igarashi, K. Decrease in polyamines with aging and their ingestion from food and drink. Journal of biochemistry 2006, 139 ( 1), 81- 90, 10.1093/jb/mvj003
Saaid, M.; Saad, B.; Hashim, N. H.; Ali, A. S. M.; Saleh, M. I. Determination of biogenic amines in selected Malaysian food. Food Chem. 2009, 113 ( 4), 1356- 1362, 10.1016/j.foodchem.2008.08.070
Determination of biogenic amines in fruit, vegetables, and chocolate using ion chromatography with suppressed conductivity and integrated pulsed amperometric detections. Application Update 162; Dionex: 2016.
Muñoz-Esparza, N. C.; Costa-Catala, J.; Comas-Basté, O.; Toro-Funes, N.; Latorre-Moratalla, M. L.; Veciana-Nogués, M. T.; Vidal-Carou, M. C. Occurrence of polyamines in foods and the influence of cooking processes. Foods 2021, 10 ( 8), 1752, 10.3390/foods10081752
Soda, K.; Phan Nguyen Thanh Binh; Masanobu Kawakami Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. Nutrition and Dietary Supplements 2010, 1- 7, 10.2147/NDS.S15349
Okamoto, A.; Sugi, E.; Koizumi, Y.; Yanagida, F.; Udaka, S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci., Biotechnol., Biochem. 1997, 61 ( 9), 1582- 1584, 10.1271/bbb.61.1582
Miguélez-Arrizado, M. J.; Bover-Cid, S.; Latorre-Moratalla, M. L.; Vidal-Carou, M. C. Biogenic amines in Spanish fermented sausages as a function of diameter and artisanal or industrial origin. Journal of the Science of Food and Agriculture 2006, 86 ( 4), 549- 557, 10.1002/jsfa.2385
Bashiry, M.; Hoseini, H.; Mohammadi, A.; Sadeghi, E.; Karimian-Khosroshahi, N.; Barba, F. J.; Mousavi Khaneghah, A. Industrial and culinary practice effects on biologically active polyamines level in Turkey meat. Quality Assurance and Safety of Crops & Foods 2021, 13 ( 2), 67- 78, 10.15586/qas.v13i2.775
Lian, J.; Liang, Y.; Zhang, H.; Lan, M.; Ye, Z.; Lin, B.; Qiu, X.; Zeng, J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Frontiers in Immunology 2022, 13, 912279, 10.3389/fimmu.2022.912279
Muñoz-Esparza, N. C.; Vásquez-Garibay, E. M.; Guzmán-Mercado, E.; Larrosa-Haro, A.; Comas-Basté, O.; Latorre-Moratalla, M. L.; Veciana-Nogués, M. T.; Vidal-Carou, M. C. Influence of the Type of Breastfeeding and Human Milk Polyamines on Infant Anthropometric Parameters. Frontiers in Nutrition 2022, 8, 815477, 10.3389/fnut.2021.815477
Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Mariné-Font, A.; Vidal-Carou, M. C. Biogenic amine and polyamine contents in meat and meat products. J. Agric. Food Chem. 1997, 45 ( 6), 2098- 2102, 10.1021/jf960790p
Smela, D.; Pechova, P.; Komprda, T.; Klejdus, B.; Kuban, V. Liquid chromatographic determination of biogenic amines in a meat product during fermentation and long-term storage. Czech journal of food sciences 2003, 21 ( 5), 167- 175, 10.17221/3495-CJFS
Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. European Food Research and Technology 2004, 218, 237- 241, 10.1007/s00217-003-0848-3
Abbasi-Moayed, S.; Bigdeli, A.; Hormozi-Nezhad, M. R. Determination of spermine and spermidine in meat with a ratiometric fluorescence nanoprobe and a combinational logic gate. Food Chem. 2022, 384, 132459, 10.1016/j.foodchem.2022.132459
Kozová, M.; Kalač, P.; Pelikánová, T. Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food chemistry 2009, 116 ( 2), 419- 425, 10.1016/j.foodchem.2009.02.057
Zhao, A.; Sun, W. In in silico Automatic Annotation of Phenolamides in Plants by Tandem Mass Spectra; 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce); IEEE: 2021; pp 1- 5.
Wang, S.; Suh, J. H.; Hung, W.-L.; Zheng, X.; Wang, Y.; Ho, C.-T. Use of UHPLC-TripleQ with synthetic standards to profile anti-inflammatory hydroxycinnamic acid amides in root barks and leaves of Lycium barbarum. journal of food and drug analysis 2018, 26 ( 2), 572- 582, 10.1016/j.jfda.2017.06.002
Liu, X.; Osawa, T. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochemical and biophysical research communications 2007, 357 ( 1), 187- 193, 10.1016/j.bbrc.2007.03.120
Lal, N.; Berenjian, A. Cis and trans isomers of the vitamin menaquinone-7: which one is biologically significant?. Applied microbiology and biotechnology 2020, 104, 2765- 2776, 10.1007/s00253-020-10409-1
Li, W.-C.; Wang, X.-Y.; Lin, P.-C.; Hu, N.; Zhang, Q.-L.; Suo, Y.-R.; Ding, C.-X. Preparative separation and purification of four cis-trans isomers of coumaroylspermidine analogs from safflower by high-speed counter-current chromatography. Journal of Chromatography B 2013, 938, 75- 79, 10.1016/j.jchromb.2013.08.012
Kim, S. B.; Liu, Q.; Ahn, J. H.; Jo, Y. H.; Turk, A.; Hong, I. P.; Han, S. M.; Hwang, B. Y.; Lee, M. K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorganic Chemistry 2018, 81, 127- 133, 10.1016/j.bioorg.2018.08.014
Putschögl, M.; Zirak, P.; Penzkofer, A. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents. Chem. Phys. 2008, 343 ( 1), 107- 120, 10.1016/j.chemphys.2007.10.031
Xiang, J.; Zhang, M.; Apea-Bah, F. B.; Beta, T. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Food chemistry 2019, 295, 214- 223, 10.1016/j.foodchem.2019.05.058
Zhou, Z.-Q.; Fan, H.-X.; He, R.-R.; Xiao, J.; Tsoi, B.; Lan, K.-H.; Kurihara, H.; So, K.-F.; Yao, X.-S.; Gao, H. Lycibarbarspermidines A-O, new dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer’s disease and oxidation. Journal of agricultural and food chemistry 2016, 64 ( 11), 2223- 2237, 10.1021/acs.jafc.5b05274
Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Critical Reviews in Food Science and Nutrition 2022, 62 ( 6), 1608- 1625, 10.1080/10408398.2020.1845603
Becker, D.; Stegmüller, S.; Richling, E. Characterization of brewer’s spent grain extracts by tandem mass spectrometry and HPLC-DAD: Ferulic acid dehydrodimers, phenolamides, and oxylipins. Food Science & Nutrition 2023, 11 ( 5), 2298- 2320, 10.1002/fsn3.3178
Qin, X.; Yin, Y.; Zhao, J.; An, W.; Fan, Y.; Liang, X.; Cao, Y. Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress. BMC plant biology 2022, 22 ( 1), 8, 10.1186/s12870-021-03375-x
Zhang, D.; Liu, J.; Zhang, Y.; Wang, H.; Wei, S.; Zhang, X.; Zhang, D.; Ma, H.; Ding, Q.; Ma, L. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.). Journal of Hazardous Materials 2023, 445, 130499, 10.1016/j.jhazmat.2022.130499
Narváez-Cuenca, C.-E.; Vincken, J.-P.; Zheng, C.; Gruppen, H. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food chemistry 2013, 139 ( 1-4), 1087- 1097, 10.1016/j.foodchem.2013.02.018
Wang, S.; Suh, J. H.; Zheng, X.; Wang, Y.; Ho, C.-T. Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. Journal of agricultural and food chemistry 2017, 65 ( 2), 364- 372, 10.1021/acs.jafc.6b05136
Assefa, S. T.; Yang, E.-Y.; Asamenew, G.; Kim, H.-W.; Cho, M.-C.; Lee, J. Identification of α-glucosidase inhibitors from leaf extract of pepper (Capsicum spp.) through metabolomic analysis. Metabolites 2021, 11 ( 10), 649, 10.3390/metabo11100649
Bento-Silva, A.; Duarte, N.; Belo, M.; Mecha, E.; Carbas, B.; Brites, C.; Vaz Patto, M. C.; Bronze, M. R. Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules 2021, 11 ( 10), 1396, 10.3390/biom11101396
Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. Journal of Functional Foods 2021, 77, 104340, 10.1016/j.jff.2020.104340
Tsivelika, N.; Irakli, M.; Mavromatis, A.; Chatzopoulou, P.; Karioti, A. Phenolic profile by HPLC-PDA-MS of Greek chamomile populations and commercial varieties and their antioxidant activity. Foods 2021, 10 ( 10), 2345, 10.3390/foods10102345
Hegazi, N. M.; Khattab, A. R.; Frolov, A.; Wessjohann, L. A.; Farag, M. A. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food chemistry 2022, 367, 130739, 10.1016/j.foodchem.2021.130739
Li, Q.-W.; Zhang, R.; Zhou, Z.-Q.; Sun, W.-Y.; Fan, H.-X.; Wang, Y.; Xiao, J.; So, K.-F.; Yao, X.-S.; Gao, H. Phenylpropanoid glycosides from the fruit of Lycium barbarum L. and their bioactivity. Phytochemistry 2019, 164, 60- 66, 10.1016/j.phytochem.2019.04.017
Caldas, F. R.; Augusto, F.; Facundo, H. T.; Alves, R. F.; dos Santos, F. d. A.; Silva, G. R. d.; Camara, C. A.; Silva, T. Chemical composition, antiradicalar and antimicrobial activity of Fabaceae pollen bee. Química Nova 2019, 42, 49- 56, 10.21577/0100-4042.20170305
Wu, W.; Qiao, J.; Xiao, X.; Kong, L.; Dong, J.; Zhang, H. In vitro and In vivo digestion comparison of bee pollen with or without wall-disruption. Journal of the Science of Food and Agriculture 2021, 101 ( 7), 2744- 2755, 10.1002/jsfa.10902
Zhang, H.; Lu, Q.; Liu, R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem. 2022, 375, 131908, 10.1016/j.foodchem.2021.131908
Pihlava, J.-M. Identification of hordatines and other phenolamides in barley (Hordeum vulgare) and beer by UPLC-QTOF-MS. Journal of cereal science 2014, 60 ( 3), 645- 652, 10.1016/j.jcs.2014.07.002
Dong, X.; Gao, Y.; Chen, W.; Wang, W.; Gong, L.; Liu, X.; Luo, J. Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Molecular Plant 2015, 8 ( 1), 111- 121, 10.1016/j.molp.2014.11.003
Kyselka, J.; Bleha, R.; Dragoun, M.; Bialasová, K. n.; Horáčková, S. a. r.; Schätz, M.; Sluková, M.; Filip, V.; Synytsya, A. Antifungal polyamides of hydroxycinnamic acids from sunflower bee pollen. Journal of agricultural and food chemistry 2018, 66 ( 42), 11018- 11026, 10.1021/acs.jafc.8b03976
Pihlava, J.-M.; Hellström, J.; Kurtelius, T.; Mattila, P. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science 2018, 79, 183- 192, 10.1016/j.jcs.2017.09.009
Tiozon, R. J. N.; Sartagoda, K. J. D.; Serrano, L. M. N.; Fernie, A. R.; Sreenivasulu, N. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends in Food Science Technology 2022, 127, 14- 25, 10.1016/j.tifs.2022.06.011
Burt, A. J.; Arnason, J. T.; García-Lara, S. Natural variation of hydroxycinnamic acid amides in maize landraces. Journal of cereal science 2019, 88, 145- 149, 10.1016/j.jcs.2019.06.002
Ma, R.-H.; Zhang, X.-X.; Ni, Z.-J.; Thakur, K.; Wang, W.; Yan, Y.-M.; Cao, Y.-L.; Zhang, J.-G.; Rengasamy, K. R.; Wei, Z.-J. Lycium barbarum (Goji) as functional food: a review of its nutrition, phytochemical structure, biological features, and food industry prospects. Critical Reviews in Food Science and Nutrition 2023, 63, 10621, 10.1080/10408398.2022.2078788
Shakya, R.; Navarre, D. A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. Journal of Agricultural and food Chemistry 2006, 54 ( 15), 5253- 5260, 10.1021/jf0605300
Chong, E. S. L.; McGhie, T. K.; Heyes, J. A.; Stowell, K. M. Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry. Journal of the Science of Food and Agriculture 2013, 93 ( 15), 3801- 3808, 10.1002/jsfa.6285
Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 2016, 291 ( 29), 14904- 14912, 10.1074/jbc.R116.731661
Lenis, Y. Y.; Elmetwally, M. A.; Maldonado-Estrada, J. G.; Bazer, F. W. Physiological importance of polyamines. Zygote 2017, 25 ( 3), 244- 255, 10.1017/S0967199417000120
Uemura, T.; Akasaka, Y.; Ikegaya, H. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon 2020, 6 ( 9), e05031, 10.1016/j.heliyon.2020.e05031
Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; Tong, M.; Ruckenstuhl, C.; Dammbrueck, C.; Gross, A. S; Herbst, V.; Magnes, C.; Trausinger, G.; Narath, S.; Meinitzer, A.; Hu, Z.; Kirsch, A.; Eller, K.; Carmona-Gutierrez, D.; Buttner, S.; Pietrocola, F.; Knittelfelder, O.; Schrepfer, E.; Rockenfeller, P.; Simonini, C.; Rahn, A.; Horsch, M.; Moreth, K.; Beckers, J.; Fuchs, H.; Gailus-Durner, V.; Neff, F.; Janik, D.; Rathkolb, B.; Rozman, J.; de Angelis, M. H.; Moustafa, T.; Haemmerle, G.; Mayr, M.; Willeit, P.; von Frieling-Salewsky, M.; Pieske, B.; Scorrano, L.; Pieber, T.; Pechlaner, R.; Willeit, J.; Sigrist, S. J; Linke, W. A; Muhlfeld, C.; Sadoshima, J.; Dengjel, J.; Kiechl, S.; Kroemer, G.; Sedej, S.; Madeo, F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature medicine 2016, 22 ( 12), 1428- 1438, 10.1038/nm.4222
Madeo, F.; Eisenberg, T.; Büttner, S.; Ruckenstuhl, C.; Kroemer, G. Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 2010, 6 ( 1), 160- 162, 10.4161/auto.6.1.10600
Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in health and disease. Science 2018, 359 ( 6374), eaan2788 10.1126/science.aan2788
Soda, K.; Dobashi, Y.; Kano, Y.; Tsujinaka, S.; Konishi, F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Experimental gerontology 2009, 44 ( 11), 727- 732, 10.1016/j.exger.2009.08.013
Matsumoto, M.; Kitada, Y.; Naito, Y. Endothelial function is improved by inducing microbial polyamine production in the gut: a randomized placebo-controlled trial. Nutrients 2019, 11 ( 5), 1188, 10.3390/nu11051188
Kiechl, S.; Pechlaner, R.; Willeit, P.; Notdurfter, M.; Paulweber, B.; Willeit, K.; Werner, P.; Ruckenstuhl, C.; Iglseder, B.; Weger, S. Higher spermidine intake is linked to lower mortality: a prospective population-based study. American journal of clinical nutrition 2018, 108 ( 2), 371- 380, 10.1093/ajcn/nqy102
Pekar, T.; Wendzel, A.; Flak, W.; Kremer, A.; Pauschenwein-Frantsich, S.; Gschaider, A.; Wantke, F.; Jarisch, R. Spermidine in dementia: Relation to age and memory performance. Wiener klinische Wochenschrift 2020, 132 ( 1-2), 42- 46, 10.1007/s00508-019-01588-7
Soda, K. Polyamine intake, dietary pattern, and cardiovascular disease. Medical hypotheses 2010, 75 ( 3), 299- 301, 10.1016/j.mehy.2010.03.008
Soda, K.; Kano, Y.; Chiba, F. Food polyamine and cardiovascular disease-an epidemiological study. Global journal of health science 2012, 4 ( 6), 170, 10.5539/gjhs.v4n6p170
Nowotarski, S. L.; Woster, P. M.; Casero, R. A. Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert reviews in molecular medicine 2013, 15, e3 10.1017/erm.2013.3
Gerner, E. W.; Bruckheimer, E.; Cohen, A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 2018, 293 ( 48), 18770- 18778, 10.1074/jbc.TM118.003343
Wirth, M.; Schwarz, C.; Benson, G.; Horn, N.; Buchert, R.; Lange, C.; Kobe, T.; Hetzer, S.; Maglione, M.; Michael, E.; Marschenz, S.; Mai, K.; Kopp, U.; Schmitz, D.; Grittner, U.; Sigrist, S. J.; Stekovic, S.; Madeo, F.; Floel, A. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)─study protocol for a randomized controlled trial. Alzheimer’s research therapy 2019, 11, 36, 10.1186/s13195-019-0484-1
Soda, K.; Kano, Y.; Chiba, F.; Koizumi, K.; Miyaki, Y. Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1, 2-dimethylhydrazine-induced tumorigenesis. PLoS One 2013, 8 ( 5), e64357 10.1371/journal.pone.0064357
Pietrocola, F.; Pol, J.; Vacchelli, E.; Rao, S.; Enot, D. P.; Baracco, E. E.; Levesque, S.; Castoldi, F.; Jacquelot, N.; Yamazaki, T.; Senovilla, L.; Marino, G.; Aranda, F.; Durand, S.; Sica, V.; Chery, A.; Lachkar, S.; Sigl, V.; Bloy, N.; Buque, A.; Falzoni, S.; Ryffel, B.; Apetoh, L.; Di Virgilio, F.; Madeo, F.; Maiuri, M. C.; Zitvogel, L.; Levine, B.; Penninger, J. M.; Kroemer, G. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer cell 2016, 30 ( 1), 147- 160, 10.1016/j.ccell.2016.05.016
Yue, F.; Li, W.; Zou, J.; Jiang, X.; Xu, G.; Huang, H.; Liu, L. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating MAP1S-mediated autophagy. Cancer research 2017, 77 ( 11), 2938- 2951, 10.1158/0008-5472.CAN-16-3462
Di Biase, S.; Lee, C.; Brandhorst, S.; Manes, B.; Buono, R.; Cheng, C.-W.; Cacciottolo, M.; Martin-Montalvo, A.; de Cabo, R.; Wei, M.; Morgan, T. E.; Longo, V. D. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer cell 2016, 30 ( 1), 136- 146, 10.1016/j.ccell.2016.06.005
Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Kurihara, S.; Sawaki, E.; Koga, Y.; Benno, Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2012, 2 ( 1), 233, 10.1038/srep00233
Zhong, Z.; Sanchez-Lopez, E.; Karin, M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clinical and experimental rheumatology 2016, 34 ( 4 Suppl 98), 12- 16
Kibe, R.; Kurihara, S.; Sakai, Y.; Suzuki, H.; Ooga, T.; Sawaki, E.; Muramatsu, K.; Nakamura, A.; Yamashita, A.; Kitada, Y.; Kakeyama, M.; Benno, Y.; Matsumoto, M. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci. Rep. 2014, 4 ( 1), 4548, 10.1038/srep04548
Zhu, S.; Ashok, M.; Li, J.; Li, W.; Yang, H.; Wang, P.; Tracey, K. J.; Sama, A. E.; Wang, H. Spermine protects mice against lethal sepsis partly by attenuating surrogate inflammatory markers. Mol. Med. 2009, 15 ( 7), 275- 282, 10.2119/molmed.2009.00062
Soda, K.; Uemura, T.; Sanayama, H.; Igarashi, K.; Fukui, T. Polyamine-rich diet elevates blood spermine levels and inhibits pro-inflammatory status: an interventional study. Medical Sciences 2021, 9 ( 2), 22, 10.3390/medsci9020022
Choi, Y. H.; Park, H. Y. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. Journal of biomedical science 2012, 19 ( 1), 31, 10.1186/1423-0127-19-31
Gao, Y.; Wu, A.; Li, Y.; Chang, Y.; Xue, C.; Tang, Q. The risk of carrageenan-induced colitis is exacerbated under high-sucrose/high-salt diet. Int. J. Biol. Macromol. 2022, 210, 475- 482, 10.1016/j.ijbiomac.2022.04.158
Sadasivan, S. K.; Vasamsetti, B.; Singh, J.; Marikunte, V. V.; Oommen, A. M.; Jagannath, M.R.; Pralhada Rao, R. Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice. European journal of pharmacology 2014, 729, 94- 99, 10.1016/j.ejphar.2014.01.073
Ramos-Molina, B.; Queipo-Ortuño, M. I.; Lambertos, A.; Tinahones, F. J.; Peñafiel, R. Dietary and gut microbiota polyamines in obesity-and age-related diseases. Frontiers in Nutrition 2019, 6, 24, 10.3389/fnut.2019.00024
Akasaka, N.; Fujiwara, S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2020, 52 ( 2), 181- 197, 10.1007/s00726-019-02720-7
Fernandez, A. F; Barcena, C.; Martinez-Garcia, G. G; Tamargo-Gomez, I.; Suarez, M. F; Pietrocola, F.; Castoldi, F.; Esteban, L.; Sierra-Filardi, E.; Boya, P.; Lopez-Otin, C.; Kroemer, G.; Marino, G. Autophagy couteracts weight gain, lipotoxicity and pancreatic β-cell death upon hypercaloric pro-diabetic regimens. Cell death & disease 2017, 8 ( 8), e2970 10.1038/cddis.2017.373
Gugliucci, A.; Menini, T. The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: a new role for old molecules?. Life sciences 2003, 72 ( 23), 2603- 2616, 10.1016/S0024-3205(03)00166-8
Wu, X.; Cao, W.; Jia, G.; Zhao, H.; Chen, X.; Wu, C.; Tang, J.; Wang, J.; Liu, G. New insights into the role of spermine in enhancing the antioxidant capacity of rat spleen and liver under oxidative stress. Animal Nutrition 2017, 3 ( 1), 85- 90, 10.1016/j.aninu.2016.11.005
Ha, H. C.; Sirisoma, N. S.; Kuppusamy, P.; Zweier, J. L.; Woster, P. M.; Casero, R. A., Jr The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 ( 19), 11140- 11145, 10.1073/pnas.95.19.11140
Chai, N.; Zhang, H.; Li, L.; Yu, X.; Liu, Y.; Lin, Y.; Wang, L.; Yan, J.; Nikolaevna, S. E.; Zhao, Y. Spermidine prevents heart injury in neonatal rats exposed to intrauterine hypoxia by inhibiting oxidative stress and mitochondrial fragmentation. Oxidative medicine and cellular longevity 2019, 2019, 1, 10.1155/2019/5406468
Clarkson, A. N.; Liu, H.; Pearson, L.; Kapoor, M.; Harrison, J. C.; Sammut, I. A.; Jackson, D. M.; Appleton, I. Neuroprotective effects of spermine following hypoxia-ischemia-induced brain damage: a mechanistic study. FASEB J. 2004, 18 ( 10), 1114- 1116, 10.1096/fj.03-1203fje
Jeong, J.-W.; Cha, H.-J.; Han, M. H.; Hwang, S. J.; Lee, D.-S.; Yoo, J. S.; Choi, I.-W.; Kim, S.; Kim, H.-S.; Kim, G.-Y.; Hong, S. H.; Park, C.; Lee, H.-J.; Choi, Y. H. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomolecules therapeutics 2018, 26 ( 2), 146, 10.4062/biomolther.2016.272
Akhova, A. V.; Tkachenko, A. G. Multifaceted role of polyamines in bacterial adaptation to antibiotic-mediated oxidative stress. Microbiological Society of Korea 2020, 56 ( 2), 103- 110
Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M. T.; Izquierdo-Pulido, M.; Vidal-Carou, M. C. In vitro antioxidant activity of dietary polyamines. Food research international 2013, 51 ( 1), 141- 147, 10.1016/j.foodres.2012.11.036
Makletsova, M. G.; Syatkin, S. P.; Poleshchuk, V. V.; Urazgildeeva, G. R.; Chigaleychik, L. A.; Sungrapova, C. Y.; Illarioshkin, S. N. Polyamines in Parkinson’s disease: their role in oxidative stress induction and protein aggregation. Journal of Neurology Research 2019, 9 ( 1-2), 1- 7, 10.14740/jnr509
Minois, N.; Rockenfeller, P.; Smith, T. K.; Carmona-Gutierrez, D. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PloS one 2014, 9 ( 7), e102435 10.1371/journal.pone.0102435
Noro, T.; Namekata, K.; Kimura, A.; Guo, X.; Azuchi, Y.; Harada, C.; Nakano, T.; Tsuneoka, H.; Harada, T. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell death disease 2015, 6 ( 4), e1720 10.1038/cddis.2015.93
Noro, T.; Namekata, K.; Azuchi, Y.; Kimura, A.; Guo, X.; Harada, C.; Nakano, T.; Tsuneoka, H.; Harada, T. Spermidine ameliorates neurodegeneration in a mouse model of normal tension glaucoma. Investigative ophthalmology & visual science 2015, 56 ( 8), 5012- 5019, 10.1167/iovs.15-17142
Neis, V. B.; Rosa, P. B.; Olescowicz, G.; Rodrigues, A. L. S. Therapeutic potential of agmatine for CNS disorders. Neurochemistry international 2017, 108, 318- 331, 10.1016/j.neuint.2017.05.006
Valverde, A. P.; Camargo, A.; Rodrigues, A. L. S. Agmatine as a novel candidate for rapid-onset antidepressant response. World Journal of Psychiatry 2021, 11 ( 11), 981, 10.5498/wjp.v11.i11.981
Barua, S.; Kim, J. Y.; Kim, J. Y.; Kim, J. H.; Lee, J. E. Therapeutic effect of agmatine on neurological disease: focus on ion channels and receptors. Neurochemical research 2019, 44, 735- 750, 10.1007/s11064-018-02712-1
Leander, G. A preliminary investigation on the therapeutic effect of Cernilton N in chronic prostatovesiculitis. Svenska Lakartidningen 1962, 59 ( 45), 3296
Jethon, Z.; Kielan-Bak, Z.; Tara, B.; Ziolkowska, B. Effect of Cernilton on Anaerobic Metabolism. Graminex.
Zhang, H.; Zhu, X.; Huang, Q.; Zhang, L.; Liu, X.; Liu, R.; Lu, Q. Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chem. 2023, 409, 135342, 10.1016/j.foodchem.2022.135342
Liu, X.; Zheng, X.; Long, Y.; Cao, H.; Wang, N.; Lu, Y.; Zhao, K.; Zhou, H.; Zheng, J. Dual targets guided screening and isolation of Kukoamine B as a novel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. International immunopharmacology 2011, 11 ( 1), 110- 120, 10.1016/j.intimp.2010.10.015
Liu, X.; Zheng, X.; Wang, N.; Cao, H.; Lu, Y.; Long, Y.; Zhao, K.; Zhou, H.; Zheng, J. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is a potential candidate for sepsis treatment. British journal of pharmacology 2011, 162 ( 6), 1274- 1290, 10.1111/j.1476-5381.2010.01114.x
Li, Y.-Y.; Stewart, D. A.; Ye, X.-M.; Yin, L.-H.; Pathmasiri, W. W.; McRitchie, S. L.; Fennell, T. R.; Cheung, H.-Y.; Sumner, S. J. A metabolomics approach to investigate kukoamine B─A potent natural product with anti-diabetic properties. Frontiers in pharmacology 2019, 9, 1575, 10.3389/fphar.2018.01575
Jiang, G.; Takase, M.; Aihara, Y.; Shigemori, H. Inhibitory activities of kukoamines A and B from Lycii Cortex on amyloid aggregation related to Alzheimer’s disease and type 2 diabetes. Journal of natural medicines 2020, 74, 247- 251, 10.1007/s11418-019-01337-0
Li, G.; Zhou, F.; Chen, Y.; Zhang, W.; Wang, N. Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomedicine & Pharmacotherapy 2017, 89, 536- 543, 10.1016/j.biopha.2017.02.024
Khongkarat, P.; Ramadhan, R.; Phuwapraisirisan, P.; Chanchao, C. Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon 2020, 6 ( 3), e03638, 10.1016/j.heliyon.2020.e03638
Choi, S. W.; Lee, S. K.; Kim, E. O.; Oh, J. H.; Yoon, K. S.; Parris, N.; Hicks, K. B.; Moreau, R. A. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J. Agric. Food Chem. 2007, 55 ( 10), 3920- 3925, 10.1021/jf0635154
Hu, X.-L.; Gao, L.-Y.; Niu, Y.-X.; Tian, X.; Wang, J.; Meng, W.-H.; Zhang, Q.; Cui, C.; Han, L.; Zhao, Q.-C. Neuroprotection by Kukoamine A against oxidative stress may involve N-methyl-D-aspartate receptors. Biochimica et Biophysica Acta (BBA)-General Subjects 2015, 1850 ( 2), 287- 298, 10.1016/j.bbagen.2014.11.006
Hu, X.; Song, Q.; Li, X.; Li, D.; Zhang, Q.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 2017, 117, 352- 363, 10.1016/j.neuropharm.2017.02.022
Liu, J.; Jiang, X.; Zhang, Q.; Lin, S.; Zhu, J.; Zhang, Y.; Du, J.; Hu, X.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A against cerebral ischemia via antioxidant and inactivation of apoptosis pathway. Neurochemistry international 2017, 107, 191- 197, 10.1016/j.neuint.2016.12.024
Zhang, Y.; Cheng, Z.; Wang, C.; Ma, H.; Meng, W.; Zhao, Q. Neuroprotective effects of kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem. Res. 2016, 41, 2549- 2558, 10.1007/s11064-016-1967-0
Zhang, Y.; Gao, L.; Cheng, Z.; Cai, J.; Niu, Y.; Meng, W.; Zhao, Q. Kukoamine A prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotoxicity research 2017, 31, 259- 268, 10.1007/s12640-016-9679-4
Wang, Q.; Li, H.; Sun, Z.; Dong, L.; Gao, L.; Liu, C.; Wang, X. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation. Sci. Rep. 2016, 6 ( 1), 36543, 10.1038/srep36543
Ma, C.-M.; Nakamura, N.; Hattori, M. Inhibitory effects on HIV-1 protease of tri-p-coumaroylspermidine from Artemisia caruifolia and related amides. Chemical and pharmaceutical bulletin 2001, 49 ( 7), 915- 917, 10.1248/cpb.49.915
Mude, H.; Balapure, A.; Thakur, A.; Ganesan, R.; Ray Dutta, J. Enhanced antibacterial, antioxidant and anticancer activity of caffeic acid by simple acid-base complexation with spermine/spermidine. Natural Product Research 2022, 36 ( 24), 6453- 6458, 10.1080/14786419.2022.2038597
Zhang, H.; Liu, R.; Lu, Q. Separation and characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules 2020, 25 ( 6), 1264, 10.3390/molecules25061264