Change detection; LULUCF; Sentinel-2; Global and Planetary Change; Ecology; Nature and Landscape Conservation
Abstract :
[en] Land Use/Cover changes are crucial for the use of sustainable resources and the delivery of ecosystem services. They play an important contribution in the climate change mitigation due to their ability to emit and remove greenhouse gas from the atmosphere. These emissions/removals are subject to an inventory which must be reported annually under the United Nations Framework Convention on Climate Change. This study investigates the use of Sentinel-2 data for analysing lands conversion associated to Land Use, Land Use Change and Forestry sector in the Wallonia region (southern Belgium). This region is characterized by one of the lowest conversion rates across European countries, which constitutes a particular challenge in identifying land changes. The proposed research tests the most commonly used change detection techniques on a bi-temporal and multi-temporal set of mosaics of Sentinel-2 data from the years 2016 and 2018. Our results reveal that land conversion is a very rare phenomenon in Wallonia. All the change detection techniques tested have been found to substantially overestimate the changes. In spite of this moderate results our study has demonstrated the potential of Sentinel-2 regarding land conversion. However, in this specific context of very low magnitude of land conversion in Wallonia, change detection techniques appear to be not sufficient to exceed the signal to noise ratio.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Close, Odile ; Scientific Institute of Public Service (ISSeP), Liege, Belgium
Petit, Sophie; Scientific Institute of Public Service (ISSeP), Liege, Belgium
Beaumont, Benjamin ; Scientific Institute of Public Service (ISSeP), Liege, Belgium
Hallot, Eric ; Université de Liège - ULiège > Département de géographie ; Scientific Institute of Public Service (ISSeP), Liege, Belgium
Language :
English
Title :
Evaluating the potentiality of sentinel-2 for change detection analysis associated to lulucf in wallonia, belgium
Funding: This research was conducted in the framework of the “EO4LULUCF” project, which was funded by an internal fund of Institut Scientifique de Service Public Moerman (ISSeP).
Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [CrossRef]
Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [CrossRef]
Gómez, C.; White, J.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote. Sens. 2016, 116, 55–72. [CrossRef]
European Environment Agency. Landscapes in Transition. An Account of 25 Years of Land Cover Change in Europe. EEA Rep. 2017, 10, 226. [CrossRef]
European Environment Agency. Belgium. 2017. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2017 (accessed on 8 January 2021).
Tian, H.; Lu, C.; Yang, J.; Banger, K.; Huntzinger, D.N.; Schwalm, C.R.; Michalak, A.M.; Cook, R.; Ciais, P.; Hayes, D.J.; et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Glob. Biogeochem. Cycles 2015, 29, 775–792. [CrossRef]
Sorichetta, A.; Nghiem, S.V.; Masetti, M.; Linard, C.; Richter, A. Transformative Urban Changes of Beijing in the Decade of the 2000s. Remote. Sens. 2020, 12, 652. [CrossRef]
Houghton, R.A. Terrestrial sources and sinks of carbon inferred from terrestrial data. Tellus B Chem. Phys. Meteorol. 1996, 48, 420–432. [CrossRef]
Representation, C.; Guidelines, I.; Greenhouse, N.; Inventories, G. Chapter 3 Consistent Representation of. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_03_Ch3_Representation.pdf (accessed on 8 January 2021).
IPCC. Lignes Directrices 2006 Du GIEC Pour Les Inventaires Nationaux de Gaz à Effet de Serre.Volume 4: Agriculture, Foresterie et Autres Affectations des Terres: Chapitre 1 Introduction; IPCC: Saint-Aubin, France, 2006; pp. 1–25.
Manakos, I.; Braun, M. Land Use and Land Cover Mapping in Europe; Springer: London, UK, 2014; Volume 18.
Rosina, K.; Silva, F.B.; Vizcaino, P.; Herrera, M.M.; Freire, S.; Schiavina, M. Increasing the detail of European land use/cover data by combining heterogeneous data sets. Int. J. Digit. Earth 2018, 13, 602–626. [CrossRef]
Langanke, T. Copernicus Land Monitoring Service—High Resolution Layer Imperviousness. 2016. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers (accessed on 8 January 2021).
European Environment Agency. High Resolution Layer Forest: Product Specifications; European Commission: Brussels, Belgium, 2017; p. 38.
Langanke, T. Copernicus Land Monitoring Service—High Resolution Layer Grassland, Product Specifications; European Commission: Brussels, Belgium, 2016.
European Environment Agency. Copernicus Land Monitoring Service—High Resolution Layer Water and Wetness; European Commis-sion: Brussels, Belgium, 2018.
European Environmental Agency. Copernicus Land Monitoring Service—High Resolution Layer Small Woody Features—2015 Reference Year; European Commission: Brussels, Belgium, 2015; pp. 1–30.
Copernicus. Workshop Summary Using Copernicus Land Monitoring Service (CLMS) to Support the Land Use, Land Use Change and Forestry (LULUCF) Regulation; European Commission: Brussels, Belgium, 2019.
Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.M.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote. Sens. Environ. 2012, 120, 25–36. [CrossRef]
Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote. Sens. 2016, 8, 166. [CrossRef]
Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote. Sens. 2016, 8, 606. [CrossRef]
Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote. Sens. 2004, 25, 2365–2401. [CrossRef]
Close, O.; Beaumont, B.; Petit, S.; Fripiat, X.; Hallot, E. Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium. Land 2018, 7, 154. [CrossRef]
Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote. Sens. 2013, 80, 91–106. [CrossRef]
Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote. Sens. 2008, 29, 4823–4838. [CrossRef]
Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [CrossRef]
Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127. [CrossRef]
Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote. Sens. Environ. 2003, 87, 85–98. [CrossRef]
Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote. Sens. 2003, 24, 583–594. [CrossRef]
Escadafal, R. Remote sensing of arid soil surface color with Landsat thematic mapper. Adv. Space Res. 1989, 9, 159–163. [CrossRef]
Cheţan, M.A.; Dornik, A.; Urdea, P. Comparison of Object and Pixel-Based Land Cover Classification through Three Su-pervised Methods. J. Geodasy Geoinf. Land Manag. 2017. [CrossRef]
Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Object-based change detection. Int. J. Remote. Sens. 2012, 33, 4434–4457. [CrossRef]
Pierce, J.K.B. Accuracy Optimization for High Resolution Object-Based Change Detection: An Example Mapping Regional Urbanization with 1-m Aerial Imagery. Remote. Sens. 2015, 7, 12654–12679. [CrossRef]
Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: A review. Int. J. Remote. Sens. 2004, 25, 1565–1596. [CrossRef]
Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote. Sens. Environ. 2015, 160, 1–14. [CrossRef]
Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote. Sens. Environ. 2017, 199, 241–255. [CrossRef]
Huang, L.; Fang, Y.; Zuo, X.; Yu, X. Automatic Change Detection Method of Multitemporal Remote Sensing Images Based on 2D-Otsu Algorithm Improved by Firefly Algorithm. J. Sens. 2015, 2015, 1–8. [CrossRef]
Büttner, G.; Kostztra, B.; Soukup, T.; Sousa, A.; Langanke, T. CLC2018 Technical Guidelines. 2017. Available online: https://land.copernicus.eu/user-corner/technical-library/clc2018technicalguidelines_final.pdf (accessed on 8 January 2021).
EUROSTAT. LUCAS 2015 (Land Use/Cover Area Frame Survey), Quality Report; European Commission: Brussels, Belgium, 2015.
Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote. Sens. Environ. 2014, 148, 42–57. [CrossRef]
Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote. Sens. Environ. 2019, 231, 111199. [CrossRef]
Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; The United States Geological Survey: Reston, VA, USA, 2001.
Pontius, R.G., Jr.; Lippitt, C.D. Can Error Explain Map Differences Over Time? Cartogr. Geogr. Inf. Sci. 2006, 33, 159–171. [CrossRef]
Pitkänen, T.P.; Sirro, L.; Häme, L.; Häme, T.; Törmä, M.; Kangas, A. Errors related to the automatized satellite-based change detection of boreal forests in Finland. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102011. [CrossRef]