Automatic monitoring; Change detection; Sentinel-1; Sentinel-2; Time series; Urban planning; Global and Planetary Change; Ecology; Nature and Landscape Conservation
Abstract :
[en] Urban planning is a challenge, especially when it comes to limiting land take. In former industrial regions such as Wallonia, the presence of a large number of brownfields, here called “redevelopment sites”, opens up new opportunities for sustainable urban planning through their revalorization. The Walloon authorities are currently managing an inventory of more than 2200 sites, which requires a significant amount of time and resources to update. In this context, the Sentinel satellites and the Terrascope platform, the Sentinel Collaborative Ground Segment for Belgium, enabled us to deploy SARSAR, an Earth observation service used for the automated monitoring of redevelopment sites that generates regular and automatic change reports that are directly usable by the Walloon authorities. In this paper, we present the methodological aspects and implementation details of the service, which combines two well-known and robust methods: the Pruned Exact Linear Time method for change point detection and threshold-based classification, which assigns the detected changes to three different classes (vegetation, building and soil). The overall accuracy of the system is in the range of 70–90%, depending on the different methods and classes considered. Some remarks on the advantages and possible drawbacks of this approach are also provided.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Petit, Sophie; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Stasolla, Mattia; Signal and Image Centre, Royal Military Academy, Brussels, Belgium
Wyard, Coraline ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Swinnen, Gérard; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Neyt, Xavier; Signal and Image Centre, Royal Military Academy, Brussels, Belgium
Hallot, Eric ; Université de Liège - ULiège > Département de géographie ; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Language :
English
Title :
A New Earth Observation Service Based on Sentinel-1 and Sentinel-2 Time Series for the Monitoring of Redevelopment Sites in Wallonia, Belgium
Funding: The research presented in this paper is funded by BELSPO (Belgian Science Policy Office) in the frame of the STEREO III programme—project SR/00/372.
Ferber, U.; Tomerius, S. Brownfield redevelopment: Strategies and approaches in Europe and the United States. In Private Finance and Economic Development: City and Regional Investment; OECD Publishing: Paris, France, 2003. [CrossRef]
Turvani, M.; Tonin, S. Brownfields Remediation and reuse: An opportunity for urban sustainable development. In Sustainable Development and Environmental Management: Experiences and Case Studies; Clini, C., Musu, I., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 397–411. [CrossRef]
Rénover et Réaménager la Wallonie. Available online: http://lampspw.wallonie.be/dgo4/site_amenagement/site/directions/dao/sarpdf (accessed on 27 January 2022).
Sites à Réaménager. Available online: https://www.iweps.be/wp-content/uploads/2021/12/T008-SITES.REAM_.-122021_full1.pdf (accessed on 27 January 2022).
Service Public de Wallonie, Code du Développement Territorial. Available online: http://lampspw.wallonie.be/dgo4/tinymvc/apps/amenagement/views/documents/juridique/codt/CoDT_Fr.pdf (accessed on 27 January 2022).
Inventaire des Sites à Réaménager. Available online: http://lampspw.wallonie.be/dgo4/site_sar/index.php (accessed on 27 January 2022).
Schiller, G.; Blum, A.; Hecht, R.; Oertel, H.; Ferber, U.; Meinel, G. Urban infill development potential in Germany: Comparing survey and GIS data. Build. Cities 2021, 2, 36–54. [CrossRef]
Banzhaf, E.; Netzband, M. Detecting urban brownfields by means of high resolution satellite imagery. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2004, 35, 460–466.
Ferrara, V. Brownfield identification: Different approaches for analysing data detected by means of remote sensing. WIT Trans. Ecol. Environ. 2008, 107, 45–54. [CrossRef]
Xu, S.; Ehlers, M. Automatic detection of urban vacant land: An open-source approach for sustainable cities. Comput. Environ. Urban Syst. 2022, 91, 101729. [CrossRef]
Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [CrossRef]
Hecheltjen, A.; Thonfeld, F.; Menz, G. Recent advances in remote sensing change detection—A review. In Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2014. [CrossRef]
Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [CrossRef]
Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [CrossRef]
Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [CrossRef]
Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [CrossRef]
Yan, J.; Wang, L.; Song, W.; Chen, Y.; Chen, X.; Deng, Z. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [CrossRef]
Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [CrossRef] [PubMed]
Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-real time forest change detection using PlanetScope imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [CrossRef]
Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]
Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]
Woodcock, C.E.; Loveland, T.R.; Herold, M.; Bauer, M.E. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 2020, 238, 111558. [CrossRef]
Puletti, N.; Bascietto, M. Towards a Tool for Early Detection and Estimation of Forest Cuttings by Remotely Sensed Data. Land 2019, 8, 58. [CrossRef]
Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [CrossRef]
Close, O.; Beaumont, B.; Petit, S.; Fripiat, X.; Hallot, E. Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium. Land 2018, 7, 154. [CrossRef]
Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [CrossRef]
Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [CrossRef]
Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [CrossRef]
Ban, Y.; Yousif, O.; Hu, H. Global urban monitoring and assessment through earth observation: Fusion of SAR and optical data for urban land cover mapping and change detection. In Global Urban Monitoring and Assessment through Earth Observation; CRC Press: Boca Raton, FL, USA, 2014.
Yousif, O.; Ban, Y. Fusion of SAR and optical data for unsupervised change detection: A case study in Beijing. In Proceedings of the Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017.
Hirschmugl, M.; Deutscher, J.; Gutjahr, K.; Sobe, C.; Schardt, M. Combined use of SAR and optical time series data for near real-time forest disturbance mapping. In Proceedings of the 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017.
Satalino, G.; Mattia, F.; Balenzano, A.; Lovergine, F.P.; Rinaldi, M.; de Santis, A.P.; Ruggieri, S.; Nafría García, D.A.; Paredes Gómez, V.; Ceschia, E.; et al. Sentinel-1 & sentinel-2 data for soil tillage change detection. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018.
Haas, J.; Ban, Y. Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sens. Appl. Soc. Environ. 2019, 8, 41–53. [CrossRef]
Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M.; et al. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest-Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens. 2019, 11, 979. [CrossRef]
Eckerstorfer, M.; Vickers, H.; Malnes, E.; Grahn, J. Near-Real Time Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR Data in Norway. Remote Sens. 2019, 11, 2863. [CrossRef]
Pulvirenti, L.; Squicciarino, G.; Fiori, E.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M.; Puca, S. An Automatic Processing Chain for Near Real-Time Mapping of Burned Forest Areas Using Sentinel-2 Data. Remote Sens. 2020, 12, 674. [CrossRef]
Cerbelaud, A.; Roupioz, L.; Blanchet, G.; Breil, P.; Briottet, X. A repeatable change detection approach to map extreme storm-related damages caused by intense surface runoff based on optical and SAR remote sensing: Evidence from three case studies in the South of France. ISPRS J. Photogramm. Remote Sens. 2021, 182, 153–175. [CrossRef]
Terrascope. Available online: https://terrascope.be/en/(accessed on 27 January 2022).
Everaerts, J.; Clarijs, D. Terrascope enables geohazard monitoring using the sentinel satellite constellation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1895–1898. [CrossRef]
Killick, R.; Fearnhead, P.; Eckley, I. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [CrossRef]
Stasolla, M.; Petit, S.; Wyard, C.; Swinnen, G.; Neyt, X.; Hallot, E. Urban sites change detection by means of sentinel-1 and sentinel-2 time series. In Proceedings of the IEEE IGARSS’21, Brussels, Belgium, 11–16 July 2021; pp. 1065–1068.
Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [CrossRef]
Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]
Bouziani, M.; Goïta, K.; He, D.C. Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J. Photogramm. Remote Sens. 2010, 65, 143–153. [CrossRef]
Escadafal, R. Remote sensing of arid soil surface color with Landsat thematic mapper. Adv. Space Res. 1989, 9, 159–163. [CrossRef]
Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]
McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]
Gadal, S.; Ouerghemmi, W. Multi-Level Morphometric Characterization of Built-up Areas and Change Detection in Siberian Sub-Arctic Urban Area: Yakutsk. ISPRS Int. J. Geo-Inf. 2019, 8, 129. [CrossRef]
Réjichi, S.; Chaabane, F.; Tupin, F. Expert Knowledge-Based Method for Satellite Image Time Series Analysis and Interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2138–2150. [CrossRef]
Bassine, C.; Radoux, J.; Beaumont, B.; Grippa, T.; Lennert, M.; Champagne, C.; de Vroey, M.; Martinet, A.; Bouchez, O.; Deffense, N.; et al. First 1-M Resolution Land Cover Map Labeling the Overlap in the 3rd Dimension: The 2018 Map for Wallonia. Data 2020, 5, 117. [CrossRef]
Beaumont, B.; Grippa, T.; Lennert, M. A user-driven process for INSPIRE-compliant land use database: Example from Wallonia, Belgium. Ann. GIS 2021, 27, 211–224. [CrossRef]