[en] Agricultural productivity in the Great Lakes Countries of Central Africa, including Burundi, Rwanda, and the Democratic Republic of Congo, is affected by a wide range of diseases and pests which are mainly controlled by chemical pesticides. However, more than 30% of the pesticides used in the region are banned in European Union due to their high toxicity. Globally available safe and eco-friendly biological alternatives to chemicals are virtually non-existent in the region. Bacillus PGPR-based biocontrol products are the most dominant in the market and have proven their efficacy in controlling major plant diseases reported in the region. With this review, we present the current situation of disease and pest management and urge the need to utilize Bacillus-based control as a possible sustainable alternative to chemical pesticides. A repertoire of strains from the Bacillus subtilis group that have shown great potential to antagonize local pathogens is provided, and efforts to promote their use, as well as the search for indigenous and more adapted Bacillus strains to local agro-ecological conditions, should be undertaken to make sustainable agriculture a reality in the region.
Research Center/Unit :
TERRA Research Centre. Microbial, food and biobased technologies - ULiège
Disciplines :
Microbiology
Author, co-author :
Nihorimbere, Gaspard ✱; Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium ; Unité de défense des végétaux, Institut des Sciences Agronomiques du Burundi, Bujumbura, Burundi
Korangi Alleluya, Virginie ✱; Université de Liège - ULiège > TERRA Research Centre ; Chemical and Agricultural Industries, Faculty of Agricultural Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
Nimbeshaho, François ✱; Université de Liège - ULiège > TERRA Research Centre ; Laboratoire de Nutrition-Phytochimie, d'Ecologie et d'Environnement Appliquée, Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Institut de Pédagogie Appliquée, Université du Burundi, Bujumbura, Burundi
Nihorimbere, Venant; Département des Sciences et Technologie des Aliments, Faculté de Bio-Ingénierie, Université du Burundi, Bujumbura, Burundi
Legrève, Anne; Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium
Ongena, Marc ; Université de Liège - ULiège > Département GxABT
✱ These authors have contributed equally to this work.
Language :
English
Title :
Bacillus-based biocontrol beyond chemical control in central Africa: the challenge of turning myth into reality.
PRD2019: "Vers une Agriculture plus Performante et durable au Burundi : Application de microorganismes pour améliorer la santé et la croissance des plantes au Burundi"
Funders :
ARES - Académie de Recherche et d'Enseignement Supérieur
Funding text :
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The work of FN and GN was supported by the Académie de Recherche et d’Enseignement Supérieur-Commission de Coopération au Développement (ARES-CDD), Fédération Wallonie-Bruxelles) through the PRD instrument (Title: Vers une agriculture plus performante et durable au Burundi: application de microorganismes pour améliorer la santé et la croissance des plantes). VKA was funded by ARES-CCD through the “Bourse exceptionnelle” program, University of Liège scholarship and by the Schlumberger Foundation Faculty for the Future program. MO is Research Director at the FRS-FNRS (National Fund for Scientific Research) in Belgium. Acknowledgments
Abdelaziz A. M. Hashem A. H. El-Sayyad G. S. El-Wakil D. A. Selim S. Alkhalifah D. H. M. et al. (2023). Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop. Plant Pathol. 48, 105–127. doi: 10.1007/s40858-022-00544-7
Adams I. P. Harju V. A. Hodges T. Hany U. Skelton A. Rai S. et al. (2014). First report of maize lethal necrosis disease in Rwanda. New Dis. Rep. 29, 22. doi: 10.5197/j.2044-0588.2014.029.022
Ali M. A. Lou Y. Hafeez R. Li X. Hossain A. Xie T. et al. (2021). Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa Complex. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.618601
Al-Mutar D. M. K. Noman M. Alzawar N. S. A. Qasim H. H. Li D. Song F. (2023). The Extracellular lipopeptides and volatile organic compounds of Bacillus subtilis DHA41 display broad-spectrum antifungal activity against soil-borne phytopathogenic fungi. J. Fungi 9, 797. doi: 10.3390/jof9080797
Anckaert A. Arguelles-Arias A. Hoff G. Calonne-Salmon M. Declerck S. Ongena M. (2021). The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases,” in Microbial Bioprotectants for Plant Disease Management. Eds. Köhl J. Ravensberg W. (Cambridge, Cambridgeshire: Burleigh Dodds Science Publishing), 1–54. doi: 10.19103/as.2021.0093.10
Arguelles Arias A. Ongena M. Devreese B. Terrak M. Joris B. Fickers P. (2013). Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PloS One 8, e83037. doi: 10.1371/journal.pone.0083037
Arguelles-Arias A. Ongena M. Halimi B. Lara Y. Brans A. Joris B. et al. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8, 63. doi: 10.1186/1475-2859-8-63
Arkhipov A. Carvalhais L. C. Schenk P. M. (2023). PGPR control Phytophthora capsici in tomato through induced systemic resistance, early hypersensitive response and direct antagonism in a cultivar-specific manner. Eur. J. Plant Pathol. 167, 811–832. doi: 10.1007/s10658-023-02734-8
Assié L. K. Deleu M. Arnaud L. Paquot M. Thonart P. Gaspar C. et al. (2002). Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 67, 647–655. Avalaible at: https://pubmed.ncbi.nlm.nih.gov/12696433/
Aydi Ben Abdallah R. Stedel C. Garagounis C. Nefzi A. Jabnoun-Khiareddine H. Papadopoulou K. K. et al. (2017). Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot. 99, 45–58. doi: 10.1016/j.cropro.2017.05.008
Balasha A. M. Mulume D. A. Mwisha S. W. Fyama J. N. M. Kalumbu J. T. (2023). Utilisation des pesticides en cultures maraîchères sur l’île d’Idjwi à l’est de la République démocratique du Congo: connaissances et pratiques des agriculteurs. Cahiers Agricultures 32, 5. doi: 10.1051/CAGRI/2022033
Bararyenya A. Nduwimana A. Nyawakira D. (2018). Assessment of opportunities for Burundian Small-scale potato farmers to increase productivity and income. Potato Res. 61, 73–88. doi: 10.1007/s11540-018-9359-2
Barka E. A. Vatsa P. Sanchez L. Gaveau-Vaillant N. Jacquard C. Klenk H.-P. et al. (2016). Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43. doi: 10.1128/mmbr.00019-15
Bassily N. (2022) Burundi: Toxic pesticides threaten health and environment (Syfia Grands Lacs). Available at: https://wire.farmradio.fm/farmer-stories/3-Burundi-toxic-pesticides-threaten-health-and-environment-syfia-grands-lacs/ (Accessed September 12, 2022).
Belete T. Kurtulus Bastas K. Francesconi S. Balestra G. M. (2021). Biological effectiveness of Bacillus subtilis on common bean bacterial blight. J. Plant Pathol. 103, 249–258. doi: 10.1007/s42161-020-00727-8
Belga (2020) La RDC à son tour touchée par les criquets ravageurs, une première depuis 1944. Available at: https://www.rtbf.be/article/la-rdc-a-son-tour-touchee-par-les-criquets-ravageurs-une-premiere-depuis-1944-10443038 (Accessed February 27, 2022).
Beneduzi A. Ambrosini A. Passaglia L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35, 1044–1051. doi: 10.1590/S1415-47572012000600020
Bigirimana S. Barumbanze P. Ndayihanzamaso P. Shirima R. Legg J. P. (2011). First report of cassava brown streak disease and associated Ugandan cassava brown streak virus in Burundi. New Dis. Rep. 24, 26. doi: 10.5197/j.2044-0588.2011.024.026
Bigirimana S. Barumbanze P. Obonyo R. Legg J. P. (2004). First evidence for the spread of east African cassava mosaic virus - Uganda (EACMV-UG) and the pandemic of severe cassava mosaic disease to Burundi. Plant Pathol. 53, 231. doi: 10.1111/J.0032-0862.2004.00971.x
Biruma M. Pillay M. Tripathi L. Blomme G. Abele S. Mwangi M. et al. (2007). Banana Xanthomonas wilt: a review of the disease, management strategies and future research directions. Afr. J. Biotechnol. 6, 953–962. Available at: https://biblio.iita.org/documents/Biruma_et_al._-_BXW_review_paper_-_Afr_J_Biotech_April_2007.pdf-089232b3223892894f81a617723522f2.pdf
Bishnoi U. (2015). “PGPR interaction: an ecofriendly approach promoting the sustainable agriculture system,” in Advances in botanical research. Eds. Bais H. Sherrie J. (London, UK: Academic Press, Elsevier), 81–113. doi: 10.1016/bs.abr.2015.09.006
Bjornlund V. Bjornlund H. Van Rooyen A. F. (2020). Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world – A historical perspective. Int. J. Water Resour. Dev. 36, 20–53. doi: 10.1080/07900627.2020.1739512
Boloy F. N. Nkosi B. I. Losimba J. K. Bungamuzi C. L. Siwako H. M. Walunkonka Balowe F. et al. (2014). Assessing incidence, development and distribution of banana bunchy top disease across the main plantain and banana growing regions of the Democratic Republic of Congo. Afr. J. Agric. Res. 9, 2611–2623. doi: 10.5897/AJAR2014.8751
Bonaterra A. Badosa E. Daranas N. Francés J. Roselló G. Montesinos E. (2022). Bacteria as biological control agents of plant diseases. Microorganisms 10, 1759. doi: 10.3390/microorganisms10091759
Borriss R. (2015). “Bacillus, a plant-beneficial bacterium,” in Principles of plant-microbe interactions. Ed. Lugtenberg B. (Cham, Bavaria: Springer International Publishing), 379–391. doi: 10.1007/978-3-319-08575-3_40
Borriss R. (2020). “Phytostimulation and biocontrol by the plant-associated Bacillus amyloliquefaciens FZB42: An update,” in Phyto-microbiome in stress regulation. Environmental and microbial biotechnology. Eds. Kumar M. Kumar V. Prasad R. (Singapore: Springer). doi: 10.1007/978-981-15-2576-6_1
Bouassida M. Mnif I. Hammami I. Triki M. A. Ghribi D. (2023). Bacillus subtilis SPB1 lipopeptide biosurfactant: antibacterial efficiency against the phytopathogenic bacteria Agrobacterium tumefaciens and compared production in submerged and solid state fermentation systems. Food Sci. Biotechnol. 32, 1595–1609. doi: 10.1007/s10068-023-01274-5
Busogoro J. P. Jijakli M. H. Lepoivre P. (1999). Identification of a novel source of resistance to angular leaf spot disease of common bean within the secondary gene pool. Plant Breed. 118, 417–423. doi: 10.1046/J.1439-0523.1999.00413.X
Camatti G. Mulinari dos Santos F. dos Santos Rodrigues Júnior G.L. Pereira Camargo D. Stefanello Manfio G. Rodrigo Pereira Santos J. et al. (2023). Bacillus-and Trichoderma-based products control the spiral nematode Helicotylenchus dihystera in soybean. Rhizosphere 27, 100717. doi: 10.1016/j.rhisph.2023.100717
Cao Y. Zhang Z. Ling N. Yuan Y. Zheng X. Shen B. et al. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertility Soils 47, 495–506. doi: 10.1007/s00374-011-0556-2
Casinga C. M. Shirima R. R. Mahungu N. M. Tata-Hangy W. Bashizi K. B. Munyerenkana C. M. et al. (2021). Expansion of the cassava brown streak disease epidemic in Eastern Democratic Republic of Congo. Plant Dis. 105, 2177–2188. doi: 10.1094/PDIS-05-20-1135-RE
Caulier S. Gillis A. Colau G. Licciardi F. Liépin M. Desoignies N. et al. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.00143
Caulier S. Nannan C. Gillis A. Licciardi F. Bragard C. Mahillon J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00302
Chakraborty U. Chakraborty B. Basnet M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46, 186–195. doi: 10.1002/jobm.200510050
Chen M. Wang J. Liu B. Zhu Y. Xiao R. Yang W. et al. (2020). Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 20, 160. doi: 10.1186/s12866-020-01851-2
Chen M. C. Wang J. P. Zhu Y. J. Liu B. Yang W. J. Ruan C. Q. (2019). Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. J. Appl. Microbiol. 126, 1519–1529. doi: 10.1111/jam.14213
Chen L. Wu Y. D. Chong X. Y. Xin Q. H. Wang D. X. Bian K. (2019). Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. J. Appl. Microbiol. 128, 803–813. doi: 10.1111/jam.14508
Cokola M. C. Ndjadi S. S. Bisimwa E. B. Ahoton L. E. Francis F. (2021). First report of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Onion (Allium cepa L.) in South Kivu, Eastern DR Congo. Rev. Bras. Entomologia 65, e20200083. doi: 10.1590/1806-9665-RBENT-2020-0083
Costa A. Corallo B. Amarelle V. Stewart S. Pan D. Tiscornia S. et al. (2022). Paenibacillus sp. Strain UY79, isolated from a root nodule of Arachis villosa, displays a broad spectrum of antifungal activity. Appl. Environ. Microbiol. 88, e01645–e01621. doi: 10.1128/AEM.01645-21
Coyne D. L. Cortada L. Dalzell J. J. Claudius-Cole A. O. Haukeland S. Luambano N. et al. (2018). Plant-parasitic nematodes and food security in sub-saharan Africa. Annu. Rev. Phytopathol. 56, 381–403. doi: 10.1146/annurev-phyto-080417-045833
Dalvan Do Nascimento D. Rodrigues M. Ferreira R. J. Marchioro V. Macedo Da Silva E. Alberto C. et al. (2022). Soybean growth-promotion and Heterodera glycines suppression in two application methods of Bacillus strains. Biol. Control 175, 1049–9644. doi: 10.1016/j.biocontrol.2022.105039
da Silva Junior A. L. Borges Á.V. da Silva H. A. O. Leite I. C. H. L. Alves K. S. de Medeiros L. S. et al. (2023). Lipopeptide-enriched extracts of Bacillus velezensis B157 for controlling tomato early blight. Crop Prot. 172, 106317. doi: 10.1016/j.cropro.2023.106317
De Kievit T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 11, 279–288. doi: 10.1111/j.1462-2920.2008.01792.x
Delcambe L. Devignat R. (1957). L’iturine, nouvel antibiotique d’origine congolaise. Acad. R. Sci. Coloniales 6, 1–77. Available at: https://www.kaowarsom.be/fr/node/5930
Dhouib H. Zouari I. Ben Abdallah D. Belbahri L. Taktak W. Triki M. A. et al. (2019). Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol. Control 139, 104092. doi: 10.1016/j.biocontrol.2019.104092
Di Francesco A. Milella F. Mari M. Roberti R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biol. Control 114, 144–149. doi: 10.1016/J.BIOCONTROL.2017.08.010
Dimkić I. Janakiev T. Petrović M. Degrassi G. Fira D. (2022). Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiol. Mol. Plant Pathol. 117, 101754. doi: 10.1016/j.pmpp.2021.101754
Do Prado Mattos A. Rissato B. B. Itako A. T. Júnior J. B. T. Estrada K. R. F. S. (2023). Bacillus amyloliquefaciens PKM16 acts as an antagonist of white mold and an inducer of defense enzymes in tomato plants. Acta Scientiarum. Agron. 45, e59586. doi: 10.4025/actasciagron.v45i1.59586
DunhamTrimmer (2023) DunhamTrimmer® Global biocontrol report: market overview, trends, drivers and insights. Available at: https://dunhamtrimmer.com/reports/global-biocontrol-market-report/.
Dunlap C. A. (2019). Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol. Control 134, 82–86. doi: 10.1016/j.biocontrol.2019.04.011
Dushimirimana S. Gasogo A. Kazitsa E.-G. Hance T. (2016). Dynamics and seasonal variability of Bemesia tabaci colonies in cassava. Modern Agric. Sci. Technol. 2, 26–32. doi: 10.15341/mast(2375-9402)/01.02.2016/004
Dutta S. Lee Y. H. (2022). High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in Pseudomonas putida JBC17. Sci. Rep. 12, 872. doi: 10.1038/s41598-022-04858-z
Elazouni I. Abdel-Aziz S. Rabea A. (2019). Microbial efficacy as biological agents for potato enrichment as well as bio-controls against wilt disease caused by Ralstonia solanacearum. World J. Microbiol. Biotechnol. 35, 30. doi: 10.1007/s11274-019-2596-y
El-Nagdi W. M. A. Abd-El-Khair H. (2019). Application of Bacillus species for controlling root-knot nematode Meloidogyne incognita in eggplant. Bull. Natl. Res. Cent. 43, 154. doi: 10.1186/s42269-019-0187-6
El-Saadony M. T. Saad A. M. Soliman S. M. Salem H. M. Ahmed A. I. Mahmood M. et al. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.923880
Etesami H. Ryong Jeong B. Glick B. R. (2023). Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops-A review. Curr. Res. Biotechnol. 5, 100128. doi: 10.1016/j.crbiot.2023.100128
EU Food Safety (2023) EU pesticides database. Available at: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (Accessed September 18, 2023).
FAAPA (2021) Le secteur agricole contribue à 36% dans la formation du PIB en RDC. Available at: http://www.faapa.info/blog/le-secteur-agricole-contribue-a-36-dans-la-formation-du-pib-en-rdc/ (Accessed January 20, 2021).
FAO (2022) FAO employs innovative plant pest control solutions in Eastern Africa. Available at: https://reliefweb.int/report/Burundi/fao-employs-innovative-plant-pest-control-solutions-eastern-africa/ (Accessed April 10, 2022).
FAO (2023) En Afrique centrale, environ 42,7 millions de personnes sont en situation d’insécurité alimentaire et nutritionnelle. Available at: https://www.fao.org/africa/news/detail-news/fr/c/1273669// (Accessed June 20, 2023).
Farrow A. Muthoni-Andriatsitohaina R. (2020). Atlas for common bean production in Africa. 2nd Edition (Nairobi: CIAT Publication).
Fazle Rabbee M. Baek K.-H. (2020). Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for Agricultural Applications. Molecules 25, 4973. doi: 10.3390/molecules25214973
Feng Y. Zhang Y. Shah O. U. Luo K. Chen Y. (2023). Isolation and identification of endophytic bacteria Bacillus sp. ME9 that exhibits biocontrol activity against Xanthomonas phaseoli pv. manihotis. Biology 12, 1231. doi: 10.3390/biology12091231
Fira D. Dimki I. Beri T. Lozo J. (2018). Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285, 44–55. doi: 10.1016/j.jbiotec.2018.07.044
Flemming H. C. Wingender J. Szewzyk U. Steinberg P. Rice S. A. Kjelleberg S. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575. doi: 10.1038/nrmicro.2016.94
FPS Health (2023) Phytoweb | Plant protection and Fertilising Products. Available at: https://fytoweb.be/en (Accessed September 11, 2023).
Freitas M. A. Medeiros F. H. V. Melo I. S. Pereira P. F. Peñaflor M. F. G. V. Bento J. M. S. et al. (2019). Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava. Phytoparasitica 47, 135–142. doi: 10.1007/s12600-018-0706-2
Gaberell L. Viret G. (2022) Les géants de l’agrochimie gagnent des milliards grâce à des pesticides cancérogènes ou néfastes pour les abeilles. Available at: https://www.publiceye.ch/fr/thematiques/pesticides/analyse-ventes-pesticides-2018 (Accessed November 23, 2022).
Gaidashova S. Karemera F. Karamura E. (2010). Agronomic performance of introduced banana varieties in lowlands of Rwanda. Afr. Crop Sci. J. 16, 9–16. doi: 10.4314/acsj.v16i1.54321
Giorgio A. Lo Cantore P. Shanmugaiah V. Lamorte D. (2016). Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight. Eur. J. Plant Pathol. 144, 297–309. doi: 10.1007/s10658-015-0767-8
Govender V. Korsten L. Sivakumar D. (2005). Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biol. Technol. 38, 57–65. doi: 10.1016/j.postharvbio.2005.04.005
Grubbs K. J. Bleich R. M. Santa Maria K. C. Allen S. E. Farag S. Shank E. A. et al. (2017). Large-scale bioinformatics Analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. MSystems 2, 10–1128. doi: 10.1128/mSystems.00040-17
GUCE (2022) Types et quantités des pesticides importés en RDC. Available at: https://invoice.segucerdc.cd/invoice/Account/Login (Accessed February 02, 2021).
Guimarães Pacifico M. Eckstein B. Bettiol W. (2021). Screening of Bacillus for the development of bioprotectants for the control of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita. Biol. Control 164, 104764. doi: 10.1016/j.biocontrol.2021.104764
Gutierrez-Monsalve J. A. Mosquera S. González-Jaramillo L. M. Mira J. J. Villegas-Escobar V. (2015). Effective control of black sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol. Control 87, 39–46. doi: 10.1016/j.biocontrol.2015.04.012
Han S. Chen J. Zhao Y. Cai H. Guo C. (2021). Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum. Pesticide Biochem. Physiol. 178, 104916. doi: 10.1016/j.pestbp.2021.104916
Han X. Shen D. Xiong Q. Bao B. Zhang W. Dai T. et al. (2021). The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl. Environ. Microbiol. 87, e01601–e01621. doi: 10.1128/AEM.01601-21
Harahagazwe D. Ndayiragije P. Ntimpirangeza M. (2007). Les maladies et ravageurs de quelques cultures à racines et tubercules (ISABU) Bujumbura. Available at: https://www.researchgate.net/publication/317175756_Pests_and_diseases_of_selected_root_and_tuber_crops_grown_in_Burundi_in_French.
Helepciuc F. E. Todor A. (2023). Making the best of research investment in pathogens control through biocontrol. How is research correlated with agricultural microbial biological control product availability? PloS Pathog. 19, e1011071. doi: 10.1371/journal.ppat.1011071
Huang Y. Xu C. K. Ma L. Zhang K. Q. Duan C. Q. Mo M. H. (2010). Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur. J. Plant Pathol. 126, 417–422. doi: 10.1007/s10658-009-9550-z
Im S. M. Yu N. H. Won Joen H. Kim S. O. Park H. W. Park A. R. et al. (2019). Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pesticide Biochem. Physiol. 163, 130–137. doi: 10.1016/j.pestbp.2019.11.007
IPC (2021) Analyse de la sécurité alimentaire aiguë et de la malnutrition aiguë de l’IPC en RDC. Available at: https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/IPC_DRC_Acute_FoodInsec_Malnutrition_2021Sept2022Aug_Report_French.pdf.
Iqbal S. Begum F. Rabaan A. A. Aljeldah M. Al Shammari B. R. Alawfi A. et al. (2023). Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 28, 927. doi: 10.3390/molecules28030927
Isabirye B. E. Rwomushana I. (2016). Current and future potential distribution of maize chlorotic mottle virus and risk of maize lethal necrosis disease in Africa. J. Crop Prot. 2016, 215–228. doi: 10.18869/modares.jcp.5.2.215
Kai M. (2020). Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis Isolates. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00559
Kanyange L. Kamau J. Ombori O. Ndayiragije A. Muthini M. (2019). Genotyping for blast (Pyricularia oryzae) resistance genes in F2 population of supa aromatic rice (Oryza sativa L.). Int. J. Genomics 2019, 5246820. doi: 10.1155/2019/5246820
Kavatsurwa S. M. Kiremire B. Wasswa J. Mpiana P. T. (2014). Dithiocarbamates residues level in selected vegetables from Bukavu, Democratic Republic of Congo. J. Phys. Chem. Sci. 1, 1–7. Available at: https://scienceq.org/dithiocarbamates-residues-level-in-selected-vegetables-from-bukavu-democratic-republic-of-congo.php
Kharshandi F. Kayang H. (2023). Antagonistic potential of rhizobacterial isolates against fungal pathogens causing rhizome rot in turmeric. Arch. Microbiol. 205, 221. doi: 10.1007/s00203-023-03565-1
Kijana R. Abang M. Edema R. Mukankusi C. Buruchara R. (2017). Prevalence of angular leaf spot disease and sources of resistance in common bean in eastern Democratic Republic of Congo. Afr. Crop Sci. J. 25, 109–122. doi: 10.4314/acsj.v25i1.8
Korangi Alleluya V. Argüelles Arias A. Ribeiro B. De Coninck B. Helmus C. Delaplace P. et al. (2023). Bacillus lipopeptide-mediated biocontrol of peanut stem rot caused by Athelia rolfsii. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1069971
Korangi Alleluya V. Kubindana G. Fingu-mabola J. C. Sulu A. Kasereka G. Matamba A. et al. (2021). Utilisation des biopesticides pour une agriculture durable en République Démocratique du Congo (Synthèse bibliographique). Rev. Africaine d’Environnement d’Agriculture 2, 53–67. Available at: https://hdl.handle.net/2268/264393
Kulimushi P. Z. Chuma Basime G. Mushagalusa Nachigera G. Thonart P. Ongena M. (2018). Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Environ. Sci. pollut. Res. 25, 29808–29821. doi: 10.1007/s11356-017-9314-9
Kumar V. Ahluwalia V. Saran S. Kumar J. Patel A. K. Singhania R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technol. 323, 124566. doi: 10.1016/j.biortech.2020.124566
Lahlali R. Ezrari S. Radouane N. Kenfaoui J. Esmaeel Q. El Hamss H. et al. (2022). Biological control of plant pathogens: A Global Perspective. Microorganisms 10, 596. doi: 10.3390/microorganisms10030596
Lam V. B. Meyer T. Arias A. A. Ongena M. Oni F. E. Höfte M. (2021). Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 9, 1441. doi: 10.3390/microorganisms9071441
Langa-Lomba N. González-García V. Venturini-Crespo M. E. Casanova-Gascón J. Barriuso-Vargas J. J. Martín-Ramos P. (2023). Comparison of the efficacy of Trichoderma and Bacillus strains and commercial biocontrol products against grapevine Botryosphaeria dieback pathogens. Agronomy 13, 533. doi: 10.3390/agronomy13020533
Le K. D. Kim J. Yu N. H. Kim B. Lee C. W. Kim J. C. (2020). Biological control of tomato bacterial wilt, Kimchi cabbage soft rot, and red pepper bacterial leaf spot Using Paenibacillus elgii JCK-5075. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00775
Legg J. P. Owor B. Sseruwagi P. Ndunguru J. (2006). Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. 67, 355–418. doi: 10.1016/S0065-3527(06)67010-3
Lewis K. A. Tzilivakis J. Warner D. J. Green A. (2016). An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. doi: 10.1080/10807039.2015.1133242
Liboga O. B. Litucha B. J. Ngama B. F. Balimo I. F. Kayawa L. J. (2020). Comportement de cinq variétés de riz pluvial (Oryza sativa L.) à la pyriculariose et la verse dans les conditions naturelles à Kisangani, République Démocratique du Congo. J. Appl. Biosci. 145, 14965–11497. doi: 10.35759/JABs.v145.11
Liu N. Xu S. Yao X. Zhang G. Mao W. Hu Q. et al. (2016). Studies on the control of Ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang province, China. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.00481
Lokuruka N. I. M. (2020). “Food and nutrition security in east Africa (Rwanda, Burundi and South Sudan): status, challenges and prospects,” in Food security in Africa. Ed. Mahmoud B. (London: IntechOpen), 75–92. Available at: https://www.intechopen.com/books/food-security-in-africa/food-and-nutrition-security-in-east-africa-Rwanda-Burundi-and-south-Sudan-status-challenges-and-pros.
Lukanda M. Owati A. Ogunsanya P. Valimunzigha K. Katsongo K. Ndemere H. et al. (2014). First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98, 1448. doi: 10.1094/PDIS-05-14-0484-PDN
Luna-Bulbarela A. Tinoco-Valencia R. Corzo G. Kazuma K. Konno K. Galindo E. et al. (2018). Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages. Biol. Control 127, 145–154. doi: 10.1016/j.biocontrol.2018.08.004
Ma X.-H. Shen S. Li W. Wang J. (2023). Bioherbicidal potential of Bacillus altitudinis D30202 on Avena fatua L.: a whole-genome sequencing analysis. J. Appl. Genet. 64, 809–817. doi: 10.1007/s13353-023-00788-2
Mahapatra S. Chakraborty S. Samanta M. Das S. Islam T. Mahapatra S. et al. (2022). “Current understanding and future directions of biocontrol of plant diseases by Bacillus spp., with special reference to induced systemic resistance,” in Bacilli in agrobiotechnology. Bacilli in climate resilient agriculture and bioprospecting. Eds. Islam M. T. Rahman M. Pandey P. (Cham, Bavaria: Springer International Publishing), 127–150. doi: 10.1007/978-3-030-85465-2_6
Mahmood I. Imadi S. R. Shazadi K. Gul A. Hakeem K. R. (2016). “Effects of pesticides on environment,” in Plant, soil and microbes. Eds. Hakeem R. K. Akhtar S. M. Abdullah A. N. S. (Cham, Bavaria: Springer International publishing), 253–269. doi: 10.1007/978-3-319-27455-3_13
Mahuku G. Lockhart B. E. Wanjala B. Jones M. W. Kimunye J. N. Stewart L. R. et al. (2015). Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-saharan Africa. Phytopathology 105, 956–965. doi: 10.1094/PHYTO-12-14-0367-FI
Maloney E. M. Sykes H. Morrissey C. Peru K. M. Headley J. V. Liber K. (2020). Environmental toxicology comparing the acute toxicity of imidacloprid with alternative systemic insecticides in the aquatic insect Chironomus dilutus. Environ. Toxicol. Chem. 39, 587–594. doi: 10.1002/etc.4639
Marcano I. E. Díaz-Alcántara C. A. Seco V. Urbano B. González-Andrés F. (2016). “Induced systemic resistance could explain the reduction in the incidence of black sigatoka (Mycosphaerella Fijiensis) in banana plants inoculated with bacteria isolated from banana tree roots in the Dominican Republic,” in Biological nitrogen fixation and beneficial plant-microbe interaction. Eds. González-Andrés F. James E. (Cham, Bavaria: Springer International Publishing), 155–170. doi: 10.1007/978-3-319-32528-6_14
Marrone P. G. (2023). Mini-review status of the biopesticide market and prospects for new bioherbicides. Pest. Manage. Sci 80, 81–86. doi: 10.1002/ps.7403
Martins S. J. Faria A. F. Pedroso M. P. Cunha M. G. Rocha M. R. Medeiros F. H. V. (2019). Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biol. Control 131, 36–42. doi: 10.1016/j.biocontrol.2019.01.003
Maruthi M. N. Jeremiah S. C. Mohammed I. U. Legg J. P. (2017). The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717. doi: 10.1111/JPH.12609
Mazumdar D. Saha S. P. Ghosh S. (2020). Isolation, screening and application of a potent PGPR for enhancing growth of chickpea as affected by nitrogen level. Int. J. Vegetable Sci. 26, 333–350. doi: 10.1080/19315260.2019.1632401
Miao S. Liang J. Xu Y. Yu G. Shao M. (2023). Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. Cell. Physiol. 2023, 1–15. doi: 10.1002/jcp.30974
Miljaković D. Marinković J. Balešević-Tubić S. (2020). The Significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8, 1037. doi: 10.3390/microorganisms8071037
MINAGRI-Burundi (2018) Plan de Gestion des Pestes (PGP). Available at: https://bi.chm-cbd.net/sites/bi/files/2020-09/plan-gest-pestes-bi.pdf.
MINAGRI-RDC (2018) Sécurité alimentaire, niveau de production agricole et Animale, évaluation de la campagne agricole 2017-2018 et Bilan Alimentaire de la RD Congo. Available at: https://reliefweb.int/report/democratic-republic-congo/s-curit-alimentaire-niveau-de-production-agricole-et-animale.
Minengu J. D. D. Mwengi I. Maleke M. (2018). Agriculture familiale dans les zones péri-urbaines de Kinshasa : analyse, enjeux et perspectives (synthèse bibliographique). Rev. Africaine d’Environnement d’Agriculture 1, 60–69. Available at: https://rafea-congo.com/admin/pdfFile/RAFEA-Article-Minengu-et-al-2018-ok.pdf
Mnif I. Ghribi D. (2015). Potential of bacterial derived biopesticides in pest management. Crop Protection 77, 52–64. doi: 10.1016/j.cropro.2015.07.017
Mirsam H. Hary Kalqutny S. Aqil M. Azrai M. Pakki S. Muis A. et al. (2021). Indigenous fungi from corn as a potential plant growth promoter and its role in Fusarium verticillioides suppression on corn. Heliyon 7, e07926. doi: 10.1016/j.heliyon.2021.e07926
Mordor intelligence (2023) Africa biopesticides market-size, share, COVID-19 impact and forecasts up to 2029. Available at: https://www.mordorintelligence.com/industry-reports/africa-biopesticides-market (Accessed December 02, 2023).
Mu F. Chen X. Fu Z. Wang X. Guo J. Zhao X. et al. (2023). Genome and transcriptome Analysis to elucidate the biocontrol mechanism of Bacillus amyloliquefaciens XJ5 against Alternaria solani. Microorganisms 11, 2055. doi: 10.3390/microorganisms11082055
Muhindo H. Yasenge S. Casinga C. Songbo M. Dhed’a B. Alicai T. et al. (2020). Incidence, severity and distribution of Cassava brown streak disease in northeastern Democratic Republic of Congo. Cogent Food Agric. 6, 1789422. doi: 10.1080/23311932.2020.1789422
Mukwa L. F. T. Muengula M. Zinga I. Kalonji A. Iskra-Caruana M. L. Bragard C. (2014). Occurrence and distribution of banana bunchy top virus related agro-ecosystem in South Western, Democratic Republic of Congo. Am. J. Plant Sci. 5, 647–658. doi: 10.4236/ajps.2014.55079
Mukwa L. F. T. Mukendi J. Adakate F. G. Bugeme D. M. Kalonji-Mbuyi A. Ghimire S. (2020). First report of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and its damage in the Democratic Republic of Congo. BioInvasions Records 10, 33–44. doi: 10.1007/s12600-020-00841-4
Muleta D. Assefa F. Granhall U. (2007). In vitro antagonism of rhizobacteria isolated from Coffea arabica L. against emerging fungal coffee pathogens. Eng. Life Sci. 7, 577–586. doi: 10.1002/elsc.200700004
Muliele T. M. Manzenza C. M. Ekuke L. W. Diaka C. P. Ndikubwayo D. M. Kapalay O. M. et al. (2018). Utilisation et gestion des pesticides en cultures maraîchères : cas de la zone de Nkolo dans la province du Kongo Central, République Démocratique du Congo. J. Appl. Biosci. 119, 11954. doi: 10.4314/jab.v119i1.11
Munganyinka E. Ateka E. M. Kihurani A. W. Kanyange M. C. Tairo F. Sseruwagi P. et al. (2018). Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes. Plant Pathol. 67, 377–387. doi: 10.1111/ppa.12789
Munyuli T. Cihire K. Rubabura D. Mitima K. Kalimba Y. Tchombe N. et al. (2017). Farmers’ perceptions, believes, knowledge and management practices of potato pests in South-Kivu Province, eastern of Democratic Republic of Congo. Open Agric. 2, 362–385. doi: 10.1515/opag-2017-0040
Nabahungu N. L. Visser S. M. (2013). Farmers’ knowledge and perception of agricultural wetland management in Rwanda. Land Degradation Dev. 24, 363–374. doi: 10.1002/ldr.1133
Ndayambaje B. Amuguni H. Coffin-Schmitt J. Sibo N. Ntawubizi M. VanWormer E. (2019). Pesticide application practices and knowledge among small-scale local rice growers and communities in Rwanda: A cross-sectional study. Int. J. Environ. Res. Public Health 16, 4770. doi: 10.3390/ijerph16234770
Ndayihanzamaso P. Mostert D. Matthews M. C. Mahuku G. Jomanga K. Mpanda H. J. et al. (2020). Evaluation of mchare and matooke bananas for resistance to Fusarium oxysporum f. Sp. cubense race 1. Plants 9, 1–15. doi: 10.3390/plants9091082
Ndayihanzamaso P. Niko N. Niyongere C. Bizimana S. Nibasumba A. Lepoint P. et al. (2016). Distribution, incidence and farmers knowledge of banana Xanthomonas wilt in Burundi. Afr. J. Agric. Res. 11, 3615–3621. doi: 10.5897/AJAR2016.11210
Ndisanze A. M. Kamana E. Nirere C. Ilkay K. (2022). Assessment of the pesticides utilization and the pesticide residues presence in fresh and tomato products for the tomato supply chain in Rwanda. Food Nutr. Sci. 13, 963–972. doi: 10.4236/fns.2022.1312067
Ndungo V. Fiaboe K. K. M. Mwangi M. (2008). Banana Xanthomonas wilt in the DR Congo : Impact, spread and management. J. Appl. Biosci. 1, 1–7. Available at: https://hdl.handle.net/10568/90751
Neuenschwander P. (2001). Biological control of the cassava mealybug in Africa: A review. Biol. Control 21, 214–229. doi: 10.1006/bcon.2001.0937
Ngalimat M. S. Yahaya R. S. R. Baharudin M. M. A. Yaminudin S.M. Karim M. Ahmad S. A. et al. (2021). A Review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 9, 614. doi: 10.3390/microorganisms9030614
Ngweme G. N. Al Salah D. M. M. Laffite A. Sivalingam P. Grandjean D. Konde J. N. et al. (2021). Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo. Sci. Total Environ. 754, 142175. doi: 10.1016/j.scitotenv.2020.142175
Ngweme G. N. Mbela G. K. Sikulisimwa C. P. Kyela C. M. Komanda J. A. (2019). Analyse des connaissances, attitudes et pratiques des maraîchers de la ville de Kinshasa en rapport avec l’utilisation des pesticides et l’impact sur la santé humaine et sur l’environnement. Afrique Sci. 15, 122–133. Available at: https://www.afriquescience.net/PDF/15/4/11.pdf
Niassy S. Agbodzavu M. K. Kimathi E. Mutune B. Abdel-Rahman E. F. M. Salifu D. et al. (2021). Bioecology of fall armyworm Spodoptera frugiperda (J. E. Smith), its management and potential patterns of seasonal spread in Africa. PloS One 16, e0249042. doi: 10.1371/journal.pone.0249042
Nihorimbere V. Ongena M. Cawoy H. Brostaux Y. Kakana P. Jourdan E. et al. (2010). Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: Reduction of local Fusarium disease and growth promotion. Afr. J. Microbiol. Res. 4, 1135–1142. Available at: https://hdl.handle.net/2268/92891
Nikolaidis M. Hesketh A. Mossialos D. Iliopoulos I. Oliver S. G. Amoutzias G. D. (2022). A Comparative analysis of the core proteomes within and among the Bacillus subtilis and Bacillus cereus evolutionary groups reveals the patterns of lineage- and species-specific adaptations. Microorganisms 10, 1720. doi: 10.3390/microorganisms10091720
Niyibizi G. P. Gakuru S. J. B. Rizinde H. J. C. Munenwa S.A. Lwanzo L. (2019). État de lieux des caféières face à la menace d’Antestiopsis orbitalis dans le territoire de Kalehe, à l’Est de la RD Congo (Annales de l’UNIGOM), Goma 9, 87–99. Available at: https://pugoma.com/index.php/UNIGOM/article/view/145.
Niyongere C. Losenge T. Ateka E. M. Ntukamazina N. Ndayiragije P. Simbare A. et al. (2013). Understanding banana bunchy top disease epidemiology in Burundi for an enhanced and integrated management approach. Plant Pathol. 62, 562–570. doi: 10.1111/J.1365-3059.2012.02676.X
Niyongere C. Mbonihankuye C. Mutshail G. Yamuremye A. (2015). Utilization of pesticides in smallholder horticulture production pinpoint the need for cropping system changes in Burundi. Acta Hortic. 1105, 213–220. doi: 10.17660/ActaHortic.2015.1105.30
Nkuba J. Tinzaara W. Night G. Niko N. Jogo W. Mukandala L. et al. (2015). Adverse impact of banana Xanthomonas Wilt on farmers’ livelihoods in Eastern and Central Africa. Afr. J. Plant Sci. 9, 279–286. doi: 10.5897/AJPS2015.1292
Nkurunziza G. Ndayisenga M. Ndayihanzamaso P. Ndayiragije P. Niyongabo D. (2012). Techniques de culture, de protection et de conservation du maïs – Cas des variétés à pollinisation libre (Manuel. ISABU). Bujumbura. Available at: https://isabu.bi/wp-content/uploads/2021/09/Manuel-de-formation_-Mais.pdf.
Nyabyenda P. (2005). Les Plantes cultivées en régions tropicales d A’ltitude d’Afrique: Généralités, légumineuses alimentaires, Plantes à tubercules et racines, Céréales (Gembloux: Presses Agronomiques de Gembloux).
Nyabyenda P. (2006). Les plantes cultivées en régions tropicales d’altitude d’Afrique : Cultures industrielles et d’exportation, cultures fruitières, cultures maraîchères (Gembloux: Presses Agronomiques de Gembloux).
Okonya J. Ocimati W. Nduwayezu A. Kantungeko D. Niko N. Blomme G. et al. (2019a). Farmer reported pest and disease impacts on root, tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability 11, 1592. doi: 10.3390/su11061592
Okonya J. Petsakos A. Suarez V. Nduwayezu A. Kantungeko D. Blomme G. et al. (2019b). Pesticide use practices in root, tuber, and banana crops by smallholder farmers in Rwanda and Burundi. Int. J. Environ. Res. Public Health 16, 400. doi: 10.3390/ijerph16030400
Oni F. E. Esmaeel Q. Onyeka J. T. Adeleke R. Jacquard C. Clement C. et al. (2022). Pseudomonas lipopeptide-mediated biocontrol: Chemotaxonomy and biological activity. Molecules 27, 372. doi: 10.3390/molecules27020372
Padgham J. L. Sikora R. A. (2007). Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 26, 971–977. doi: 10.1016/j.cropro.2006.09.004
Paka G. V. Mobambo P. K. Omondi B. A. Staver C. (2021). Evaluation de l’efficacité de la macro-propagation des cultivars de bananiers les plus préférés au Kongo Central, en RD Congo. Afrique Sci. 19, 76–88. Available at: https://hdl.handle.net/10568/118143
Pandit M. A. Kumar J. Gulati S. Bhandari N. Mehta P. Katyal R. et al. (2022). Major biological control strategies for plant pathogens. Pathogens 11, 273. doi: 10.3390/pathogens11020273
PES (2021) Rapport National sur la situation des Pesticides Hautement Dangereux (PHD) au Burundi. Available at: https://ipen.org/sites/default/files/documents/rapport_ped_au_burundi-fr.pdf.
Pleban S. Ingel F. Chet I. (1995). Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur. J. Plant Pathol. 101, 665–672. doi: 10.1007/BF01874870
PND (2018) Plan National de Développement du Burundi 2018-2027. Available at: https://www.presidence.gov.bi/wp-content/uploads/2018/08/PND-Burundi-2018-2027-Version-Finale.pdf.
Prasad B. Sharma D. Kumar P. Chandra Dubey R. (2023). Biocontrol potential of Bacillus spp. for resilient and sustainable agricultural systems. Physiol. Mol. Plant Pathol. 128, 102173. doi: 10.1016/j.pmpp.2023.102173
Pršić J. Ongena M. (2020). Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.594530
Puan S. L. Erriah P. Baharudin M. M. A. Yahaya N. M. Kamil W. N. I. W. A. Ali M. S. M. et al. (2023). Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl. Microbiol. Biotechnol. 107, 5569–5593. doi: 10.1007/s00253-023-12651-9
Qiao J. Zhang R. Liu Y. Liu Y. (2023). Evaluation of the biocontrol efficiency of Bacillus subtilis wettable powder on pepper root rot caused by Fusarium solani. Pathogens 12, 225. doi: 10.3390/pathogens12020225
Radhakrishnan R. Hashem A. Abd Allah E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8. doi: 10.3389/fphys.2017.00667
Ramalakshmi V. Dash L. Padhy D. Kumar K. A. (2020). “Pest control by macroorganisms,” in Recent trends in insect pest management. Eds. Raju S. V. S. Sharma K. R. (New Delhi: AkiNik Publications), 135–156.
Ramyabharathi S. Raguchander T. (2014). Efficacy of secondary metabolites produced by Bacillus subtilis EPCO16 against tomato wilt pathogen Fusarium oxysporum f.sp. lycopersici. J. Mycol. Plant Pathol. 44, 148–153.
Raut S. P. Ranade S. (2004). “Diseases of banana and their management,” in Diseases of fruits and vegetables. Ed. Naqvi S. A. M. H. (Dordrecht: Kluwer Academic Publishers), 37–52.
Raveau R. Fontaine J. Lounès A. Sahraoui H. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9, 365. doi: 10.3390/foods9030365
Redinbaugh M. G. Stewart L. R. (2018). Maize lethal necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 5, 301–322. doi: 10.1146/annurev-virology-092917-043413
REMA (2011) The national integrated pest Management (IPM) framework for Rwanda. Available at: https://www.rema.gov.rw/rema_doc/LVEMP/IPM_Latest%20Version-2.pdf.
Reyes-Estebanez M. Sanmartin P. Camacho-Chab J. C. Susana C. Chan-Bacab M. J. Águila-Ramírez R. N. et al. (2020). Characterization of a native Bacillus velezensis-like strain for the potential biocontrol of tropical fruit pathogens. Biol. Control 141, 104127. doi: 10.1016/j.biocontrol.2019.104127
Rietveld A. M. Dusingizimana P. Blomme G. Gaidashova S. V. Ocimati W. Ntamwira J. (2020) A superior technology to control Banana Xanthomonas Wilt (BXW) in Rwanda. RTB Research Brief 03. Available at: https://hdl.handle.net/10568/110019.
Rodenburg J. Demont M. Zwart S. J. Bastiaans L. (2016). Parasitic weed incidence and related economic losses in rice in Africa. Agriculture Ecosyst. Environ. 235, 306–317. doi: 10.1016/j.agee.2016.10.020
Rodríguez M. Torres M. Blanco L. Béjar V. Sampedro I. Llamas I. (2020). Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci. Rep. 10, 4121. doi: 10.1038/s41598-020-61084-1
Romero-Severson J. Moran T. E. Shrader D. G. Fields F. R. Pandey-Joshi S. Thomas C. L. et al. (2021). A seed-endophytic Bacillus safensis strain with antimicrobial activity has genes for novel bacteriocin-like antimicrobial peptides. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.734216
Roser M. (2023) Employment in agriculture. Available at: https://ourworldindata.org/employment-in-agriculture (Accessed September 20, 2023).
Runo S. Kuria E. K. (2018). Habits of a highly successful cereal killer, Striga. PloS Pathog. 14, e1006731. doi: 10.1371/journal.ppat.1006731
Rutikanga A. (2015). Pesticides use and regulations in Rwanda status and potential for promotion of biological control methods (Aberdeenshire, (Scotland: University of Aberdeen).
Saeed Q. Xiukang W. Haider F. U. Kučerik J. Mumtaz M. Z. Holatko J. et al. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 22, 10529. doi: 10.3390/ijms221910529
Seth K. Vyas P. Deora S. Gupta A. K. Meena M. Swapnil P. et al. (2023). “Understanding plant-plant growth-promoting rhizobacteria (PGPR) interactions for inducing plant defense,” in Plant-microbe interaction - recent advances in molecular and biochemical approaches. Eds. Swapnil P. Meena M. Harish, Marwal A. Vijayalakshmi S. Zehra A. (London, UK: Academic Press, Elsevier), 201–226. doi: 10.1016/B978-0-323-91876-3.00010-5
Sharma K. Kreuze J. Abdurahman A. Parker M. Nduwayezu A. Rukundo P. (2020). Molecular diversity and pathogenicity of Ralstonia solanacearum species complex associated with bacterial wilt of potato in Rwanda. Plant Dis. 105, 770–779. doi: 10.1094/PDIS-04-20-0851-RE
Sheffield F. M. L. (1957). Virus diseases of sweet potato in East Africa. I. Identification of the viruses and their insect vectors. Phytopathology 47, 582–590. Available at: https://worldveg.tind.io/record/7663?ln=en
Shen N. Li S. Li S. Y. Zhang H. Jiang M. (2022). The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana. Egypt. J. Biol. Pest Control 32, 34. doi: 10.1186/s41938-022-00533-7
Shifa H. Gopalakrishnan C. Velazhahan R. (2018). Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts. Phytoparasitica 46, 19–30. doi: 10.1007/s12600-018-0644-z
Sikdar R. Elias M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev. Anti-infective Ther. 18, 1221–1233. doi: 10.1080/14787210.2020.1794815
Singh P. Singh R. K. Zhou Y. Wang J. Jiang Y. Shen N. et al. (2022). Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. J. Plant Interact. 17, 220–238. doi: 10.1080/17429145.2022.2029963
Stenberg J. A. (2017). A conceptual framework for integrated pest management. Trends Plant Sci. 22, 759–769. doi: 10.1016/j.tplants.2017.06.010
Sumi C. D. Yang B. W. Yeo I. C. Hahm Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol. 61, 93–103. doi: 10.1139/cjm-2014-0613
Tchatchambe J. N. B. Losimba J. K. Kirongozi F. B. Adheka J. G. Onautshu D. O. (2019). Macro-propagation and micro-propagation of BBTV-free plants in Kisangani, DR Congo. Scholars Bull. 9771, 178–183. doi: 10.21276/sb.2019.5.5.1
Thanh K. Yen T. T. (2023). Isolation and selection of antagonistic bacteria against Cercospora arachidicola causing brown spot on peanut. HAYATI J. Biosci. 30, 927–936. doi: 10.4308/hjb.30.5.927-936
Théatre A. Hoste A. C. R. Rigolet A. Benneceur I. Bechet M. Ongena M. et al. (2022). “Bacillus sp.: A remarkable source of bioactive lipopeptides,” in Biosurfactants for the biobased economy. Eds. Hausmann R. Henkel M. (Cham, Bavaria: Springer International Publishing), 123–180.
Thresh J. M. Cooter R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol. 54, 587–614. doi: 10.1111/J.1365-3059.2005.01282.X
Tinivella F. Hirata L. M. Celan M. A. Wright S. A. I. Amein T. Schmitt A. et al. (2009). Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 123, 139–151. doi: 10.1007/s10658-008-9349-3
Ullah Kakar K. Duan Y. Nawaz Z. Sun G. Almoneafy A. A. Auwal Hassan M. et al. (2014). A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur. J. Plant Pathol. 138, 819–834. doi: 10.1007/s10658-013-0356-7
Uwamahoro F. Berlin A. Bucagu C. Bylund H. Yuen J. (2020). Ralstonia solanacearum causing potato bacterial wilt: host range and cultivars’ susceptibility in Rwanda. Plant Pathol. 69, 559–568. doi: 10.1111/ppa.13140
Vejan P. Abdullah R. Khadiran T. Ismail S. Nasrulhaq Boyce A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 21, 573. doi: 10.3390/molecules21050573
Wang X. Du Z. Chen C. Guo S. Mao Q. Wu W. et al. (2023). Antifungal effects and biocontrol potential of lipopeptide-producing Streptomyces against banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1177393
Wang H. Liu R. You M. P. Barbetti M. J. Chen Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms 9, 1988. doi: 10.3390/microorganisms9091988
Wang B. Yuan J. Zhang J. Shen Z. Zhang M. Li R. et al. (2013). Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol. Fertil. Soils 49, 435–446. doi: 10.1007/s00374-012-0739-5
WFP (2021) Burundi annual country report. Available at: https://docs.wfp.org/api/documents/WFP-0000137887/download/ (Accessed October 01, 2021).
Wipfler L. ter Horst M. (2018) Pesticide management in Rwanda analysis of the current pest control products administration and management system. Wageningen Environmental Research report 2904. Available at: https://edepot.wur.nl/457874.
Xiang N. Lawrence K. S. Kloepper J. W. Donald P. A. McInroy J. A. Lawrence G. W. (2017). Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Dis. 101, 774–784. doi: 10.1094/PDIS-09-16-1369-RE
Xiang D. Yang X. Liu B. Chu Y. Liu S. Li C. (2023). Bio-priming of banana tissue culture plantlets with endophytic Bacillus velezensis EB1 to improve Fusarium wilt resistance. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1146331
Xu W. Yang Q. Yang F. Xie X. Goodwin P. H. Deng X. et al. (2022). Evaluation and genome analysis of Bacillus subtilis YB-04 as a potential biocontrol agent against Fusarium wilt and growth promotion agent of cucumber. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.885430
Xue Y. Zhang Y. Huang K. Wang X. Xing M. Xu Q. et al. (2023). A novel biocontrol agent Bacillus velezensis K01 for management of gray mold caused by Botrytis cinerea. AMB Expr. 13, 91. doi: 10.1186/s13568-023-01596-x
Yadav R. Singh S. Singh A. N. (2022). Biopesticides: Current status and future prospects. Proc. Int. Acad. Ecol. Environ. 12, 211–233. Available at: http://www.iaees.org/publications/journals/piaees/articles/2022-12(3)/biopesticides-current-status-and-future-prospects.pdf
Ye L. Wang J. Y. Liu X. F. Guan Q. Dou N. X. Li J. et al. (2022). Nematicidal activity of volatile organic compounds produced by Bacillus altitudinis AMCC 1040 against Meloidogyne incognita. Arch. Microbiol. 204, 521. doi: 10.1007/s00203-022-03024-3
Yi H. S. Ahn Y. R. Song G. C. Ghim S. Y. Lee S. Lee G. et al. (2016). Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.00993
Yin Q. J. Ying T. T. Zhou Z. Y. Hu G. A. Yang C. L. Hua Y. et al. (2023). Species-specificity of the secondary biosynthetic potential in Bacillus. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1271418
Yu X. Ai C. Xin L. Zhou G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145. doi: 10.1016/j.ejsobi.2010.11.001
Yu Y. Gui Y. Li Z. Jiang C. Guo J. Niu D. (2022). Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11, 386. doi: 10.3390/plants11030386
Yuan J. Raza W. Shen Q. Huang Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78, 5942–5944. doi: 10.1128/AEM.01357-12
Zhang J. Huang X. Hou Y. Xia X. Zhu Z. Huang A. et al. (2023a). Isolation and screening of antagonistic endophytes against Phytophthora infestans and preliminary exploration on anti-oomycete mechanism of Bacillus velezensis 6-5. Plants 12, 909. doi: 10.3390/plants12040909
Zhang J. Huang X. Yang S. Huang A. Ren J. Luo X. et al. (2023b). Endophytic Bacillus subtilis H17-16 effectively inhibits Phytophthora infestans, the pathogen of potato late blight, and its potential application. Pest Manage. Sci. 79, 5073–5086. doi: 10.1002/ps.7717
Zhang N. Wang Z. Shao J. Xu Z. Liu Y. Xun W. et al. (2023). Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microbial. Biotechnol. 16, 2250–2263. doi: 10.1111/1751-7915.14348
Zhao P. Quan C. Wang Y. Wang J. Fan S. (2014). Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J. Basic Microbiol. 54 (5), 448–456. doi: 10.1002/jobm.201200414
Zhu L. Huang J. Lu X. Zhou C. (2022). Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1118073