Article (Scientific journals)
Quantifying the electron energy of Mars aurorae through the oxygen emission brightness ratio at 130.4 and 135.6 nm
Soret, Lauriane; Hubert, Benoît; Gérard, Jean-Claude et al.
2024In Journal of Geophysical Research. Planets, 129 (e2023JE008214)
Peer reviewed
 

Files


Full Text
Soret - 2024 - Quantifying the Electron Energy of Mars Aurorae Through the Oxygen Emission Brightness Ratio.pdf
Publisher postprint (1.07 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Mars; aurora; ultraviolet; oxygen; emission; radiative transfer
Abstract :
[en] Mars discrete aurorae are caused by accelerated electrons precipitating into the atmosphere and interacting with species such as atomic oxygen. However, the energy of the electrons causing these aurorae remains currently unclear: no simultaneous and concurrent measurements of electron analyzers and spectrometers have been performed so far, preventing from assessing the exact energy of the downgoing auroral electrons. Several auroral emissions have been observed so far on Mars, among which are two oxygen emissions in the far ultraviolet at 130.4 and 135.6 nm. In this study, we simulate the vertical distribution of these auroral oxygen emissions with an electron transport calculation coupled with a radiative transfer model to account for the optical thickness of the atmosphere for the 130.4‐nm triplet. We show that the brightness ratio of these oxygen emissions is independent of the downward electron energy flux and only slightly depends on the atomic oxygen atmospheric composition. In contrast, the brightness ratio is strongly related to the initial energy of the auroral electrons. Measuring the brightness ratio is therefore a unique tool to remotely estimate the energy of the electrons causing the Mars discrete aurorae. We compare our model results with observations from the Emirates Mars Ultraviolet Spectrometer on board the Emirates Mars Mission and find that electrons with typical energies of 250–300 eV are compatible with the observed ratio of 5.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Soret, Lauriane  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Hubert, Benoît  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Gérard, Jean-Claude  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Jain, Sonal
Chirakkil, Krishnaprasad
Lillis, Robert
Deighan, Justin
Language :
English
Title :
Quantifying the electron energy of Mars aurorae through the oxygen emission brightness ratio at 130.4 and 135.6 nm
Publication date :
25 February 2024
Journal title :
Journal of Geophysical Research. Planets
ISSN :
2169-9097
eISSN :
2169-9100
Publisher :
Wiley, Hoboken, United States - New Jersey
Volume :
129
Issue :
e2023JE008214
Peer reviewed :
Peer reviewed
Available on ORBi :
since 28 March 2024

Statistics


Number of views
18 (6 by ULiège)
Number of downloads
4 (3 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi