phosphoserine phosphatase; Phosphoric Monoester Hydrolases; Phosphoric Monoester Hydrolases/metabolism; Catalysis; Mycobacterium tuberculosis/genetics; Mycobacterium tuberculosis/metabolism; Mycobacterium tuberculosis; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is of interest as a new antituberculosis target due to its essential metabolic role in L-serine biosynthesis and effector functions in infected cells. Previous works indicated that MtSerB2 is regulated through an oligomeric transition induced by L-Ser that could serve as a basis for the design of selective allosteric inhibitors. However, the mechanism underlying this transition remains highly elusive due to the lack of experimental structural data. Here we describe a structural, biophysical, and enzymological characterisation of MtSerB2 oligomerisation in the presence and absence of L-Ser. We show that MtSerB2 coexists in dimeric, trimeric, and tetrameric forms of different activity levels interconverting through a conformationally flexible monomeric state, which is not observed in two near-identical mycobacterial orthologs. This morpheein behaviour exhibited by MtSerB2 lays the foundation for future allosteric drug discovery and provides a starting point to the understanding of its peculiar multifunctional moonlighting properties.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Pierson, Elise ; Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium
De Pol, Florian; Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Wouters, Johan ; Laboratoire de Chimie Biologique Structurale (CBS), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000, Namur, Belgium. johan.wouters@unamur.be
Language :
English
Title :
A morpheein equilibrium regulates catalysis in phosphoserine phosphatase SerB2 from Mycobacterium tuberculosis.
The pAVA0421 plasmids encoding Mt SerB2, Ma SerB and Mm SerB2 were kindly provided by the Seattle Structural Genomics Center for Infectious Disease (www.SSGCID.org) which is supported by Federal Contract No. 75N93022C00036 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. SAXS experiments have been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. We acknowledge SOLEIL for the provision of synchrotron radiation facilities and we would like to thank Dr. J. Pérez and Dr. A. Thureau for assistance in using beamline SWING (proposal number 20210718). We thank Dr. A. Demelenne (LAM, CIRM, ULiège) for her precious help on the SEC-UV-MALS equipment. The Fonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium) is acknowledged for E.P. Research Fellow - ASP grant and for the MALS detector.The pAVA0421 plasmids encoding MtSerB2, MaSerB and MmSerB2 were kindly provided by the Seattle Structural Genomics Center for Infectious Disease ( www.SSGCID.org ) which is supported by Federal Contract No. 75N93022C00036 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. SAXS experiments have been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. We acknowledge SOLEIL for the provision of synchrotron radiation facilities and we would like to thank Dr. J. Pérez and Dr. A. Thureau for assistance in using beamline SWING (proposal number 20210718). We thank Dr. A. Demelenne (LAM, CIRM, ULiège) for her precious help on the SEC-UV-MALS equipment. The Fonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium) is acknowledged for E.P. Research Fellow - ASP grant and for the MALS detector.
World Health Organization (WHO). Global Tuberculosis Report 2022 (World Health Organization, Geneva, 2022).
McQuaid, C. F., Vassall, A., Cohen, T., Fiekert, K. & White, R. G. The impact of COVID-19 on TB: a review of the data. Int. J. Tuberc. Lung Dis. 25, 436–446 (2021). DOI: 10.5588/ijtld.21.0148
Khawbung, J. L., Nath, D. & Chakraborty, S. Drug resistant tuberculosis: a review. Comp. Immunol. Microbiol. Infect. Dis. 74, 101574 (2021). DOI: 10.1016/j.cimid.2020.101574
Yelamanchi, S. D. & Surolia, A. Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival. IUBMB Life 73, 643–658 (2021). DOI: 10.1002/iub.2455
Borah, K. et al. Intracellular Mycobacterium tuberculosis exploits multiple host nitrogen sources during growth in human macrophages. Cell Rep. 29, 3580–3591.e4 (2019). DOI: 10.1016/j.celrep.2019.11.037
Haufroid, M. & Wouters, J. Targeting the serine pathway: a promising approach against tuberculosis? Pharmaceuticals 12, 1–20 (2019). DOI: 10.3390/ph12020066
Hasenoehrl, E. J. et al. Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nat. Commun. 10, 4215 (2019). DOI: 10.1038/s41467-019-12224-3
Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003). DOI: 10.1046/j.1365-2958.2003.03425.x
Yadav, G. P. et al. Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS ONE 9, 1–24 (2014). DOI: 10.1371/journal.pone.0115409
Shree, S. et al. The M. tuberculosis HAD phosphatase (Rv3042c) interacts with host proteins and is inhibited by Clofazimine. Cell. Mol. Life Sci. 73, 3401–3417 (2016). DOI: 10.1007/s00018-016-2177-2
Arora, G. et al. High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase. J. Biol. Chem. 289, 25149–25165 (2014). DOI: 10.1074/jbc.M114.597682
Pierson, E. et al. Identification and repurposing of trisubstituted harmine derivatives as novel inhibitors of Mycobacterium tuberculosis phosphoserine phosphatase. Molecules 25, 1–17 (2020). DOI: 10.3390/molecules25020415
Haufroid, M., Volkov, A. N. & Wouters, J. Targeting the phosphoserine phosphatase MtSerB2 for tuberculosis drug discovery, an hybrid knowledge based /fragment based approach. Eur. J. Med. Chem. 245, 114935 (2023). DOI: 10.1016/j.ejmech.2022.114935
Abendroth, J. et al. SAD phasing using iodide ions in a high-throughput structural genomics environment. J. Struct. Funct. Genomics 12, 83–95 (2011). DOI: 10.1007/s10969-011-9101-7
Seifried, A., Schultz, J. & Gohla, A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J. 280, 549–571 (2013). DOI: 10.1111/j.1742-4658.2012.08633.x
Chipman, D. M. & Shaanan, B. The ACT domain family. Curr. Opin. Struct. Biol. 11, 694–700 (2001). DOI: 10.1016/S0959-440X(01)00272-X
Lang, E. J. M., Cross, P. J., Mittelstädt, G., Jameson, G. B. & Parker, E. J. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism. Curr. Opin. Struct. Biol. 29, 102–111 (2014). DOI: 10.1016/j.sbi.2014.10.007
Grant, G. A. The ACT domain: a small molecule binding domain and its role as a common regulatory element. J. Biol. Chem. 281, 33825–33829 (2006). DOI: 10.1074/jbc.R600024200
Grant, G. A. Regulatory mechanism of Mycobacterium tuberculosis phosphoserine phosphatase SerB2. Biochemistry 56, 6481–6490 (2017). DOI: 10.1021/acs.biochem.7b01082
Rousseau, F., Schymkowitz, J. W. H. & Itzhaki, L. S. The unfolding story of three-dimensional domain swapping. Structure 11, 243–251 (2003). DOI: 10.1016/S0969-2126(03)00029-7
Rousseau, F., Schymkowitz, J. & Itzhaki, L. S. Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152 (2012). DOI: 10.1007/978-1-4614-3229-6_9
Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000). DOI: 10.1146/annurev.biophys.29.1.105
Swapna, L. S., Srikeerthana, K. & Srinivasan, N. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. PLoS ONE 7, e36688 (2012). DOI: 10.1371/journal.pone.0036688
Gaber, A. & Pavšič, M. Modeling and structure determination of homo‐oligomeric proteins: an overview of challenges and current approaches. Int. J. Mol. Sci. 22, 9081 (2021). DOI: 10.3390/ijms22169081
Haufroid, M., Mirgaux, M., Leherte, L. & Wouters, J. Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. Acta Crystallogr. D: Struct. Biol. 75, 592–604 (2019). DOI: 10.1107/S2059798319006867
Baici, A. Kinetics of Enzyme-Modifier Interactions. Kinetics of Enzyme-Modifier Interactions (Springer, Vienna, 2015).
Pierson, E. & Wouters, J. Biochemical characterization of phosphoserine phosphatase SerB2 from Mycobacterium marinum. Biochem. Biophys. Res. Commun. 530, 739–744 (2020). DOI: 10.1016/j.bbrc.2020.07.017
Thabault, L., Liberelle, M. & Frédérick, R. Targeting protein self-association in drug design. Drug. Discov. Today 26, 1148–1163 (2021). DOI: 10.1016/j.drudis.2021.01.028
Peeraer, Y. et al. High-resolution structure of human phosphoserine phosphatase in open conformation. Acta Crystallogr. D Biol. Crystallogr. 59, 971–977 (2003). DOI: 10.1107/S0907444903005407
Kim, H. Y. et al. Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase. J. Biol. Chem. 277, 46651–46658 (2002). DOI: 10.1074/jbc.M204866200
Schlunegger, M., Bennett, M. & Eisenberg, D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Prot. Chem. 50, 61–122 (1997).
Jaffe, E. K. Morpheeins—a new structural paradigm for allosteric regulation. Trends Biochem. Sci. 30, 490–497 (2005). DOI: 10.1016/j.tibs.2005.07.003
Tang, L., Stith, L. & Jaffe, E. K. Substrate-induced interconversion of protein quaternary structure isoforms. J. Biol. Chem. 280, 15786–15793 (2005). DOI: 10.1074/jbc.M500218200
Breinig, S. et al. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat. Struct. Mol. Biol. 10, 757–763 (2003). DOI: 10.1038/nsb963
Selwood, T. & Jaffe, E. K. Dynamic dissociating homo-oligomers and the control of protein function. Arch. Biochem. Biophys. 519, 131–143 (2012). DOI: 10.1016/j.abb.2011.11.020
Lawrence, S. H. et al. Shape shifting leads to small-molecule allosteric drug discovery. Chem. Biol. 15, 586–596 (2008). DOI: 10.1016/j.chembiol.2008.04.012
Jaffe, E. K. Wrangling shape-shifting morpheeins to tackle disease and approach drug discovery. Front. Mol. Biosci. 7, 582966 (2020). DOI: 10.3389/fmolb.2020.582966
Jaffe, E. K. Morpheeins—a new pathway for allosteric drug discovery. Open Conf. Proc. J. 1, 1–6 (2010).
Liu, H. & Jeffery, C. J. Moonlighting proteins in the fuzzy logic of cellular metabolism. Molecules 25, 3440 (2020). DOI: 10.3390/molecules25153440
Jeffery, C. J. Moonlighting proteins—an update. Mol. Biosyst. 5, 345 (2009). DOI: 10.1039/b900658n
Jeffery, C. Moonlighting proteins where changing shape promotes changing function. FASEB J. 34, 1–1 (2020). DOI: 10.1096/fasebj.2020.34.s1.00434
Jaffe, E. K. & Lawrence, S. H. The morpheein model of allostery: evaluating proteins as potential morpheeins. in (eds Fenton, A.) Allostery. Methods in Molecular Biology. 796 (Springer, New York, NY, 2012).
Jaffe, E. K. Multimeric proteins that can come apart, change shape, and reassemble differently with functional consequences—morpheeins. FASEB J. 34, 1–1 (2020). DOI: 10.1096/fasebj.2020.34.s1.00543
Perica, T. et al. Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science 346, 1254346 (2014). DOI: 10.1126/science.1254346
Nooren, I. M. A. & Thornton, J. M. Structural characterisation and functional significance of transient protein–protein interactions. J. Mol. Biol. 325, 991–1018 (2003). DOI: 10.1016/S0022-2836(02)01281-0
Hashimoto, K. & Panchenko, A. R. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc. Natl. Acad. Sci. USA 107, 20352–20357 (2010). DOI: 10.1073/pnas.1012999107
Todd, A. E., Orengo, C. A. & Thornton, J. M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113–1143 (2001). DOI: 10.1006/jmbi.2001.4513
Aloy, P., Pichaud, M. & Russell, R. B. Protein complexes: structure prediction challenges for the 21st century. Curr. Opin. Struct. Biol. 15, 15–22 (2005). DOI: 10.1016/j.sbi.2005.01.012
Choi, R. et al. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 998–1005 (2011). DOI: 10.1107/S1744309111017374
Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008). DOI: 10.1186/1472-6750-8-91
Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017). DOI: 10.1107/S1600576717011438
Piiadov, V., Ares de Araújo, E., Oliveira Neto, M., Craievich, A. F. & Polikarpov, I. SAXSMoW 2.0: online calculator of the molecular weight of proteins in dilute solution from experimental SAXS data measured on a relative scale. Prot. Sci. 28, 454–463 (2019). DOI: 10.1002/pro.3528
Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci. Rep. 8, 7204 (2018). DOI: 10.1038/s41598-018-25355-2
Heringa, J. Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23, 341–364 (1999). DOI: 10.1016/S0097-8485(99)00012-1
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018). DOI: 10.1093/nar/gky427
Shree, S., Dubey, S. & Ramachandran, R. Crystal structure of Mycobacterium avium SerB2 mutant D343G. PDB https://doi.org/10.2210/pdb5JJB/pdb (2016).
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). DOI: 10.1016/j.softx.2015.06.001
MacKerell, A. D., Banavali, N. & Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2000). DOI: 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
Mirgaux, M., Leherte, L. & Wouters, J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. Acta Crystallogr. D: Struct. Biol. 76, 1211–1221 (2020). DOI: 10.1107/S2059798320013510
Darré, L. et al. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. J. Chem. Theory Comput. 11, 723–739 (2015). DOI: 10.1021/ct5007746
Darré, L., Tek, A., Baaden, M. & Pantano, S. Mixing atomistic and coarse grain solvation models for MD simulations: let WT4 handle the bulk. J. Chem. Theory Comput. 8, 3880–3894 (2012). DOI: 10.1021/ct3001816
Gonzalez, H. C., Darré, L. & Pantano, S. Transferable mixing of atomistic and coarse-grained water models. J. Phys. Chem. B 117, 14438–14448 (2013). DOI: 10.1021/jp4079579
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). DOI: 10.1063/1.328693
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). DOI: 10.1063/1.2408420
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Pierce, B., Tong, W. & Weng, Z. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21, 1472–1478 (2005). DOI: 10.1093/bioinformatics/bti229
Desta, I. T., Porter, K. A., Xia, B., Kozakov, D. & Vajda, S. Performance and its limits in rigid body protein-protein docking. Structure 28, 1071–1081.e3 (2020). DOI: 10.1016/j.str.2020.06.006
Vajda, S. et al. New additions to the ClusPro server motivated by CAPRI. Proteins 85, 435–444 (2017). DOI: 10.1002/prot.25219
Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017). DOI: 10.1038/nprot.2016.169
Kozakov, D. et al. How good is automated protein docking? Proteins 81, 2159–2166 (2013). DOI: 10.1002/prot.24403
Park, T., Baek, M., Lee, H. & Seok, C. GalaxyTongDock: symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. J. Comput. Chem. 40, 2413–2417 (2019). DOI: 10.1002/jcc.25874
Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995). DOI: 10.1107/S0021889895007047
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003). DOI: 10.1107/S0021889803012779
Rudenko, O., Thureau, A. & Perez, J. Evolutionary refinement of the 3D structure of multi-domain protein complexes from small angle X-ray scattering data. in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 401–402 (Association for Computing Machinery, New York, NY, 2019).
Petoukhov, M. V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012). DOI: 10.1107/S0021889812007662
Jendele, L., Krivak, R., Skoda, P., Novotny, M. & Hoksza, D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 47, W345–W349 (2019). DOI: 10.1093/nar/gkz424
Krivák, R. & Hoksza, D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminform. 10, 39 (2018). DOI: 10.1186/s13321-018-0285-8
Baykov, A. A., Evtushenko, O. A. & Avaeva, S. M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270 (1988). DOI: 10.1016/0003-2697(88)90484-8
Itaya, K. & Ui, M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta 14, 361–366 (1966). DOI: 10.1016/0009-8981(66)90114-8
Cleland, W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochim. Biophys. Acta - Specialized Sect. Enzymological Subj. 67, 173–187 (1963).
Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems (Wiley, 1975).
Leskovac, V. Hyperbolic and parabolic inhibition. in Comprehensive Enzyme Kinetics. 95–110 (Kluwer Academic Publishers, 2004).
Schuller, D. J., Grant, G. A. & Banaszak, L. J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2, 69–76 (1995). DOI: 10.1038/nsb0195-69
Shree, S., Agrawal, A., Dubey, S. & Ramachandran, R. Crystal structure of Mycobacterium avium SerB2 with serine present at slightly different position near ACT domain. PDB https://doi.org/10.2210/pdb5JLR/pdb (2016).
Shree, S. & Ramachandran, R. Crystal structure of Mycobacterium avium SerB2 in complex with serine at ACT domain. PDB https://doi.org/10.2210/pdb5JLP/pdb (2016).