No full text
Doctoral thesis (Dissertations and theses)
Méthode stochastique de délimitation des zones de protection autour des captages d’eau - Conditionnement par des mesures de conductivité hydraulique K, de hauteur piézométrique h et de résistivité électrique ρ
Rentier, Céline
2003
 

Files


Full Text
No document available.
Full Text Parts
13_AnnexeA.pdf
Author postprint (107.47 kB)
Download
05_Chapitre1.pdf
Author postprint (949.86 kB)
Download
16_AnnexeD.pdf
Author postprint (157.18 kB)
Download
06_Chapitre2.pdf
Author postprint (387.12 kB)
Download
07_Chapitre3.pdf
Author postprint (590.67 kB)
Download
03_Introduction.pdf
Author postprint (85.2 kB)
Download
14_AnnexeB.pdf
Author postprint (156.9 kB)
Download
01_Remerciements.pdf
Author postprint (80.36 kB)
Download
12_References.pdf
Author postprint (197.48 kB)
Download
11_Conclusions.pdf
Author postprint (150.84 kB)
Download
10_Chapitre6.pdf
Author postprint (1.51 MB)
Download
08_Chapitre4.pdf
Author postprint (1.42 MB)
Download
15_AnnexeC.pdf
Author postprint (133.68 kB)
Download
09_Chapitre5.pdf
Author postprint (2.8 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
milieu poreux; modèle hydrogéologique; eau souterraine; problème inverse; géostatistique; zone de protection; simulations stochastiques
Abstract :
[fr] Dans les milieux géologiques hétérogènes, la délimitation des zones de protection autour de puits de captage repose sur la fiabilité des modèles hydrogéologiques utilisés. Celle-ci dépend essentiellement de notre capacité à décrire les propriétés du système aquifère. En raison des mécanismes géologiques complexes impliqués dans la formation des dépôts sédimentaires, les propriétés aquifères et en particulier la conductivité hydraulique (K) montrent une variabilité spatiale importante, qui gouverne l'étalement de soluté. Le manque de données empêche une caractérisation parfaite du champ de K et introduit dès lors une incertitude dans la délimitation des zones de protection. Divers types d'informations liées à cette propriété peuvent être récoltés sur le terrain mais sont, en pratique, peu utilisés en raison de la difficulté de les intégrer dans les modèles hydrogéologiques. Dans ce travail de recherche, l'accent a été mis sur la quantification et la réduction de l'incertitude associée à la localisation des zones de protection en proposant une méthode stochastique permettant de conditionner les champs de K par des mesures directes (données hard) et indirectes (données soft) de cette propriété et plus particulièrement des données de résistivité électrique (ρ) et de hauteur piézométrique (h). L'approche stochastique spatiale qui a été adoptée considère la propriété K comme une fonction spatiale aléatoire et permet, par l'utilisation de méthodes géostatistiques, de caractériser sa variabilité spatiale. Cette approche stochastique génère un ensemble de champs de K, tous statistiquement équiprobables et, par analyse de Monte Carlo, prend explicitement en compte l'incertitude sur les valeurs de K dans la réponse du système, contrairement aux approches déterministes classiques qui considèrent le champ de K calibré comme la meilleure représentation de la réalité et mènent à la définition d'une zone de protection unique dont l'incertitude n'est pas quantifiable. Afin d'évaluer la qualité des résultats obtenus, cette méthode a été appliquée à un cas d'étude virtuel (synthétique) représentant une situation de référence, aussi proche que possible des conditions réelles rencontrées dans les aquifères alluviaux, et dont les propriétés hydrogéologiques sont connues en tout point du domaine modélisé. Elle a également été appliquée au cas d'étude réel d'un aquifère alluvial ayant déjà fait l'objet d'une étude déterministe et dont le nombre de mesures de K est extrêmement faible, nécessitant l'intégration de données de ρ et de h. L'ensemble des résultats montre à quel point l'introduction des données soft, et surtout celle des données de ρ, est un atout qui améliore grandement la caractérisation des champs de K et permet donc non seulement de réduire l'incertitude sur la localisation des zones de protection, mais également d'approcher la forme du tracé des zones de protection réelles.ABSTRACTIn heterogeneous geological media, delineation of time-related well capture zone is based on the reliability of the hydrogeological models. It depends strongly on our ability to describe the system aquifer properties. Due to the complex geological processes leading to the formation of natural sediments, aquifer properties and in particular hydraulic conductivity (K) exhibits a large degree of heterogeneity, which governs solute spreading. The lack of K data hampers the complete determination of the K field and introduces uncertainty in capture zone delineation. Several kinds of informations related to this parameter can be collected in the field but are most often not used in practice because of the difficulty to introduce them in hydrogeological models. In this research work, emphasis is given to quantification and reduction of the well capture zone uncertainty by developing a stochastic method integrating direct (hard data) and indirect (soft data) measures of K and particularly electrical resistivity (ρ) and piezometric heads (h). The spatial stochastic approach adopted here considers the property K as a spatial random function and describes its spatial variability by use of geostatistical methods. This approach generates a range of statistically equally likely K fields and takes explicitly into account the K values uncertainty in the system response by performing Monte Carlo analysis, unlike classical deterministic approaches that consider a calibrated K field as the best representation of reality and lead to the definition of a unique capture zone for which uncertainty is unquantified. In order to assess the reliability of the results, this method was applied to a virtual (synthetic) study representing a reference case, very similar to actual alluvial aquifer conditions and for which hydrogeological properties are perfectly known. The method was also applied to a real case of an alluvial aquifer that had already been studied in a determinist framework and for which the number of K measures is very scarce, requiring a conditioning by ρ and h data. The results show how introduction of soft data and especially ρ data greatly improves K field description and therefore allows both to reduce well capture zone uncertainty and to approach the shapes of actual protection zones.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Rentier, Céline ;  Université de Liège - ULiège > SAAG - FSA - Département ArGEnCo
Language :
French
Title :
Méthode stochastique de délimitation des zones de protection autour des captages d’eau - Conditionnement par des mesures de conductivité hydraulique K, de hauteur piézométrique h et de résistivité électrique ρ
Defense date :
14 March 2003
Institution :
Université de Liège
Degree :
Doctorat en sciences de l'ingénieur
Promotor :
Dassargues, Alain
President :
Pirard, Eric
Jury member :
Grandjean, Gilles
de Marsily, Ghislain
Guadagnini, A.
Roubens, Marc
Bolle, Albert
Van Clooster, Marnik
Monjoie, Albéric
Available on ORBi :
since 27 March 2024

Statistics


Number of views
3 (0 by ULiège)
Number of downloads
10 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi