Aging; Blind mole-rat; Cardiovascular Diseases; Cellular senescence; Microchip; Naked mole-rat; Organoid; Senotherapeutics; Genetics; Molecular Biology; Physiology; General Medicine
Abstract :
[en] Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Inci Kavum, Nurcan ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Kamali, Dilanur ✱; Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
Akyildiz, Erdogan Oguzhan; Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
Tahir Turanli, Eda; Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey ; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
Bozaykut, Perinur; Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey ; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
✱ These authors have contributed equally to this work.
Language :
English
Title :
Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models.
Acosta J. C. O'Loghlen A. Banito A. Guijarro M. V. Augert A. Raguz S. et al. (2008). Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell 133, 1006–1018. 10.1016/J.CELL.2008.03.038
Adamus J. Aho S. Meldrum H. Bosko C. Lee J.-M. (2014). P16INK4A Influences the Aging Phenotype in the Living Skin Equivalent. J. Invest. Dermatol. 134, 1131–1133. 10.1038/jid.2013.468
Akiguchi I. Pallàs M. Budka H. Akiyama H. Ueno M. Han J. et al. (2017). SAMP8 Mice as a Neuropathological Model of Accelerated Brain Aging and Dementia: Toshio Takeda's Legacy and Future Directions. Neuropathology 37, 293–305. 10.1111/neup.12373
Alessio N. Aprile D. Cappabianca S. Peluso G. Di Bernardo G. Galderisi U. (2021). Different Stages of Quiescence, Senescence, and Cell Stress Identified by Molecular Algorithm Based on the Expression of Ki67, Rps6, and Beta-Galactosidase Activity. Ijms 22, 3102–3113. 10.3390/ijms22063102
Amaya-Montoya M. Pérez-Londoño A. Guatibonza-García V. Vargas-Villanueva A. Mendivil C. O. (2020). Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review. Adv. Ther. 37, 1407–1424. 10.1007/s12325-020-01287-0
Amor C. Feucht J. Leibold J. Ho Y.-J. Zhu C. Alonso-Curbelo D. et al. (2020). Senolytic CAR T Cells Reverse Senescence-Associated Pathologies. Nature 583, 127–132. 10.1038/s41586-020-2403-9
Anderson R. Lagnado A. Maggiorani D. Walaszczyk A. Dookun E. Chapman J. et al. (2019). Length‐Independent Telomere Damage Drives Post‐Mitotic Cardiomyocyte Senescence. EMBO J. 38. 10.15252/EMBJ.2018100492
Andziak B. Buffenstein R. (2006). Disparate Patterns of Age-Related Changes in Lipid Peroxidation in Long-Lived Naked Mole-Rats and Shorter-Lived Mice. Aging Cell 5, 525–532. 10.1111/j.1474-9726.2006.00246.x
Antonioli E. Torres N. Ferretti M. Piccinato C. d. A. Sertie A. L. (2019). Individual Response to mTOR Inhibition in Delaying Replicative Senescence of Mesenchymal Stromal Cells. PLoS One 14, e0204784. 10.1371/journal.pone.0204784
Assmus B. Urbich C. Aicher A. Hofmann W. K. Haendeler J. Rössig L. et al. (2003). HMG-CoA Reductase Inhibitors Reduce Senescence and Increase Proliferation of Endothelial Progenitor Cells via Regulation of Cell Cycle Regulatory Genes. Circ. Res. 92, 1049–1055. 10.1161/01.RES.0000070067.64040.7C
Avivi A. Shams I. Joel A. Lache O. Levy A. P. Nevo E. (2005). Increased Blood Vessel Density Provides the Mole Rat Physiological Tolerance to its Hypoxic Subterranean Habitat. FASEB J. 19, 1314–1316. 10.1096/fj.04-3414fje
Azpurua J. Seluanov A. (2012). Long-Lived Cancer-Resistant Rodents as New Model Species for Cancer Research. Front. Gene 3, 319. 10.3389/fgene.2012.00319
Baar M. P. Brandt R. M. C. Putavet D. A. Klein J. D. D. Derks K. W. J. Bourgeois B. R. M. et al. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 169, 132–147. e16. 10.1016/j.cell.2017.02.031
Baker D. J. Childs B. G. Durik M. Wijers M. E. Sieben C. J. Zhong J. et al. (2016). Naturally Occurring p16Ink4a-Positive Cells Shorten Healthy Lifespan. Nature 530, 184–189. 10.1038/nature16932
Baker D. J. Jeganathan K. B. Cameron J. D. Thompson M. Juneja S. Kopecka A. et al. (2004). BubR1 Insufficiency Causes Early Onset of Aging-Associated Phenotypes and Infertility in Mice. Nat. Genet. 36, 744–749. 10.1038/ng1382
Baker D. J. Perez-Terzic C. Jin F. Pitel K. S. Niederländer N. J. Jeganathan K. et al. (2008). Opposing Roles for p16Ink4a and p19Arf in Senescence and Ageing Caused by BubR1 Insufficiency. Nat. Cel. Biol. 10, 825–836. 10.1038/ncb1744
Baker D. J. Wijshake T. Tchkonia T. Lebrasseur N. K. Childs B. G. Van De Sluis B. et al. (2011). Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders. Nature 479, 232–236. 10.1038/nature10600
Balistreri C. R. Madonna R. Ferdinandy P. (2021). Is it the Time of Seno-Therapeutics Application in Cardiovascular Pathological Conditions Related to Ageing? Curr. Res. Pharmacol. Drug Discov. 2, 100027. 10.1016/J.CRPHAR.2021.100027
Barkauskas C. E. Chung M.-I. Fioret B. Gao X. Katsura H. Hogan B. L. M. (2017). Lung Organoids: Current Uses and Future Promise. Dev. 144, 986–997. 10.1242/dev.140103
Barouch L. A. Gao D. Chen L. Miller K. L. Xu W. Phan A. C. et al. (2006). Cardiac Myocyte Apoptosis Is Associated with Increased DNA Damage and Decreased Survival in Murine Models of Obesity. Circ. Res. 98, 119–124. 10.1161/01.RES.0000199348.10580.1D
Barros P. R. Costa T. J. Akamine E. H. Tostes R. C. (2021). Vascular Aging in Rodent Models: Contrasting Mechanisms Driving the Female and Male Vascular Senescence. Front. Aging 2, 1–22. 10.3389/fragi.2021.727604
Basatemur G. L. Jørgensen H. F. Clarke M. C. H. Bennett M. R. Mallat Z. (2019). Vascular Smooth Muscle Cells in Atherosclerosis. Nat. Rev. Cardiol. 16, 727–744. 10.1038/s41569-019-0227-9
Basisty N. Kale A. Jeon O. H. Kuehnemann C. Payne T. Rao C. et al. (2020). A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. PLOS Biol. 18, e3000599. 10.1371/JOURNAL.PBIO.3000599
Baumann K. (2016). Senescence and Reprogramming Go Hand-In-Hand. Nat. Rev. Mol. Cel. Biol. 18, 4. 10.1038/nrm.2016.165
Beausejour C. M. Krtolica A. Galimi F. Narita M. Lowe S. W. Yaswen P. et al. (2003). Reversal of Human Cellular Senescence: Roles of the P53 and P16 Pathways. EMBO J. 22, 4212–4222. 10.1093/emboj/cdg417
Benjamin E. J. Muntner P. Alonso A. Bittencourt M. S. Callaway C. W. Carson A. P. et al. (2019). Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 139, e56–e528. 10.1161/CIR.0000000000000659
Bennett M. L. Bennett F. C. Liddelow S. A. Ajami B. Zamanian J. L. Fernhoff N. B. et al. (2016). New Tools for Studying Microglia in the Mouse and Human CNS. Proc. Natl. Acad. Sci. U.S.A. 113, E1738–E1746. 10.1073/pnas.1525528113
Bergmann O. Bhardwaj R. D. Bernard S. Zdunek S. Barnabé-Heider F. Walsh S. et al. (2009). Evidence for Cardiomyocyte Renewal in Humans. Science 324, 98–102. 10.1126/science.1164680
Bergmann O. Zdunek S. Felker A. Salehpour M. Alkass K. Bernard S. et al. (2015). Dynamics of Cell Generation and Turnover in the Human Heart. Cell 161, 1566–1575. 10.1016/J.CELL.2015.05.026
Blagosklonny M. V. (2013). Aging Is Not Programmed. Cell Cycle 12, 3736–3742. 10.4161/cc.27188
Blagosklonny M. V. (2012). Cell Cycle Arrest Is Not Yet Senescence, Which Is Not Just Cell Cycle Arrest: Terminology for TOR-Driven Aging. Aging 4, 159–165. 10.18632/aging.100443
Bock C. Boutros M. Camp J. G. Clarke L. Clevers H. Knoblich J. A. et al. (2021). The Organoid Cell Atlas. Nat. Biotechnol. 39. 10.1038/s41587-020-00762-x
Bodnar A. G. Ouellette M. Frolkis M. Holt S. E. Chiu C.-P. Morin G. B. et al. (1998). Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 279, 349–352. 10.1126/science.279.5349.349
Boe A. E. Eren M. Murphy S. B. Kamide C. E. Ichimura A. Terry D. et al. (2013). Plasminogen Activator Inhibitor-1 Antagonist TM5441 Attenuates Nω -Nitro- L-Arginine Methyl Ester-Induced Hypertension and Vascular Senescence. Circulation 128, 2318–2324. 10.1161/CIRCULATIONAHA.113.003192
Bozaykut P. (2019). “Aging and Cardiovascular Diseases: The Role of Cellular Senescence,” in Oxidative Stress in Heart Diseases. Editors Chakraborti S. Dhalla N. S. Ganguly N. K. Dikshit M. (Singapore: Springer), 207–233. 10.1007/978-981-13-8273-4_10
Bozaykut P. (2021). Cellular Stress Responses of Long-Lived and Cancer-Resistant Naked Mole-Rats. Turkish J. Biochem. 46, 205–212. 10.1515/tjb-2020-0480
Bozaykut P. Ekren R. Sezerman O. U. Gladyshev V. N. Ozer N. K. (2020a). High‐Throughput Profiling Reveals Perturbation of Endoplasmic Reticulum Stress‐Related Genes in Atherosclerosis Induced by High‐Cholesterol Diet and the Protective Role of Vitamin E. BioFactors 46, 653–664. 10.1002/BIOF.1635
Bozaykut P. Sozen E. Kaga E. Ece A. Ozaltin E. Bergquist J. et al. (2020b). HSP70 Inhibition Leads to the Activation of Proteasomal System under Mild Hyperthermia Conditions in Young and Senescent Fibroblasts. Oxidative Med. Cell Longevity 2020, 1–10. 10.1155/2020/9369524
Buffenstein R. (2008). Negligible Senescence in the Longest Living Rodent, the Naked Mole-Rat: Insights from a Successfully Aging Species. J. Comp. Physiol. B 178, 439–445. 10.1007/s00360-007-0237-5
Cafueri G. Parodi F. Pistorio A. Bertolotto M. Ventura F. Gambini C. et al. (2012). Endothelial and Smooth Muscle Cells from Abdominal Aortic Aneurysm Have Increased Oxidative Stress and Telomere Attrition. PLOS ONE 7, e35312. 10.1371/journal.pone.0035312
Calcinotto A. Kohli J. Zagato E. Pellegrini L. Demaria M. Alimonti A. (2019). Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 99, 1047–1078. 10.1152/physrev.00020.2018
Calvert P. A. Liew T.-V. Gorenne I. Clarke M. Costopoulos C. Obaid D. R. et al. (2011). Leukocyte Telomere Length Is Associated with High-Risk Plaques on Virtual Histology Intravascular Ultrasound and Increased Proinflammatory Activity. Atvb 31, 2157–2164. 10.1161/ATVBAHA.111.229237
Camozzi D. Capanni C. Cenni V. Mattioli E. Columbaro M. Squarzoni S. et al. (2014). Diverse Lamin-dependent Mechanisms Interact to Control Chromatin Dynamics. Nucleus 5, 427–440. 10.4161/nucl.36289
Campisi J. (2013). Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 75, 685–705. 10.1146/annurev-physiol-030212-183653
Campisi J. (2018). Cellular Senescence, Aging, and Cancer. Innov. Aging 2, 798. 10.1093/geroni/igy023.2963
Campisi J. d'Adda di Fagagna F. (2007). Cellular Senescence: when Bad Things Happen to Good Cells. Nat. Rev. Mol. Cel Biol. 8, 729–740. 10.1038/nrm2233
Campisi J. (2005). Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell 120, 513–522. 10.1016/j.cell.2005.02.003
Cánepa E. T. Scassa M. E. Ceruti J. M. Marazita M. C. Carcagno A. L. Sirkin P. F. et al. (2007). INK4 Proteins, a Family of Mammalian CDK Inhibitors with Novel Biological Functions. Tbmb 59, 419–426. 10.1080/15216540701488358
Cevenini E. Invidia L. Lescai F. Salvioli S. Tieri P. Castellani G. et al. (2008). Human Models of Aging and Longevity. Expert Opin. Biol. Ther. 8, 1393–1405. 10.1517/14712598.8.9.1393
Chen Y. Mao P. Snijders A. M. Wang D. (2018). Senescence Chips for Ultrahigh-Throughput Isolation and Removal of Senescent Cells. Aging Cell 17, e12722–10. 10.1111/acel.12722
Chien Y. Scuoppo C. Wang X. Fang X. Balgley B. Bolden J. E. et al. (2011). Control of the Senescence-Associated Secretory Phenotype by NF-Κb Promotes Senescence and Enhances Chemosensitivity. Genes Dev. 25, 2125–2136. 10.1101/GAD.17276711
Childs B. G. Baker D. J. Wijshake T. Conover C. A. Campisi J. van Deursen J. M. (2016). Senescent Intimal Foam Cells Are Deleterious at All Stages of Atherosclerosis. Science 354, 472–477. 10.1126/SCIENCE.AAF6659
Childs B. G. Durik M. Baker D. J. Van Deursen J. M. (2015). Cellular Senescence in Aging and Age-Related Disease: From Mechanisms to Therapy. Nat. Med. 21, 1424–1435. 10.1038/nm.4000
Childs B. G. Li H. van Deursen J. M. (2018). Senescent Cells: A Therapeutic Target for Cardiovascular Disease. 128, 1217–1228. 10.1172/jci95146
Chimenti C. Kajstura J. Torella D. Urbanek K. Heleniak H. Colussi C. et al. (2003). Senescence and Death of Primitive Cells and Myocytes Lead to Premature Cardiac Aging and Heart Failure. Circ. Res. 93, 604–613. 10.1161/01.RES.0000093985.76901.AF
Cianflone E. Torella M. Biamonte F. De Angelis A. Urbanek K. Costanzo F. S. et al. (2020). Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 9, 1558. 10.3390/cells9061558
Coppé J.-P. Rodier F. Patil C. K. Freund A. Desprez P.-Y. Campisi J. (2011). Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype. J. Biol. Chem. 286, 36396–36403. 10.1074/jbc.M111.257071
Cudejko C. Wouters K. Fuentes L. Hannou S. A. Paquet C. Bantubungi K. et al. (2011). p16INK4a Deficiency Promotes IL-4-Induced Polarization and Inhibits Proinflammatory Signaling in Macrophages. Blood 118, 2556–2566. 10.1182/BLOOD-2010-10-313106
d'Adda di Fagagna F. (2008). Living on a Break: Cellular Senescence as a DNA-Damage Response. Nat. Rev. Cancer 8, 512–522. 10.1038/nrc2440
da Costa J. P. Vitorino R. Silva G. M. Vogel C. Duarte A. C. Rocha-Santos T. (2016). A Synopsis on Aging-Theories, Mechanisms and Future Prospects. Ageing Res. Rev. 29, 90–112. 10.1016/j.arr.2016.06.005
Demaria M. Ohtani N. Youssef S. A. Rodier F. Toussaint W. Mitchell J. R. et al. (2014). An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA. Developmental Cel. 31, 722–733. 10.1016/j.devcel.2014.11.012
Di Leonardo A. Linke S. P. Clarkin K. Wahl G. M. (1994). DNA Damage Triggers a Prolonged P53-Dependent G1 Arrest and Long-Term Induction of Cip1 in Normal Human Fibroblasts. Genes Dev. 8, 2540–2551. 10.1101/gad.8.21.2540
Di Micco R. Krizhanovsky V. Baker D. d’Adda di Fagagna F. (2021). Cellular Senescence in Ageing: from Mechanisms to Therapeutic Opportunities. Nat. Rev. Mol. Ce.l Biol. 22, 75–95. 10.1038/s41580-020-00314-w
Diekmann J. Alili L. Scholz O. Giesen M. Holtkötter O. Brenneisen P. (2016). A Three-Dimensional Skin Equivalent Reflecting Some Aspects Ofin Vivoaged Skin. Exp. Dermatol. 25, 56–61. 10.1111/exd.12866
Domankevich V. Eddini H. Odeh A. Shams I. (2018). Resistance to DNA Damage and Enhanced DNA Repair Capacity in the Hypoxia-Tolerant Blind Mole Rat Spalax Carmeli. J. Exp. Biol. 221. 10.1242/JEB.174540
Dou Z. Ghosh K. Vizioli M. G. Zhu J. Sen P. Wangensteen K. J. et al. (2017). Cytoplasmic Chromatin Triggers Inflammation in Senescence and Cancer. Nature 550, 402–406. 10.1038/NATURE24050
Dzal Y. A. Jenkin S. E. M. Lague S. L. Reichert M. N. York J. M. Pamenter M. E. (2015). Oxygen in Demand: How Oxygen Has Shaped Vertebrate Physiology. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 186, 4–26. 10.1016/j.cbpa.2014.10.029
Edrey Y. H. Casper D. Huchon D. Mele J. Gelfond J. A. Kristan D. M. et al. (2012). Sustained High Levels of Neuregulin-1 in the Longest-Lived Rodents; A Key Determinant of Rodent Longevity. Aging Cell 11, 213–222. 10.1111/j.1474-9726.2011.00772.x
Edrey Y. H. Hanes M. Pinto M. Mele J. Buffenstein R. (2011). Successful Aging and Sustained Good Health in the Naked Mole Rat: A Long-Lived Mammalian Model for Biogerontology and Biomedical Research. ILAR J. 52, 41–53. 10.1093/ilar.52.1.41
Eijkelenboom A. Burgering B. M. T. (2013). FOXOs: Signalling Integrators for Homeostasis Maintenance. Nat. Rev. Mol. Cel. Biol. 14, 83–97. 10.1038/nrm3507
Ellison-Hughes G. M. (2020). First Evidence that Senolytics Are Effective at Decreasing Senescent Cells in Humans. EBioMedicine 56, 102473. 10.1016/j.ebiom.2019.09.053
Engeland K. (20172018). Cell Cycle Arrest through Indirect Transcriptional Repression by P53: I Have a DREAM. Cell Death Differ. 25 (25), 114–132. 10.1038/cdd.2017.172
Evangelou E. Ioannidis J. P. A. (2013). Meta-analysis Methods for Genome-wide Association Studies and Beyond. Nat. Rev. Genet. 14, 379–389. 10.1038/nrg3472
Fagagna F. d. A. d. Reaper P. M. Clay-Farrace L. Fiegler H. Carr P. Von Zglinicki T. et al. (2003). A DNA Damage Checkpoint Response in Telomere-Initiated Senescence. Nature 426, 194–198. 10.1038/nature02118
Faulkes C. G. Eykyn T. R. Aksentijevic D. (2019). Cardiac Metabolomic Profile of the Naked Mole-Rat-Glycogen to the Rescue. Biol. Lett. 15, 20190710. 10.1098/rsbl.2019.0710
Fischer M. Müller G. A. (2017). Cell Cycle Transcription Control: DREAM/MuvB and RB-E2f Complexes. Crit. Rev. Biochem. Mol. Biol. 52, 638–662. 10.1080/10409238.2017.1360836
Florido R. Tchkonia T. Kirkland J. L. (2011). “Aging and Adipose Tissue,” in Handbook of the Biology of Aging. Handbooks of Aging. Editors Masoro E. J. Austad S. N.. Seventh Edition (San Diego: Academic Press), 119–139. 10.1016/B978-0-12-378638-8.00005-1
Foo M. X. R. Ong P. F. Dreesen O. (2019). Premature Aging Syndromes: From Patients to Mechanism. J. Dermatol. Sci. 96 (2), 58–65. 10.1016/j.jdermsci.2019.10.003
Fuhrmann-Stroissnigg H. Ling Y. Y. Zhao J. McGowan S. J. Zhu Y. Brooks R. W. et al. (2017). Identification of HSP90 Inhibitors as a Novel Class of Senolytics. Nat. Commun. 8. 10.1038/s41467-017-00314-z
Fumagalli M. Rossiello F. Clerici M. Barozzi S. Cittaro D. Kaplunov J. M. et al. (2012). Telomeric DNA Damage Is Irreparable and Causes Persistent DNA-Damage-Response Activation. Nat. Cel. Biol. 14, 355–365. 10.1038/ncb2466
Funk J. O. Waga S. Harry J. B. Espling E. Stillman B. Galloway D. A. (1997). Inhibition of CDK Activity and PCNA-Dependent DNA Replication by P21 Is Blocked by Interaction with the HPV-16 E7 Oncoprotein. Genes Dev. 11, 2090–2100. 10.1101/gad.11.16.2090
Galluzzi L. Vitale I. Aaronson S. A. Abrams J. M. Adam D. Agostinis P. et al. (2018). Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cel. Death Differ. 25, 486–541. 10.1038/s41418-017-0012-4
Galvis D. Walsh D. Harries L. W. Latorre E. Rankin J. (2019). A Dynamical Systems Model for the Measurement of Cellular Senescence. J. R. Soc. Interf. 16, 20190311. 10.1098/rsif.2019.0311
Giaimo S. d’Adda di Fagagna F. (2012). Is Cellular Senescence an Example of Antagonistic Pleiotropy? Aging Cell 11, 378–383. 10.1111/J.1474-9726.2012.00807.X
Gil J. Peters G. (2006). Regulation of the INK4b-ARF-INK4a Tumour Suppressor Locus: All for One or One for All. Nat. Rev. Mol. Cel. Biol. 7, 667–677. 10.1038/nrm1987
Gire S. K. Goba A. Andersen K. G. Sealfon R. S. G. Park D. J. Kanneh L. et al. (2014). Genomic Surveillance Elucidates Ebola Virus Origin and Transmission During the 2014 Outbreak. Science 345, 1369–1372. 10.1126/science.1259657
Gire V. Dulić V. (2015). Senescence from G2 Arrest, Revisited. Cell Cycle 14, 297–304. 10.1080/15384101.2014.1000134
González‐Gualda E. Baker A. G. Fruk L. Muñoz‐Espín D. (2021). A Guide to Assessing Cellular Senescence In Vitro and In Vivo. FEBS J. 288, 56–80. 10.1111/febs.15570
Goodrich D. W. Wang N. P. Qian Y.-W. Lee E. Y.-H. P. Lee W.-H. (1991). The Retinoblastoma Gene Product Regulates Progression Through the G1 Phase of the Cell Cycle. Cell 67, 293–302. 10.1016/0092-8674(91)90181-w
Gorbunova V. Hine C. Tian X. Ablaeva J. Gudkov A. V. Nevo E. et al. (2012). Cancer Resistance in the Blind Mole Rat Is Mediated by Concerted Necrotic Cell Death Mechanism. Proc. Natl. Acad. Sci. U.S.A. 109, 19392–19396. 10.1073/pnas.1217211109
Gorgoulis V. Adams P. D. Alimonti A. Bennett D. C. Bischof O. Bishop C. et al. (2019). Cellular Senescence: Defining a Path Forward. Cell 179, 813–827. 10.1016/j.cell.2019.10.005
Gorgoulis V. G. Pefani D.-E. Pateras I. S. Trougakos I. P. (2018). Integrating the DNA Damage and Protein Stress Responses During Cancer Development and Treatment. J. Pathol. 246, 12–40. 10.1002/path.5097
Grimes K. M. Lindsey M. L. Gelfond J. A. L. Buffenstein R. (2012). Getting to the Heart of the Matter: Age-Related Changes in Diastolic Heart Function in the Longest-Lived Rodent, the Naked Mole Rat. Journals Gerontol. Ser. A: Biol. Sci. Med. Sci. 67A, 384–394. 10.1093/gerona/glr222
Grimes K. M. Reddy A. K. Lindsey M. L. Buffenstein R. (2014). And the Beat Goes on: Maintained Cardiovascular Function During Aging in the Longest-Lived Rodent, the Naked Mole-Rat. Am. J. Physiology-Heart Circulatory Physiol. 307, H284–H291. 10.1152/ajpheart.00305.2014
Grootaert M. O. J. Bennett M. R. (2021). Vascular Smooth Muscle Cells in Atherosclerosis: Time for a Re-Assessment. Cardiovasc. Res. 117, 2326–2339. 10.1093/cvr/cvab046
Guerrero A. Herranz N. Sun B. Wagner V. Gallage S. Guiho R. et al. (2019). Cardiac Glycosides Are Broad-Spectrum Senolytics. Nat. Metab. 1, 1074–1088. 10.1038/s42255-019-0122-z
Guiley K. Z. Liban T. J. Felthousen J. G. Ramanan P. Litovchick L. Rubin S. M. (2015). Structural Mechanisms of DREAM Complex Assembly and Regulation. Genes Dev. 29, 961–974. 10.1101/GAD.257568.114
Hall B. M. Balan V. Gleiberman A. S. Strom E. Krasnov P. Virtuoso L. P. et al. (2017). p16(Ink4a) and Senescence-Associated β-Galactosidase Can Be Induced in Macrophages as Part of a Reversible Response to Physiological Stimuli. Aging 9, 1867–1884. 10.18632/aging.101268
Hamczyk M. R. del Campo L. Andrés V. (2018a). Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annu. Rev. Physiol. 80, 27–48. 10.1146/annurev-physiol-021317-121454
Hamczyk M. R. Villa-Bellosta R. Gonzalo P. Andrés-Manzano M. J. Nogales P. Bentzon J. F. et al. (2018b). Vascular Smooth Muscle-Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome. Circulation 138, 266–282. 10.1161/CIRCULATIONAHA.117.030856
Han Y.-M. Bedarida T. Ding Y. Somba B. K. Lu Q. Wang Q. et al. (2018). β-Hydroxybutyrate Prevents Vascular Senescence Through hnRNP A1-Mediated Upregulation of Oct4. Mol. Cel. 71, 1064–1078. e5. 10.1016/j.molcel.2018.07.036
Harley C. B. Futcher A. B. Greider C. W. (1990). Telomeres Shorten During Ageing of Human Fibroblasts. Nature 345, 458–460. 10.1038/345458A0
Hayflick L. Moorhead P. S. (1961). The Serial Cultivation of Human Diploid Cell Strains. Exp. Cel. Res. 25, 585–621. 10.1016/0014-4827(61)90192-6
He D. Wu H. Xiang J. Ruan X. Peng P. Ruan Y. et al. (2020). Gut Stem Cell Aging Is Driven by mTORC1 via a P38 MAPK-P53 Pathway. Nat. Commun. 11. 10.1038/s41467-019-13911-x
He S. Sharpless N. E. (2017). Senescence in Health and Disease. Cell 169, 1000–1011. 10.1016/j.cell.2017.05.015
Hernandez-Segura A. Nehme J. Demaria M. (2018). Hallmarks of Cellular Senescence. Trends Cel. Biol. 28, 436–453. 10.1016/j.tcb.2018.02.001
Herranz N. Gallage S. Mellone M. Wuestefeld T. Klotz S. Hanley C. J. et al. (2015). Erratum: mTOR Regulates MAPKAPK2 Translation to Control the Senescence-Associated Secretory Phenotype. Nat. Cel. Biol. 17, 1370. 10.1038/ncb3243
Herranz N. Gil J. (2018). Mechanisms and Functions of Cellular Senescence. J. Clin. Invest. 128, 1238–1246. 10.1172/JCI95148
Hinze C. Boucrot E. (2018). Endocytosis in Proliferating, Quiescent and Terminally Differentiated Cells. J. Cel. Sci. 131, jcs216804. 10.1242/jcs.216804
Hu D. Yin C. Luo S. Habenicht A. J. R. Mohanta S. K. (2019). Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Front. Immunol. 10, 1101. 10.3389/fimmu.2019.01101
Hu J. L. Todhunter M. E. LaBarge M. A. Gartner Z. J. (2018). Opportunities for Organoids as New Models of Aging. J. Cel. Biol. 217, 39–50. 10.1083/jcb.201709054
Hubbard B. P. Sinclair D. A. (2014). Small Molecule SIRT1 Activators for the Treatment of Aging and Age-Related Diseases. Trends Pharmacol. Sci. 35, 146–154. 10.1016/j.tips.2013.12.004
Igarashi M. Guarente L. (2016). mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells During Calorie Restriction. Cell 166, 436–450. 10.1016/j.cell.2016.05.044
Igarashi M. Miura M. Williams E. Jaksch F. Kadowaki T. Yamauchi T. et al. (2019). NAD+ Supplementation Rejuvenates Aged Gut Adult Stem Cells. Aging Cell 18, e12935. 10.1111/acel.12935
Imai Y. Takahashi A. Hanyu A. Hori S. Sato S. Naka K. et al. (2014). Crosstalk Between the Rb Pathway and AKT Signaling Forms a Quiescence-Senescence Switch. Cel. Rep. 7, 194–207. 10.1016/j.celrep.2014.03.006
Jackson A. O. Rahman G. A. Long S. (2021). Attenuating Senescence and Dead Cells Accumulation as Heart Failure Therapy: Break the Communication Networks. Int. J. Cardiol. 334, 72–85. 10.1016/J.IJCARD.2021.03.061
Jurk D. Wang C. Miwa S. Maddick M. Korolchuk V. Tsolou A. et al. (2012). Postmitotic Neurons Develop a P21‐Dependent Senescence‐Like Phenotype Driven by a DNA Damage Response. Aging Cell 11, 996–1004. 10.1111/j.1474-9726.2012.00870.x
Justice J. N. Nambiar A. M. Tchkonia T. LeBrasseur N. K. Pascual R. Hashmi S. K. et al. (2019). Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-In-Human, Open-Label, Pilot Study. EBioMedicine 40, 554–563. 10.1016/j.ebiom.2018.12.052
Kang C. (2019). Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases. Mol. Cell 42, 821–827. 10.14348/molcells.2019.0298
Karin O. Alon U. (2021). Senescent Cell Accumulation Mechanisms Inferred from Parabiosis. GeroScience 43, 329–341. 10.1007/s11357-020-00286-x
Kastenhuber E. R. Lowe S. W. (2017). Putting P53 in Context. Cell 170, 1062–1078. 10.1016/j.cell.2017.08.028
Katsuumi G. Shimizu I. Yoshida Y. Hayashi Y. Ikegami R. Suda M. et al. (2018). Catecholamine-Induced Senescence of Endothelial Cells and Bone Marrow Cells Promotes Cardiac Dysfunction in Mice. Int. Heart J. 59, 837–844. 10.1536/IHJ.17-313
Kim E.-C. Kim J.-R. (2019). Senotherapeutics: Emerging Strategy for Healthy Aging and Age-Related Disease. BMB Rep. 52, 47–55. 10.5483/BMBRep.2019.52.1.293
Kim W. Y. Sharpless N. E. (2006). The Regulation of INK4/ARF in Cancer and Aging. Cell 127, 265–275. 10.1016/j.cell.2006.10.003
Kirkland J. L. Tchkonia T. (2017). Cellular Senescence: A Translational Perspective. EBioMedicine 21, 21–28. 10.1016/j.ebiom.2017.04.013
Kirkwood T. B. L. (2015). Deciphering Death: a Commentary on Gompertz (1825) ‘On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies'. Phil. Trans. R. Soc. B 370, 20140379. 10.1098/rstb.2014.0379
Kirschner K. Rattanavirotkul N. Quince M. F. Chandra T. (2020). Functional Heterogeneity in Senescence. Biochem. Soc. Trans. 48, 765–773. 10.1042/BST20190109
Kobashigawa S. M. Sakaguchi Y. Y. Masunaga S. Mori E. (2019). Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression. Therm. Med. 35, 41–58. 10.3191/thermalmed.35.41
Komaravolu R. K. Waltmann M. D. Konaniah E. Jaeschke A. Hui D. Y. (2019). ApoER2 (Apolipoprotein E Receptor-2) Deficiency Accelerates Smooth Muscle Cell Senescence via Cytokinesis Impairment and Promotes Fibrotic Neointima after Vascular Injury. Atvb 39, 2132–2144. 10.1161/ATVBAHA.119.313194
Korenjak M. Brehm A. (2005). E2F-Rb Complexes Regulating Transcription of Genes Important for Differentiation and Development. Curr. Opin. Genet. Development 15, 520–527. 10.1016/j.gde.2005.07.001
Korotchkina L. G. Leontieva O. V. Bukreeva E. I. Demidenko Z. N. Gudkov A. V. Blagosklonny M. V. (2010). The Choice between P53-Induced Senescence and Quiescence Is Determined in Part by the mTOR Pathway. Aging 2, 344–352. 10.18632/aging.100160
Kotake Y. Nakagawa T. Kitagawa K. Suzuki S. Liu N. Kitagawa M. et al. (2011). Long Non-coding RNA ANRIL Is Required for the PRC2 Recruitment to and Silencing of p15INK4B Tumor Suppressor Gene. Oncogene 30, 1956–1962. 10.1038/onc.2010.568
Kuilman T. Michaloglou C. Mooi W. J. Peeper D. S. (2010). The Essence of Senescence: Figure 1. Genes Dev. 24, 2463–2479. 10.1101/GAD.1971610
Kuilman T. Michaloglou C. Vredeveld L. C. W. Douma S. van Doorn R. Desmet C. J. et al. (2008). Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network. Cell 133, 1019–1031. 10.1016/j.cell.2008.03.039
Kumari R. Jat P. (2021). Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cel. Dev. Biol. 9, 1–24. 10.3389/fcell.2021.645593
Kuro-o M. (2011). Klotho and the Aging Process. Korean J. Intern. Med. 26, 113. 10.3904/kjim.2011.26.2.113
Kyuragi R. Matsumoto T. Harada Y. Saito S. Onimaru M. Nakatsu Y. et al. (2015). BubR1 Insufficiency Inhibits Neointimal Hyperplasia Through Impaired Vascular Smooth Muscle Cell Proliferation in Mice. Atvb 35, 341–347. 10.1161/ATVBAHA.114.304737
Laberge R.-M. Adler D. DeMaria M. Mechtouf N. Teachenor R. Cardin G. B. et al. (2013). Mitochondrial DNA Damage Induces Apoptosis in Senescent Cells. Cell Death Dis. 4, e727. 10.1038/cddis.2013.199
Labinskyy N. Csiszar A. Orosz Z. Smith K. Rivera A. Buffenstein R. et al. (2006). Comparison of Endothelial Function, O2−· and H2O2 Production, and Vascular Oxidative Stress Resistance Between the Longest-Living Rodent, the Naked Mole Rat, and Mice. Am. J. Physiology-Heart Circulatory Physiol. 291, H2698–H2704. 10.1152/ajpheart.00534.2006
Lai A. Lee J. M. Yang W.-M. DeCaprio J. A. Kaelin W. G. Seto E. et al. (1999). RBP1 Recruits Both Histone Deacetylase-Dependent and -Independent Repression Activities to Retinoblastoma Family Proteins. Mol. Cel. Biol. 19, 6632–6641. 10.1128/MCB.19.10.6632
Lam E. W.-F. Brosens J. J. Gomes A. R. Koo C.-Y. (2013). Forkhead Box Proteins: Tuning forks for Transcriptional Harmony. Nat. Rev. Cancer 13, 482–495. 10.1038/nrc3539
Lamming D. W. Ye L. Sabatini D. M. Baur J. A. (2013). Rapalogs and mTOR Inhibitors as Anti-Aging Therapeutics. J. Clin. Invest. 123, 980–989. 10.1172/JCI64099
Lewis K. N. Buffenstein R. (2016). “The Naked Mole-Rat,” in Handbook of the Biology of Aging (Elsevier), 179–204. 10.1016/B978-0-12-411596-5.00006-X
Li T. Chen Z. J. (2018). The cGAS-cGAMP-STING Pathway Connects DNA Damage to Inflammation, Senescence, and Cancer. J. Exp. Med. 215, 1287–1299. 10.1084/JEM.20180139
Li X. Liu L. Li T. Liu M. Wang Y. Ma H. et al. (2021). SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front. Cel. Dev. Biol. 9, 1–16. 10.3389/fcell.2021.641315
Li Y. Barbash O. Diehl J. A. (2015). “Regulation of the Cell Cycle,” in The Molecular Basis of Cancer. Editors Mendelsohn J. Gray J. W. Howley P. M. Israel M. A. Thompson C. B.. Fourth Edition (Philadelphia: W.B. Saunders), 165–178. e2. 10.1016/B978-1-4557-4066-6.00011-1
Litovchick L. Sadasivam S. Florens L. Zhu X. Swanson S. K. Velmurugan S. et al. (2007). Evolutionarily Conserved Multisubunit RBL2/p130 and E2F4 Protein Complex Represses Human Cell Cycle-Dependent Genes in Quiescence. Mol. Cel. 26, 539–551. 10.1016/J.MOLCEL.2007.04.015
Liu D. Richardson G. Benli F. M. Park C. de Souza J. V. Bronowska A. K. et al. (2020). Inflammageing in the Cardiovascular System: Mechanisms, Emerging Targets, and Novel Therapeutic Strategies. Clin. Sci. 134, 2243–2262. 10.1042/CS20191213
Liu P. Zhao H. Luo Y. (2017). Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis. 8, 868. 10.14336/AD.2017.0816
Liu S. Uppal H. Demaria M. Desprez P.-Y. Campisi J. Kapahi P. (2015). Simvastatin Suppresses Breast Cancer Cell Proliferation Induced by Senescent Cells. Sci. Rep. 5, 17895. 10.1038/srep17895
Liu X. Wan M. (2019). A Tale of the Good and Bad: Cell Senescence in Bone Homeostasis and Disease. Int. Rev. Cel. Mol. Biol. 346, 97–128. 10.1016/bs.ircmb.2019.03.005
López-Otín C. Blasco M. A. Partridge L. Serrano M. Kroemer G. (2013). The Hallmarks of Aging. Cell 153, 1194–1217. 10.1016/j.cell.2013.05.039
Lopez-Soler R. I. Moir R. D. Spann T. P. Stick R. Goldman R. D. (2001). A Role for Nuclear Lamins in Nuclear Envelope Assembly. J. Cel. Biol. 154, 61–70. 10.1083/jcb.200101025
Lowe S. W. Cepero E. Evan G. (2004). Intrinsic Tumour Suppression. Nature 432, 307–315. 10.1038/nature03098
Lozano-Torres B. Estepa-Fernández A. Rovira M. Orzáez M. Serrano M. Martínez-Máñez R. et al. (2019). The Chemistry of Senescence. Nat. Rev. Chem. 3, 426–441. 10.1038/s41570-019-0108-0
Manov I. Hirsh M. Iancu T. C. Malik A. Sotnichenko N. Band M. et al. (2013). Pronounced Cancer Resistance in a Subterranean Rodent, the Blind Mole-Rat, Spalax: In Vivo and in Vitroevidence. BMC Biol. 11. 10.1186/1741-7007-11-91
Mao Z. Ke Z. Gorbunova V. Seluanov A. Meunier J. (2012). Replicatively Senescent Cells Are Arrested in G1 and G2 Phases N-Acetylcysteine Treatment Reduces Age-Related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model. Agingaging Dis. 49, 431–435. 10.18632/aging.100467.Marie10.14336/AD.2017.0930
Marie A. Meunier J. Brun E. Malmstrom S. Baudoux V. Flaszka E. et al. (2018). N-Acetylcysteine Treatment Reduces Age-Related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model. Aging Dis. 9. 10.14336/AD.2017.0930
Massó A. Sánchez A. Gimenez-Llort L. Lizcano J. M. Cañete M. García B. et al. (2015). Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain During Aging and Alzheimer's Disease Progression. PLoS One 10, e0143623. 10.1371/journal.pone.0143623
Matsumoto T. Baker D. J. d’Uscio L. V. Mozammel G. Katusic Z. S. Van Deursen J. M. (2007). Aging-Associated Vascular Phenotype in Mutant Mice with Low Levels of BubR1. Stroke 38, 1050–1056. 10.1161/01.STR.0000257967.86132.01
Matthews C. Gorenne I. Scott S. Figg N. Kirkpatrick P. Ritchie A. et al. (2006). Vascular Smooth Muscle Cells Undergo Telomere-Based Senescence in Human Atherosclerosis. Circ. Res. 99, 156–164. 10.1161/01.RES.0000233315.38086.bc
McHugh D. Gil J. (2017). Senescence and Aging: Causes, Consequences, and Therapeutic Avenues. J. Cel. Biol. 217, 65–77. 10.1083/jcb.201708092
Mendelsohn A. R. Larrick J. W. (2018). Cellular Senescence as the Key Intermediate in Tau-Mediated Neurodegeneration. Rejuvenation Res. 21, 572–579. 10.1089/rej.2018.2155
Mihaylova M. M. Cheng C.-W. Cao A. Q. Tripathi S. Mana M. D. Bauer-Rowe K. E. et al. (2018). Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function During Homeostasis and Aging. Cell Stem Cell 22, 769–778. 10.1016/j.stem.2018.04.001
Minamino T. Miyauchi H. Yoshida T. Ishida Y. Yoshida H. Komuro I. (2002). Endothelial Cell Senescence in Human Atherosclerosis. Circulation 105, 1541–1544. 10.1161/01.CIR.0000013836.85741.17
Mohamad Kamal N. S. Safuan S. Shamsuddin S. Foroozandeh P. (2020). Aging of the Cells: Insight into Cellular Senescence and Detection Methods. Eur. J. Cel. Biol. 99, 151108. 10.1016/j.ejcb.2020.151108
Moir R. D. Spann T. P. (2001). The Structure and Function of Nuclear Lamins: Implications for Disease. Cmls, Cel. Mol. Life Sci. 58, 1748–1757. 10.1007/PL00000814
Mounkes L. C. Stewart C. L. (2004). Aging and Nuclear Organization: Lamins and Progeria. Curr. Opin. Cel. Biol. 16, 322–327. 10.1016/j.ceb.2004.03.009
Moutsatsou P. Ochs J. Schmitt R. H. Hewitt C. J. Hanga M. P. (2019). Automation in Cell and Gene Therapy Manufacturing: From Past to Future. Biotechnol. Lett. 41, 1245–1253. 10.1007/S10529-019-02732-Z
Müller G. A. Quaas M. Schümann M. Krause E. Padi M. Fischer M. et al. (2012). The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes. Nucleic Acids Res. 40, 1561–1578. 10.1093/NAR/GKR793
Münger K. Howley P. M. (2002). Human Papillomavirus Immortalization and Transformation Functions. Virus. Res. 89, 213–228. 10.1016/s0168-1702(02)00190-9
Muñoz-Espín D. Cañamero M. Maraver A. Gómez-López G. Contreras J. Murillo-Cuesta S. et al. (2013). Programmed Cell Senescence During Mammalian Embryonic Development. Cell 155, 1104–1118. 10.1016/J.CELL.2013.10.019
Nabirotchkin S. Peluffo A. E. Rinaudo P. Yu J. Hajj R. Cohen D. (2020). Next-Generation Drug Repurposing Using Human Genetics and Network Biology. Curr. Opin. Pharmacol. 51, 78–92. 10.1016/j.coph.2019.12.004
Nakamura A. J. Chiang Y. J. Hathcock K. S. Horikawa I. Sedelnikova O. A. Hodes R. J. et al. (2008). Both telomeric and Non-Telomeric DNA Damage Are Determinants of Mammalian Cellular Senescence. Epigenetics & Chromatin 1, 6. 10.1186/1756-8935-1-6
Nakamura S. Yoshimori T. (2018). Autophagy and Longevity. Mol. Cell 41, 65–72. 10.14348/molcells.2018.2333
Niedernhofer L. J. Robbins P. D. (2018). Senotherapeutics for Healthy Ageing. Nat. Rev. Drug Discov. 17, 377. 10.1038/nrd.2018.44
Niedzielska E. Smaga I. Gawlik M. Moniczewski A. Stankowicz P. Pera J. et al. (2016). Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 53, 4094–4125. 10.1007/s12035-015-9337-5
Nielsen S. J. Schneider R. Bauer U.-M. Bannister A. J. Morrison A. O'Carroll D. et al. (2001). Rb Targets Histone H3 Methylation and HP1 to Promoters. Nature 412, 561–565. 10.1038/35087620
Ock S. Lee W. S. Ahn J. Kim H. M. Kang H. Kim H.-S. et al. (2016). Deletion of IGF-1 Receptors in Cardiomyocytes Attenuates Cardiac Aging in Male Mice. Endocrinology 157, 336–345. 10.1210/en.2015-1709
Odeh A. Dronina M. Domankevich V. Shams I. Manov I. (2020). Downregulation of the Inflammatory Network in Senescent Fibroblasts and Aging Tissues of the Long‐Lived and Cancer‐Resistant Subterranean Wild Rodent, Spalax. Aging Cell 19, e13045. 10.1111/acel.13045
Odile Damour M. D. (2014). Adipose-Derived Stem Cells Promote Skin Homeostasis and Prevent its Senescence in an In Vitro Skin Model. J. Stem Cel Res Ther 04. 10.4172/2157-7633.1000194
Ogrodnik M. Miwa S. Tchkonia T. Tiniakos D. Wilson C. L. Lahat A. et al. (2017). Cellular Senescence Drives Age-Dependent Hepatic Steatosis. Nat. Commun. 8, 1–12. 10.1038/ncomms15691
Okouchi R. Sakanoi Y. Tsuduki T. (2019). The Effect of Carbohydrate-Restricted Diets on the Skin Aging of Mice. J. Nutr. Sci. Vitaminol 65, S67–S71. 10.3177/jnsv.65.S67
Olivier M. Hollstein M. Hainaut P. (2010). TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspect. Biol. 2, a001008. 10.1101/cshperspect.a001008
Ortega S. Malumbres M. Barbacid M. (2002). Cyclin Dependent Kinases, INK4 Inhibitors and Cancer. Biochim. Biophys. Acta (Bba) - Rev. Cancer 1602, 73–87. 10.1016/S0304-419X(02)00037-9
Osorio F. G. Navarro C. L. Cadiñanos J. López-Mejía I. C. Quirós P. M. Bartoli C. et al. (2011). Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging. Sci. Transl. Med. 3, 106ra107. 10.1126/scitranslmed.3002847
Ovadya Y. Krizhanovsky V. (2018). Strategies Targeting Cellular Senescence. J. Clin. Invest. 128, 1247–1254. 10.1172/JCI95149
Özcan S. Alessio N. Acar M. B. Mert E. Omerli F. Peluso G. et al. (2016). Unbiased Analysis of Senescence Associated Secretory Phenotype (SASP) to Identify Common Components Following Different Genotoxic Stresses. Aging 8, 1316–1329. 10.18632/aging.100971
Paoli A. Bianco A. Damiani E. Bosco G. (2014). Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases. Biomed. Res. Int. 2014, 1–10. 10.1155/2014/474296
Park T. J. Reznick J. Peterson B. L. Blass G. Omerbašić D. Bennett N. C. et al. (2017). Fructose-Driven Glycolysis Supports Anoxia Resistance in the Naked Mole-Rat. Science 356, 307–311. 10.1126/science.aab3896
Parry A. J. Narita M. (2016). Old Cells, New Tricks: Chromatin Structure in Senescence. Mamm. Genome 27, 320–331. 10.1007/s00335-016-9628-9
Pauty J. Nakano S. Usuba R. Nakajima T. Johmura Y. Omori S. et al. (2021). A 3D Tissue Model-On-A-Chip for Studying the Effects of Human Senescent Fibroblasts on Blood Vessels. Biomater. Sci. 9, 199–211. 10.1039/d0bm01297a
Pentinmikko N. Iqbal S. Mana M. Andersson S. Cognetta A. B. Suciu R. M. et al. (2019). Notum Produced by Paneth Cells Attenuates Regeneration of Aged Intestinal Epithelium. Nature 571, 398–402. 10.1038/s41586-019-1383-0
Petrova N. V. Velichko A. K. Razin S. V. Kantidze O. L. (2016). Small Molecule Compounds that Induce Cellular Senescence. Aging Cell 15, 999–1017. 10.1111/acel.12518
Pinto M. Jepsen K. J. Terranova C. J. Buffenstein R. (2010). Lack of Sexual Dimorphism in Femora of the Eusocial and Hypogonadic Naked Mole-Rat: A Novel Animal Model for the Study of Delayed Puberty on the Skeletal System. Bone 46, 112–120. 10.1016/j.bone.2009.08.060
Prata L. G. P. L. Ovsyannikova I. G. Tchkonia T. Kirkland J. L. (2018). Senescent Cell Clearance by the Immune System: Emerging Therapeutic Opportunities. Semin. Immunol. 40, 101275. 10.1016/j.smim.2019.04.003
Prokocimer M. Barkan R. Gruenbaum Y. (2013). Hutchinson-Gilford Progeria Syndrome Through the Lens of Transcription. Aging Cell 12, 533–543. 10.1111/acel.12070
Puente B. N. Kimura W. Muralidhar S. A. Moon J. Amatruda J. F. Phelps K. L. et al. (2014). The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest Through DNA Damage Response. Cell 157, 565–579. 10.1016/J.CELL.2014.03.032
Pushpakom S. Iorio F. Eyers P. A. Escott K. J. Hopper S. Wells A. et al. (2019). Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 18, 41–58. 10.1038/nrd.2018.168
Regnault V. Challande P. Pinet F. Li Z. Lacolley P. (2021). Cell Senescence: Basic Mechanisms and the Need for Computational Networks in Vascular Ageing. Cardiovasc. Res. 117, 1841–1858. 10.1093/CVR/CVAA318
Ribas J. Zhang Y. S. Pitrez P. R. Leijten J. Miscuglio M. Rouwkema J. et al. (2017). Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model. Small 13, 1603737. 10.1002/SMLL.201603737
Rodgers J. L. Jones J. Bolleddu S. I. Vanthenapalli S. Rodgers L. E. Shah K. et al. (2019). Cardiovascular Risks Associated with Gender and Aging. Jcdd 6, 19. 10.3390/jcdd6020019
Rodrigues L. P. Teixeira V. R. Alencar-Silva T. Simonassi-Paiva B. Pereira R. W. Pogue R. et al. (2021). Hallmarks of Aging and Immunosenescence: Connecting the Dots. Cytokine Growth Factor. Rev. 59, 9–21. 10.1016/j.cytogfr.2021.01.006
Roos C. M. Zhang B. Palmer A. K. Ogrodnik M. B. Pirtskhalava T. Thalji N. M. et al. (2016). Chronic Senolytic Treatment Alleviates Established Vasomotor Dysfunction in Aged or Atherosclerotic Mice. Aging Cell 15, 973–977. 10.1111/acel.12458
Rossman M. J. Kaplon R. E. Hill S. D. McNamara M. N. Santos-Parker J. R. Pierce G. L. et al. (2017). Endothelial Cell Senescence with Aging in Healthy Humans: Prevention by Habitual Exercise and Relation to Vascular Endothelial Function. Am. J. Physiology-Heart Circulatory Physiol. 313, H890–H895. 10.1152/ajpheart.00416.2017
Ruby J. G. Smith M. Buffenstein R. (2018). Naked Mole-Rat Mortality Rates Defy Gompertzian Laws by Not Increasing with Age. Elife 7, e31157. 10.7554/eLife.31157
Sadasivam S. Duan S. DeCaprio J. A. (2012). The MuvB Complex Sequentially Recruits B-Myb and FoxM1 to Promote Mitotic Gene Expression. Genes Dev. 26, 474–489. 10.1101/GAD.181933.111
Sano M. Minamino T. Toko H. Miyauchi H. Orimo M. Qin Y. et al. (2007). p53-Induced Inhibition of Hif-1 Causes Cardiac Dysfunction During Pressure Overload. Nature 446, 444–448. 10.1038/nature05602
Sapieha P. Mallette F. A. (2018). Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cel. Biol. 28, 595–607. 10.1016/j.tcb.2018.03.003
Schafer M. J. White T. A. Evans G. Tonne J. M. Verzosa G. C. Stout M. B. et al. (2016). Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes 65, 1606–1615. 10.2337/db15-0291
Schmidt H. Malik A. Bicker A. Poetzsch G. Avivi A. Shams I. et al. (2017). Hypoxia Tolerance, Longevity and Cancer-Resistance in the Mole Rat Spalax - A Liver Transcriptomics Approach. Sci. Rep. 7. 10.1038/s41598-017-13905-z
Sedivy J. M. Kreiling J. A. Neretti N. Cecco M. D. Criscione S. W. Hofmann J. W. et al. (2013). Death by Transposition - The Enemy Within? Bioessays 35, 1035–1043. 10.1002/BIES.201300097
Seluanov A. Hine C. Azpurua J. Feigenson M. Bozzella M. Mao Z. et al. (2009). Hypersensitivity to Contact Inhibition Provides a Clue to Cancer Resistance of Naked Mole-Rat. Proc. Natl. Acad. Sci. U.S.A. 106, 19352–19357. 10.1073/pnas.0905252106
Shaker M. R. Aguado J. Chaggar H. K. Wolvetang E. J. (2021). Klotho Inhibits Neuronal Senescence in Human Brain Organoids. Npj Aging Mech. Dis. 7, 18. 10.1038/s41514-021-00070-x
Shams I. Avivi A. Nevo E. (2005). Oxygen and Carbon Dioxide Fluctuations in Burrows of Subterranean Blind Mole Rats Indicate Tolerance to Hypoxic-Hypercapnic Stresses. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 142, 376–382. 10.1016/j.cbpa.2005.09.003
Sharpless N. E. Depinho R. A. (2006). The Mighty Mouse: Genetically Engineered Mouse Models in Cancer Drug Development. Nat. Rev. Drug Discov. 5, 741–754. 10.1038/nrd2110
Sharpless N. E. (2005). INK4a/ARF: A Multifunctional Tumor Suppressor Locus. Mutat. Research/Fundamental Mol. Mech. Mutagenesis 576, 22–38. 10.1016/j.mrfmmm.2004.08.021
Sharpless N. E. Sherr C. J. (2015). Forging a Signature of In Vivo Senescence. Nat. Rev. Cancer 15, 397–408. 10.1038/nrc3960
Shay J. Pereira-Smith O. M. Wright W. E. (1991). A Role for Both RB and P53 in the Regulation of Human Cellular Senescence*1. Exp. Cel. Res. 196, 33–39. 10.1016/0014-4827(91)90453-2
Shay J. W. Wright W. E. (2019). Telomeres and Telomerase: Three Decades of Progress. Nat. Rev. Genet. 20, 299–309. 10.1038/s41576-019-0099-1
Si H. Liu D. (2014). Dietary Antiaging Phytochemicals and Mechanisms Associated with Prolonged Survival. J. Nutr. Biochem. 25, 581–591. 10.1016/j.jnutbio.2014.02.001
Simian M. Bissell M. J. (2017). Organoids: A Historical Perspective of Thinking in Three Dimensions. J. Cel. Biol. 216, 31–40. 10.1083/jcb.201610056
Soto-Gamez A. Demaria M. (2017). Therapeutic Interventions for Aging: The Case of Cellular Senescence. Drug Discov. Today 22, 786–795. 10.1016/j.drudis.2017.01.004
Stewart S. A. Ben-Porath I. Carey V. J. O'Connor B. F. Hahn W. C. Weinberg R. A. (2003). Erosion of the Telomeric Single-Strand Overhang at Replicative Senescence. Nat. Genet. 33, 492–496. 10.1038/ng1127
Stoll E. A. Karapavlovic N. Rosa H. Woodmass M. Rygiel K. White K. et al. (2016). Naked Mole-Rats Maintain Healthy Skeletal Muscle and Complex IV Mitochondrial Enzyme Function into Old Age. Aging 8, 3468–3485. 10.18632/aging.101140
Stoneman V. Braganza D. Figg N. Mercer J. Lang R. Goddard M. et al. (2007). Monocyte/macrophage Suppression in CD11b Diphtheria Toxin Receptor Transgenic Mice Differentially Affects Atherogenesis and Established Plaques. Circ. Res. 100, 884–893. 10.1161/01.RES.0000260802.75766.00
Storer M. Mas A. Robert-Moreno A. Pecoraro M. Ortells M. C. Di Giacomo V. et al. (2013). Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell 155, 1119–1130. 10.1016/j.cell.2013.10.041
Sung J. Y. Kim S. G. Cho D. H. Kim J. R. Choi H. C. (2020). SRT1720‐Induced Activation of SIRT1 Alleviates Vascular Smooth Muscle Cell Senescence Through PKA‐Dependent Phosphorylation of AMPKα at Ser485. FEBS Open Bio 10, 1316–1325. 10.1002/2211-5463.12895
Suram A. Kaplunov J. Patel P. L. Ruan H. Cerutti A. Boccardi V. et al. (2012). Oncogene-Induced Telomere Dysfunction Enforces Cellular Senescence in Human Cancer Precursor Lesions. EMBO J. 31, 2839–2851. 10.1038/emboj.2012.132
Surova O. Zhivotovsky B. (2013). Various Modes of Cell Death Induced by DNA Damage. Oncogene 32, 3789–3797. 10.1038/onc.2012.556
Tacutu R. Budovsky A. Yanai H. Fraifeld V. E. (2011). Molecular Links Between Cellular Senescence, Longevity and Age-Related Diseases - A Systems Biology Perspective. Aging 3, 1178–1191. 10.18632/aging.100413
Takahashi A. Ohtani N. Hara E. (2007). Irreversibility of Cellular Senescence: Dual Roles of p16INK4a/Rb-Pathway in Cell Cycle Control. Cell Div 2. 10.1186/1747-1028-2-10
Tang X. Li P.-H. Chen H.-Z. (2020). Cardiomyocyte Senescence and Cellular Communications within Myocardial Microenvironments. Front. Endocrinol. 11, 280. 10.3389/fendo.2020.00280
Taylor F. Huffman M. D. Macedo A. F. Moore T. H. Burke M. Davey Smith G. et al. (20132013). Statins for the Primary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2021, CD004816. 10.1002/14651858.CD004816.pub5
Torrens-Mas M. Perelló-Reus C. Navas-Enamorado C. Ibargüen-González L. Sanchez-Polo A. Segura-Sampedro J. J. et al. (2021). Organoids: An Emerging Tool to Study Aging Signature Across Human Tissues. Modeling Aging with Patient-Derived Organoids. Ijms 22, 10547. 10.3390/ijms221910547
Tuttle C. S. L. Waaijer M. E. C. Slee‐Valentijn M. S. Stijnen T. Westendorp R. Maier A. B. (2020). Cellular Senescence and Chronological Age in Various Human Tissues: A Systematic Review and Meta‐Analysis. Aging Cell 19, 1–11. 10.1111/acel.13083
Uchida R. Saito Y. Nogami K. Kajiyama Y. Suzuki Y. Kawase Y. et al. (2018). Epigenetic Silencing of Lgr5 Induces Senescence of Intestinal Epithelial Organoids During the Process of Aging. Npj Aging Mech. Dis. 4. 10.1038/s41514-018-0031-5
van Deursen J. M. (2019). Senolytic Therapies for Healthy Longevity. Science 364, 636–637. 10.1126/science.aaw1299
Vandel L. Nicolas E. Vaute O. Ferreira R. Ait-Si-Ali S. Trouche D. (2001). Transcriptional Repression by the Retinoblastoma Protein Through the Recruitment of a Histone Methyltransferase. Mol. Cel. Biol. 21, 6484–6494. 10.1128/MCB.21.19.6484-6494.2001
Villa-Bellosta R. Rivera-Torres J. Osorio F. G. Acín-Pérez R. Enriquez J. A. López-Otín C. et al. (2013). Defective Extracellular Pyrophosphate Metabolism Promotes Vascular Calcification in a Mouse Model of Hutchinson-Gilford Progeria Syndrome that Is Ameliorated on Pyrophosphate Treatment. Circulation 127, 2442–2451. 10.1161/CIRCULATIONAHA.112.000571
Virani S. S. Alonso A. Benjamin E. J. Bittencourt M. S. Callaway C. W. Carson A. P. et al. (2020). Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation 141. 10.1161/CIR.0000000000000757
von Zglinicki T. Wan T. Miwa S. (2021). Senescence in Post-Mitotic Cells: A Driver of Aging? Antioxid. Redox Signaling 34, 308–323. 10.1089/ars.2020.8048
Walaszczyk A. Dookun E. Redgrave R. Tual‐Chalot S. Victorelli S. Spyridopoulos I. et al. (2019). Pharmacological Clearance of Senescent Cells Improves Survival and Recovery in Aged Mice Following Acute Myocardial Infarction. Aging Cell 18, e12945. 10.1111/ACEL.12945
Wei Y. C. Chen F. Zhang T. Chen D. Y. Jia X. Wang J. B. (2014). Vascular Smooth Muscle Cell Culture in Microfluidic Devices. Biomicrofluidics 046504, 1–11. 10.1063/1.4893914
Westhoff J. H. Hilgers K. F. Steinbach M. P. Hartner A. Klanke B. Amann K. et al. (2008). Hypertension Induces Somatic Cellular Senescence in Rats and Humans by Induction of Cell Cycle Inhibitor P16 INK4a. Hypertension 52, 123–129. 10.1161/HYPERTENSIONAHA.107.099432
Wijshake T. Malureanu L. A. Baker D. J. Jeganathan K. B. van de Sluis B. van Deursen J. M. (2012). Reduced Life- and Healthspan in Mice Carrying a Mono-Allelic BubR1 MVA Mutation. PLOS Genet. 8, e1003138. 10.1371/JOURNAL.PGEN.1003138
Wiley C. D. Flynn J. M. Morrissey C. Lebofsky R. Shuga J. Dong X. et al. (2017). Analysis of Individual Cells Identifies Cell-To-Cell Variability Following Induction of Cellular Senescence. Aging Cell 16, 1043–1050. 10.1111/acel.12632
Witkiewicz A. K. Knudsen K. E. Dicker A. P. Knudsen E. S. (2011). The Meaning of p16ink4a expression in Tumors. Cell Cycle 10, 2497–2503. 10.4161/CC.10.15.16776
Wu C. L. Zukerberg L. R. Ngwu C. Harlow E. Lees J. A. (1995). In Vivo Association of E2F and DP Family Proteins. Mol. Cel. Biol. 15, 2536–2546. 10.1128/MCB.15.5.2536
Wu Q. Liu J. Wang X. Feng L. Wu J. Zhu X. et al. (2020). Organ-on-a-Chip: Recent Breakthroughs and Future Prospects. Biomed. Eng. Online 19, 1–19. 10.1186/s12938-020-0752-0
Xie G. Dong H. Liang Y. Ham J. D. Rizwan R. Chen J. (2020). CAR-NK Cells: A Promising Cellular Immunotherapy for Cancer. EBioMedicine 59, 102975. 10.1016/j.ebiom.2020.102975
Xu C. Wang L. Fozouni P. Evjen G. Chandra V. Jiang J. et al. (2020). SIRT1 Is Downregulated by Autophagy in Senescence and Ageing. Nat. Cel. Biol. 22, 1170–1179. 10.1038/s41556-020-00579-5
Xu M. Pirtskhalava T. Farr J. N. Weigand B. M. Palmer A. K. Weivoda M. M. et al. (2018). Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 24, 1246–1256. 10.1038/s41591-018-0092-9
Yanai H. Fraifeld V. E. (2018). The Role of Cellular Senescence in Aging Through the Prism of Koch-Like Criteria. Ageing Res. Rev. 41, 18–33. 10.1016/j.arr.2017.10.004
Yang D.-G. Liu L. Zheng X.-Y. (2008). Cyclin-Dependent Kinase Inhibitor p16INK4a and Telomerase May Co-Modulate Endothelial Progenitor Cells Senescence. Ageing Res. Rev. 7, 137–146. 10.1016/J.ARR.2008.02.001
Yilmaz Ö. H. Katajisto P. Lamming D. W. Gültekin Y. Bauer-Rowe K. E. Sengupta S. et al. (2012). MTORC1 in the Paneth Cell Niche Couples Intestinal Stem-Cell Function to Calorie Intake. Nature 486, 490–495. 10.1038/nature11163
Yu H. (2002). Regulation of APC-Cdc20 by the Spindle Checkpoint. Curr. Opin. Cel. Biol. 14, 706–714. 10.1016/S0955-0674(02)00382-4
Yu S. Li A. Liu Q. Li T. Yuan X. Han X. et al. (2017). Chimeric Antigen Receptor T Cells: A Novel Therapy for Solid Tumors. J. Hematol. Oncol. 10, 1–13. 10.1186/S13045-017-0444-9
Zhang H. S. Gavin M. Dahiya A. Postigo A. A. Ma D. Luo R. X. et al. (2000). Exit from G1 and S Phase of the Cell Cycle Is Regulated by Repressor Complexes Containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89. 10.1016/S0092-8674(00)80625-X
Zhao Y. Oreskovic E. Zhang Q. Lu Q. Gilman A. Lin Y. S. (2021). Transposon-Triggered Innate Immune Response Confers Cancer Resistance to the Blind Mole Rat. Nat. Immunol. 22, 1219–1230. 10.1038/S41590-021-01027-8
Zhao Y. Tyshkovskiy A. Lu J. Y. Lee J. Ke Z. Ablaeva J. et al. (2018). Naked Mole Rats Can Undergo Developmental, Oncogene-Induced and DNA Damage-Induced Cellular Senescence. PNAS 115, 1801–1806. 10.1073/pnas.1721160115
Zhu Y. Tchkonia T. Pirtskhalava T. Gower A. C. Ding H. Giorgadze N. et al. (2015). The Achilles' Heel of Senescent Cells: From Transcriptome to Senolytic Drugs. Aging Cell 14, 644–658. 10.1111/acel.12344