[en] Tropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics. High phenological variability within and across species and in climate-phenology relationships is observed. The onset of leaf phenophases in deciduous species was triggered by drought and light availability for a subset of species and showed a species-specific decoupling in time along a bi-modal seasonality. The majority of the species remain evergreen, although central African forests experience relatively low rainfall. Annually a maximum of 1.5% of the canopy is in leaf senescence or leaf turnover, with overall phenological variability dominated by a few deciduous species, while substantial variability is attributed to asynchronous events of large and/or abundant trees. Our results underscore the importance of accounting for constituent signals in canopy-wide scaling and the interpretation of remotely sensed phenology signals.
Kearsley, Elizabeth ; Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium ; BlueGreen Labs Melsele Belgium
Verbeeck, Hans; Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium
Janssens, Steven B; Meise Botanic Garden Meise Belgium ; Department of Biology, Leuven Plant Institute KULeuven Leuven Belgium
Yakusu, Emmanuel Kasongo; UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium ; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium ; Faculté de gestion des ressources naturelles renouvelables Université de Kisangani Kisangani Democratic Republic of Congo
Kosmala, Margaret; Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA ; CIBO Technologies Cambridge Massachusetts USA
De Mil, Tom ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Bauters, Marijn ; Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology Ghent University Gent Belgium ; Research Group of Plants and Ecosystems (PLECO), Department of Biology University of Antwerp Wilrijk Belgium
Kitima, Elasi Ramanzani; Institut National pour l'Etude et la Recherche Agronomiques-INERA Yangambi Democratic Republic of Congo
Ndiapo, José Mbifo; Institut National pour l'Etude et la Recherche Agronomiques-INERA Yangambi Democratic Republic of Congo
Chuda, Adelard Lonema; Institut National pour l'Etude et la Recherche Agronomiques-INERA Yangambi Democratic Republic of Congo
Richardson, Andrew D ; Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA ; School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff Arizona USA
Wingate, Lisa; INRAE, UMR ISPA Villenave d'Ornon France
Ilondea, Bhély Angoboy; UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium ; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium ; Institut National pour l'Étude et la Recherche Agronomiques Kinshasa Democratic Republic of Congo
Beeckman, Hans; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium
van den Bulcke, Jan; UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium
Boeckx, Pascal; Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology Ghent University Gent Belgium
Hufkens, Koen; Computational and Applied Vegetation Ecology Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Gent Belgium ; BlueGreen Labs Melsele Belgium ; INRAE, UMR ISPA Villenave d'Ornon France
BELSPO - Belgian Federal Science Policy Office UGent - Ghent University
Funding text :
Historical phenological observations and climatological measurements were made by researchers from the Institut National pour l'Étude Agronomique du Congo (INEAC) and archived by the Institut National pour l'Étude et la Recherche Agronomiques (INERA) at Yangambi. We thank Zooniverse for hosting the phenological data recovery project “JungleRhythms” and all citizen scientists for their combined efforts in transcribing data. Recent forest inventory data were obtained through the COBIMFO project funded by the Belgian Science Policy Office (Belspo; contract no. SD/AR/01A). The postdoctoral funding for EK was granted by the BOF Special Research Fund, Ghent University, Belgium. KH acknowledges funding through the Belgian Science Policy Office COBECORE project (BELSPO; grant BR/175/A3/COBECORE), the European Union Marie Skłodowska-Curie Action (project number 797668), and the NSF Macrosystems Biology program (Award Numbers EF-1065029).Historical phenological observations and climatological measurements were made by researchers from the Institut National pour l'Étude Agronomique du Congo (INEAC) and archived by the Institut National pour l'Étude et la Recherche Agronomiques (INERA) at Yangambi. We thank Zooniverse for hosting the phenological data recovery project “JungleRhythms” and all citizen scientists for their combined efforts in transcribing data. Recent forest inventory data were obtained through the COBIMFO project funded by the Belgian Science Policy Office (Belspo; contract no. SD/AR/01A). The postdoctoral funding for EK was granted by the BOF Special Research Fund, Ghent University, Belgium. KH acknowledges funding through the Belgian Science Policy Office COBECORE project (BELSPO; grant BR/175/A3/COBECORE), the European Union Marie Skłodowska‐Curie Action (project number 797668), and the NSF Macrosystems Biology program (Award Numbers EF‐1065029).
Commentary :
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Abernethy, K., Bush, E. R., Forget, P.-M., Mendoza, I., & Morellato, L. P. C. (2018). Current issues in tropical phenology: A synthesis. Biotropica, 50, 477–482.
Adole, T., Dash, J., Rodriguez-Galiano, V., & Atkinson, P. M. (2019). Photoperiod controls vegetation phenology across Africa. Communications Biology, 2, 391.
Agostinelli, C., & Lund, U. (2017). R package ‘circular’: Circular statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/
Albert, L. P., Restrepo-Coupe, N., Smith, M. N., Wu, J., Chavana-Bryant, C., Prohaska, N., Taylor, T. C., Martins, G. A., Ciais, P., Mao, J., Arain, M. A., Li, W., Shi, X., Ricciuto, D. M., Huxman, T. E., McMahon, S., & Saleska, S. R. (2019). Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 25, 3591–3608.
Arbonnier, M. (2004). Trees, shrubs and lianas of West African dry zones. CIRAD, MARGRAF Publishers.
Arnold, J. B. (2019). ggthemes: Extra themes, scales and Geoms for ‘ggplot2’. R package version 4.2.0. https://CRAN.R-project.org/package=ggthemes
Bauters, M., Meeus, S., Barthel, M., Stoffelen, P., de Deurwaerder, H. P. T., Meunier, F., Drake, T. W., Ponette, Q., Ebuy, J., Vermeir, P., Beeckman, H., Wyffels, F., Bodé, S., Verbeeck, H., Vandelook, F., & Boeckx, P. (2020). Century long apparent decrease in intrinsic water use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Global Change Biology, 26, 4449–4461.
Beerling, D. J., McElwain, J. C., & Osborn, C. P. (1998). Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany, 49, 1603–1607.
Blanchard, E., Birnbaum, P., Ibanez, T., Boutreux, T., Antin, C., Ploton, P., Vincent, G., Pouteau, R., Vandrot, H., Hequet, V., Barbier, N., Droissart, V., Sonké, B., Texier, N., Kamdem, N. G., Zebaze, D., Libalah, M., & Couteron, P. (2016). Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees, 30, 1953–1968.
Bradley, A. V., Gerard, F. F., Barbier, N., Weedon, G. P., Anderson, L. O., Huntingford, C., Aragão, L. E. O. C., Zelazowski, P., & Arai, E. (2011). Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 17, 2245–2260.
Bush, E. R., Abernethy, K. A., Jeffery, K., Tutin, C., White, L., Dimoto, E., Dikangadissi, J.-T., Jump, A. S., & Bunnefeld, N. (2017). Fourier analysis to detect phenological cycles using tropical field data and simulations. Methods in Ecology and Evolution, 8, 530–540.
Bush, E. R., Bunnefeld, N., Dimoto, E., Dikangadissi, J.-T., Jeffery, K., Tutin, C., White, L., & Abernethy, K. A. (2018). Towards effective monitoring of tropical phenology: Maximizing returns and reducing uncertainty in long-term studies. Biotropica, 50, 455–464.
Butt, N., Seabrook, L., Maron, M., Law, B. S., Dawson, T. P., Syktus, J., & McAlpine, C. A. (2015). Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Global Change Biology, 21, 3267–3277.
Caldararu, S., Purves, D. W., & Palmer, P. I. (2014). Phenology as a strategy for carbon optimality: A global model. Biogeosciences, 11, 763–778.
Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L. E. O. C., Bonal, D., Châtelet, P., Silva-Espejo, J. E., Goret, J.-Y., von Hildebrand, P., Jiménez, E., Patiño, S., Penuela, M. C., Phillips, O. L., Stevenson, P., & Malhi, Y. (2010). Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 7, 43–55.
Chen, Y., Satake, A., Sun, I., Kosugi, Y., Tani, M., Numata, S., Hubbell, S. P., Fletcher, C., Nur Supardi, M. N., & Wright, S. J. (2017). Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia. Journal of Ecology, 106, 586–598.
Coppieters, G. (2013). Inventaris van het archief van de Rijksplantages en de Regie der Plantages van de Kolonie (REPCO), het Nationaal Instituut voor de Landbouwkunde in Belgisch-Congo (NILCO/INEAC) en de Documentatiedienst voor Tropische Landbouwkunde en Plattelandsontwikkeling 1901–1999. In State Archives in Belgium, reference BE-A0510_003812_005470_DUT (p. 849).
Couralet, C., van den Bulcke, J., Ngoma, L. M., van Acker, J., & Beeckman, H. (2013). Phenology in functional groups of Central African rainforest trees. Journal of Tropical Forest Science, 25, 361–374.
de Mil, T., Hubau, W., Angoboy Ilondea, B., Rocha Vargas, M. A., Boeckx, P., Steppe, K., van Acker, J., Beeckman, H., & van den Bulcke, J. (2019). Asynchronous leaf and cambial phenology in a tree species of the Congo Basin requires space–time conversion of wood traits. Annals of Botany, 124, 245–253.
Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. Distributed by NASA EOSDIS land processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006
Dötterl, S., Drake, T., Bauters, M., van Oost, K., Barthel, M., & Hoyt, A. (2020). Environmental research in the heart of Africa: The Congo biogeochemistry observatory. Open Access Government, 25, 328–329.
Doughty, C. E., & Goulden, M. L. (2008). Seasonal patterns of tropical forest leaf area index and CO2 exchange. Journal of Geophysical Research, 113, G00B06.
Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811–815.
Fuller, W. A. (1996). Introduction to statistical time series (2nd ed.). John Wiley and Sons.
GISTEMP Team. (2020). GISS surface temperature analysis (GISTEMP), version 4 [Dataset]. NASA Goddard Institute for Space Studies. https://data.giss.nasa.gov/gistemp/
Gond, V., Fayolle, A., Pennec, A., Cornu, G., Mayaux, P., Camberlin, P., Doumenge, C., Fauvet, N., & Gourlet-Fleury, S. (2013). Vegetation structure and greenness in Central Africa from MODIS multi-temporal data. Philosophical Transactions of the Royal Society B, 368, 20120309.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., & Lyapustin, A. I. (2015). Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8, 284–289.
Hawthorne, W. D., & Jongkind, C. (2006). Woody plants of western African forests: A guide to the forest trees, shrubs and lianes from Senegal to Ghana. Royal Botanic Gardens.
Hobijn, B., Franses, P. H., & Ooms, M. (2004). Generalization of the KPSS-test for stationarity. Statistica Neerlandica, 58, 482–502.
Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T. F., Peng, S., Berry, J. A., Wang, K., Mao, J., Alkama, R., Cescatti, A., Cuntz, M., de Deurwaerder, H., Gao, M., He, Y., Liu, Y., Luo, Y., Myneni, R. B., … Janssens, I. A. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3, 772–779.
Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., & Richardson, A. D. (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117, 307–321.
Hufkens, K., & Kearsley, E. (2023). bluegreen-labs/junglerhythms: The Jungle Rhythms workflow: recovering historical tropical tree phenology data (v1.0-draft). Zenodo. https://doi.org/10.5281/zenodo.7650295
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2020). forecast: Forecasting functions for time series and linear models. R package version 8.12. http://pkg.robjhyndman.com/forecast
Jacobsen, K., van Hirtum, L., Amara, M., Beeckman, H., Meeus, S., Vandelook, F., Stoffelen, P., Verbeeck, H., & Hufkens, K. (2018). Climate data rescue from the Belgian colonial archives: Helping to close the data-gap over Central Africa. In Early instrumental meteorological series, conference abstracts, Bern, Switzerland. http://hdl.handle.net/1854/LU-8587593
Jiang, Y., Zhou, L., Tucker, C. J., Raghavendra, A., Hua, W., Liu, Y. Y., & Joiner, J. (2019). Widespread increase of boreal summer dry season length over the Congo rainforest. Nature Climate Change, 9, 617–622.
Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Huygens, D., Kebede, Y., Defourny, P., Bogaert, J., Beeckman, H., Steppe, K., Boeckx, P., & Verbeeck, H. (2013). Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature Communications, 4, 2269.
Kearsley, E., Verbeeck, H., Stoffelen, P., Janssens, S. B., Kasongo Yakusu, E., Kosmala, M., de Mil, T., Kitima, E. R., Ndiapo, J. M., Chuda, A. L., Richardson, A. D., Wingate, L., Ilondea, B. A., Beeckman, H., van den Bulcke, J., Boeckx, P., & Hufkens, K. (2023). Historical tree phenology data reveal the seasonal rhythms of the Congo Basin rainforest [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.8210513
Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2019). Global bimodal precipitation seasonality: A systematic overview. International Journal of Climatology, 39, 558–567.
Lemmens, R. H. M. J., Louppe, D., & Oteng-Amoako, A. A. (2012). Plant resources of tropical Africa. Prota 7, Part 2 timbers 2. Wageningen.
Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R., & Zyss, D. (2019). Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research: Atmospheres, 124, 6307–6326.
Lewis, S. L. (2006). Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 361, 195–210.
Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene. Nature, 519, 171–180.
Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 359, 311–329.
Meerts, P., & Hasson, M. (2016). Arbres et arbustes du Haut-Katanga. Jardin botanique Meise.
Meunier, Q., Moumbogou, C., & Doucet, J.-L. (2015). Les Arbres Utiles du Gabon. Presses Agronomiques de Gembloux.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.
NOAA-GML, Global Monitoring Laboratory. (n.d.). Trends in atmospheric carbon dioxide. www.esrl.noaa.gov/gmd/ccgg/trends/
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world's forests. Science, 333, 988–993.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.
Peñuelas, J., Rutishauser, T., & Filella, I. (2009). Phenology feedbacks on climate change. Science, 324, 887–888.
Philippon, N., Cornu, G., Monteil, L., Gond, V., Moron, V., Pergaud, J., Sèze, G., Bigot, S., Camberlin, P., Doumenge, C., Fayolle, A., & Ngomanda, A. (2019). The light-deficient climates of western Central African evergreen forests. Environmental Research Letters, 14, 034007.
Philippon, N., de Lapparent, B., Gond, V., Sèze, G., Martiny, N., Camberlin, P., Cornu, G., Morel, B., Moron, V., Bigot, S., Brou, T., & Dubreuil, V. (2016). Analysis of the diurnal cycles for a better understanding of the mean annual cycle of forests greenness in Central Africa. Agricultural and Forest Meteorology, 223, 81–94.
Pierlot, R. (1966). Structure et composition de forêts denses d'Afrique Centrale, spécialement celles du Kivu (p. 367). Academie Royale des Sciences d'Outre-Mer. Classe des Sciences naturelles et medicales. N.S. XVI-4, Bruxelles.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reich, P. B. (1995). Phenology of tropical forests: Patterns, causes, and consequences. Canadian Journal of Botany, 73, 164–174.
Reich, P. B., Uhl, C., Walters, M. B., Prugh, L., & Ellsworth, D. S. (2004). Leaf demography and phenology in Amazonian rain Forest: A census of 40 000 leaves of 23 tree species. Ecological Monographs, 74, 3–23.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., Lola da Costa, A. C., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., … Saleska, S. R. (2013). What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182–183, 128–144.
Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., Galbraith, D., Imbuzeiro, H., Martins, G., da Araujo, A. C., Malhi, Y. S., Zeng, X., Moorcroft, P., & Saleska, S. R. (2017). Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Global Change Biology, 23, 191–208.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173.
Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N., & Loreau, M. (2014). Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology, 95, 2479–2492.
Schwartz, M. D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12, 343–351.
Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., Balvanera, P., Bastian, M. L., Bellingham, P. J., van den Berg, E., Bernacci, L., da Conceição Bispo, P., Blanc, L., Böhning-Gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F. Q., … Venticinque, E. M. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 112, 7472–7477.
Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J.-L., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet, J.-F., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271.
Trapletti, A., & Hornik, K. (2019). tseries: Time series analysis and computational finance. R package version 0.10-47.
van Engelen, V. W. P., Verdoodt, A., Dijkshoorn, J. A., & Ranst, E. V. (2006). Soil and terrain database of Central Africa (DR Congo, Burundi, Rwanda). Ghent University, FAO & ISRIC.
van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377.
Wang, C., Tang, Y., & Chen, J. (2016). Plant phenological synchrony increases under rapid within-spring warming. Scientific Reports, 6, 25460.
Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A grammar of data manipulation. R package version 1.0.0. https://CRAN.R-project.org/package=dplyr
World reference base (WRB) for soil resources. (2014). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report 106, Rome, Italy.
Wright, S. J., & Calderón, O. (1995). Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology, 83, 937–948.
Wright, S. J., & Calderón, O. (2018). Solar irradiance as the proximate cue for flowering in a tropical moist forest. Biotropica, 50, 374–383.
Wright, S. J., & van Schaik, C. P. (1994). Light and the phenology of trees. The American Naturalist, 143, 192–199.
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., … Saleska, S. R. (2016). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351, 972–976.
Wu, J., Serbin, S. P., Xu, X., Albert, L. P., Chen, M., Meng, R., Saleska, S. R., & Rogers, A. (2017). The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Global Change Biology, 23, 4818–4827.