[en] Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Research Center/Unit :
CERM - Center for Education and Research on Macromolecules - ULiège CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège GIGA - Cardiology - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Pierrard, Anna ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Thijssen, Quinten ; University of Gent [UGent] - Centre of Macromolecular Chemistry - Polymer Chemistry and Biomaterials Group - Belgium
Van Vlierberghe, Sandra ; University of Gent [UGent] - Centre of Macromolecular Chemistry - Polymer Chemistry and Biomaterials Group - Belgium
Lancellotti, Patrizio ; University of Liège [ULiège] - GIGA - Cardiology - Belgium ; University Hospital Center [CHU] - Liège - Belgium
Oury, Cécile ; University of Liège [ULiège] - GIGA - Cardiology - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Jérôme, Christine ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Language :
English
Title :
Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants.
Publication date :
11 March 2024
Journal title :
Biomacromolecules
ISSN :
1525-7797
eISSN :
1526-4602
Publisher :
American Chemical Society (ACS), United States
Volume :
25
Issue :
3
Pages :
1810-1824
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
The "CO2SWITCH" project
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Research Foundation Flanders FRIA - Fund for Research Training in Industry and Agriculture Leon Fredericq Foundation
Funding text :
The authors would like to acknowledge the funding from “Fonds Wetenschappelijk Onderzoek” FWO (FWO-SB fellow - 1SA2321N) and the “Fonds de la Recherche Scientifique” F.R.S.-FNRS in the frame of the FRIA grant of S. F. Melo and the Research Director positions of C.D. and C.O.. S. F. Melo obtained additional financial support from the GIGA Doctoral School for Health Sciences and the “Fondation Léon Frédéricq”. C.D. thanks FNRS for financing the CO2Switch project (convention T.0075.20).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Rokicki, G.; Parzuchowski, P. G.; Mazurek, M. Non-Isocyanate Polyurethanes: Synthesis, Properties, and Applications. Polym. Adv. Technol. 2015, 26, 707- 761, 10.1002/pat.3522
Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A Perspective Approach to Sustainable Routes for Non-Isocyanate Polyurethanes. Eur. Polym. J. 2017, 87, 535- 552, 10.1016/j.eurpolymj.2016.11.027
Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J. M.; Laycock, B. Degradation and Stabilization of Polyurethane Elastomers. Prog. Polym. Sci. 2019, 90, 211- 268, 10.1016/j.progpolymsci.2018.12.003
Lowinger, M.; Barrett, S.; Zhang, F.; Williams, R. Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 2018, 10 ( 2), 55, 10.3390/pharmaceutics10020055
Salimi, S.; Wu, Y.; Barreiros, M. I. E.; Natfji, A. A.; Khaled, S.; Wildman, R.; Hart, L. R.; Greco, F.; Clark, E. A.; Roberts, C. J.; Hayes, W. A 3D Printed Drug Delivery Implant Formed from a Dynamic Supramolecular Polyurethane Formulation. Polym. Chem. 2020, 11 ( 20), 3453- 3464, 10.1039/D0PY00068J
Penhasi, A.; Gertler, A.; Baluashvili, I.; Elzinaty, O.; Shalev, D. E. High Modulus Thermoplastic Segmented Polyurethane/Poly(L-lactide) Blends as Potential Candidates for Structural Implantable Drug Delivery Systems: I. Structure-properties Relationship Study. J. Appl. Polym. Sci. 2020, 137 ( 36), 49517 10.1002/app.49517
Alves, P.; Ferreira, P.; Gil, H. Biomedical Polyurethane-Based Materials; Nova Publishers: New York, 2012, Chapter 1.
Wendels, S.; Avérous, L. Biobased Polyurethanes for Biomedical Applications. Bioact. Mater. 2021, 6 ( 4), 1083- 1106, 10.1016/j.bioactmat.2020.10.002
Fathi-Karkan, S.; Banimohamad-Shotorbani, B.; Saghati, S.; Rahbarghazi, R.; Davaran, S. A Critical Review of Fibrous Polyurethane-Based Vascular Tissue Engineering Scaffolds. J. Biol. Eng. 2022, 16 ( 1), 6, 10.1186/s13036-022-00286-9
Gostev, A. A.; Karpenko, A. A.; Laktionov, P. P. Polyurethanes in Cardiovascular Prosthetics. Polym. Bull. 2018, 75 ( 9), 4311- 4325, 10.1007/s00289-017-2266-x
Gostev, A.; Shundrina, I.; Pastukhov, V.; Shutov, A.; Chernonosova, V.; Karpenko, A.; Laktionov, P. In Vivo Stability of Polyurethane-Based Electrospun Vascular Grafts in Terms of Chemistry and Mechanics. Polymers 2020, 12 ( 4), 845, 10.3390/polym12040845
Chandy, T.; Van Hee, J.; Nettekoven, W.; Johnson, J. Long-term in Vitro Stability Assessment of Polycarbonate Urethane Micro Catheters: Resistance to Oxidation and Stress Cracking. J. Biomed. Mater. Res. 2009, 89B ( 2), 314- 324, 10.1002/jbm.b.31218
Serkis, M.; Špírková, M.; Poręba, R.; Hodan, J.; Kredatusová, J.; Kubies, D. Hydrolytic Stability of Polycarbonate-Based Polyurethane Elastomers Tested in Physiologically Simulated Conditions. Polym. Degrad. Stab. 2015, 119, 23- 34, 10.1016/j.polymdegradstab.2015.04.030
Redlich, C. A.; Karol, M. H. Diisocyanate Asthma: Clinical Aspects and Immunopathogenesis. Int. Immunopharmacol. 2002, 2, 213- 224, 10.1016/S1567-5769(01)00174-6
Allport, D. C.; Gilbert, D. S.; Outterside, S. M. MDI and TDI: Safety, Health and the Environment. A Source Book and Practical Guide; John Wiley & Sons Ltd.: Chichester, 2003.
Lim, S.-C.; Yang, J.-Y.; Jang, A.-S.; Park, Y.-U.; Kim, Y.-C.; Choi, I.-S.; Park, K.-O. Acute Lung Injury after Phosgene Inhalation. Korean J. Intern. Med. 1996, 11 ( 1), 87- 92, 10.3904/kjim.1996.11.1.87
Gutch, M.; Jain, N.; Agrawal, A.; Consul, S. Acute Accidental Phosgene Poisoning. BMJ Case Rep. 2012, 2012, 7- 10, 10.1136/bcr.11.2011.5233
Commission Regulation (EC) No 552/2009 of 22 June 2009 Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XVII. Off. J. Eur. Union 2009, L164/7- L164/31.
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)s. Chem. Rev. 2015, 115 ( 22), 12407- 12439, 10.1021/acs.chemrev.5b00355
Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-Isocyanate Polyurethanes: From Chemistry to Applications. RSC Adv. 2013, 3, 4110- 4129, 10.1039/c2ra21938g
Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J. L. Synthesis of Polyurethanes Using Organocatalysis: A Perspective. Macromolecules 2015, 48, 3153- 3165, 10.1021/acs.macromol.5b00384
Stachak, P.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials 2021, 14, 3497, 10.3390/ma14133497
Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in Study of Non-Isocyanate Polyurethane. Ind. Eng. Chem. Res. 2011, 50 ( 11), 6517- 6527, 10.1021/ie101995j
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO 2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 ( 16), 4466- 4514, 10.1039/C9CS00047J
Pescarmona, P. P.; Taherimehr, M. Challenges in the Catalytic Synthesis of Cyclic and Polymeric Carbonates from Epoxides and CO2. Catal. Sci. Technol. 2012, 2 ( 11), 2169, 10.1039/c2cy20365k
Martín, C.; Fiorani, G.; Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5 ( 2), 1353- 1370, 10.1021/cs5018997
Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed Coupling of Carbon Dioxide with Epoxides for the Synthesis of Cyclic Carbonates: Catalyst Design and Mechanistic Studies. Catal. Sci. Technol. 2017, 7, 2651- 2684, 10.1039/C7CY00438A
Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Top. Curr. Chem. 2017, 375 ( 3), 50, 10.1007/s41061-017-0136-5
Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P. CO2 -Fixation into Cyclic and Polymeric Carbonates: Principles and Applications. Green Chem. 2019, 21 ( 3), 406- 448, 10.1039/C8GC03086C
de la Cruz-Martínez, F.; Martínez de Sarasa Buchaca, M.; Martínez, J.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Rodríguez-Diéguez, A.; Castro-Osma, J. A.; Lara-Sánchez, A. Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chem. Eng. 2019, 7 ( 24), 20126- 20138, 10.1021/acssuschemeng.9b06016
Aomchad, V.; Cristòfol, À.; Della Monica, F.; Limburg, B.; D’Elia, V.; Kleij, A. W. Recent Progress in the Catalytic Transformation of Carbon Dioxide into Biosourced Organic Carbonates. Green Chem. 2021, 23 ( 3), 1077- 1113, 10.1039/D0GC03824E
Ecochard, Y.; Caillol, S. Hybrid Polyhydroxyurethanes: How to Overcome Limitations and Reach Cutting Edge Properties?. Eur. Polym. J. 2020, 137, 109915 10.1016/j.eurpolymj.2020.109915
Tryznowski, M.; Swiderska, A.; Zolek-Tryznowska, Z.; Golofit, T.; Parzuchowski, P. G. Facile Route to Multigram Synthesis of Environmentally Friendly Non-Isocyanate Polyurethanes. Polymer 2015, 80, 228- 236, 10.1016/j.polymer.2015.10.055
Beniah, G.; Fortman, D. J.; Heath, W. H.; Dichtel, W. R.; Torkelson, J. M. Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide- Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane. Macromolecules 2017, 50, 4425- 4434, 10.1021/acs.macromol.7b00765
Leitsch, E. K.; Beniah, G.; Liu, K.; Lan, T.; Heath, W. H.; Scheidt, K. A.; Torkelson, J. M. Nonisocyanate Thermoplastic Polyhydroxyurethane Elastomers via Cyclic Carbonate Aminolysis: Critical Role of Hydroxyl Groups in Controlling Nanophase Separation. ACS Macro Lett. 2016, 5, 424- 429, 10.1021/acsmacrolett.6b00102
Pierrard, A.; Aqil, A.; Detrembleur, C.; Jérôme, C. Thermal and UV Curable Formulations of Poly(Propylene Glycol)-Poly(Hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting. Biomacromolecules 2023, 24 ( 10), 4375- 4384, 10.1021/acs.biomac.2c00860
Pronoitis, C.; Hakkarainen, M.; Odelius, K. Solubility-Governed Architectural Design of Polyhydroxyurethane-Graft-Poly(ϵ-Caprolactone) Copolymers. Polym. Chem. 2021, 12, 196- 208, 10.1039/D0PY01089H
Pramanik, S. K.; Sreedharan, S.; Singh, H.; Khan, M.; Tiwari, K.; Shiras, A.; Smythe, C.; Thomas, Jim. A.; Das, A. Mitochondria Targeting Non-Isocyanate-Based Polyurethane Nanocapsules for Enzyme-Triggered Drug Release. Bioconjugate Chem. 2018, 29 ( 11), 3532- 3543, 10.1021/acs.bioconjchem.8b00460
Esmaeili, N.; Zohuriaan-Mehr, M. J.; Salimi, A.; Vafayan, M.; Meyer, W. Tannic Acid Derived Non-Isocyanate Polyurethane Networks: Synthesis, Curing Kinetics, Antioxidizing Activity and Cell Viability. Thermochim. Acta 2018, 664, 64- 72, 10.1016/j.tca.2018.04.013
Warner, J. J.; Wang, P.; Mellor, W. M.; Hwang, H. H.; Park, J. H.; Pyo, S.-H.; Chen, S. 3D Printable Non-Isocyanate Polyurethanes with Tunable Material Properties. Polym. Chem. 2019, 10 ( 34), 4665- 4674, 10.1039/C9PY00999J
Pyo, S.-H.; Wang, P.; Hwang, H. H.; Zhu, W.; Warner, J.; Chen, S. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Appl. Mater. Interfaces 2017, 9 ( 1), 836- 844, 10.1021/acsami.6b12500
Fanjul-Mosteirín, N.; Aguirresarobe, R.; Sadaba, N.; Larrañaga, A.; Marin, E.; Martin, J.; Ramos-Gomez, N.; Arno, M. C.; Sardon, H.; Dove, A. P. Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-Isocyanate Polyurethane Hydrogels. Chem. Mater. 2021, 33 ( 18), 7194- 7202, 10.1021/acs.chemmater.1c00913
Aduba, D. C.; Zhang, K.; Kanitar, A.; Sirrine, J. M.; Verbridge, S. S.; Long, T. E. Electrospinning of Plant Oil-based, Non-isocyanate Polyurethanes for Biomedical Applications. J. Appl. Polym. Sci. 2018, 135, 46464, 10.1002/app.46464
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56 ( 35), 10394- 10398, 10.1002/anie.201704467
Bähr, M.; Mülhaupt, R. Linseed and Soybean Oil-Based Polyurethanes Prepared via the Non-Isocyanate Route and Catalytic Carbon Dioxide Conversion. Green Chem. 2012, 14 ( 2), 483- 489, 10.1039/c2gc16230j
Grignard, B.; Ngassamtounzoua, C.; Gennen, S.; Gilbert, B.; Méreau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of α-Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem 2018, 10 ( 12), 2584- 2592, 10.1002/cctc.201800063
Tounzoua, C. N.; Grignard, B.; Detrembleur, C. Exovinylene Cyclic Carbonates: Multifaceted CO2 -Based Building Blocks for Modern Chemistry and Polymer Science. Angew. Chem., Int. Ed. 2022, 61, e202116066 10.1002/anie.202116066
Siragusa, F.; Van Den Broeck, E.; Ocando, C.; Müller, A. J.; De Smet, G.; Maes, B. U. W.; De Winter, J.; Van Speybroeck, V.; Grignard, B.; Detrembleur, C. Access to Biorenewable and CO 2 - Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chem. Eng. 2021, 9, 1714- 1728, 10.1021/acssuschemeng.0c07683
Monie, F.; Grignard, B.; Detrembleur, C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett. 2022, 11 ( 2), 236- 242, 10.1021/acsmacrolett.1c00793
Pronoitis, C.; Hakkarainen, M.; Odelius, K. Structurally Diverse and Recyclable Isocyanate-Free Polyurethane Networks from CO2-Derived Cyclic Carbonates. ACS Sustainable Chem. Eng. 2022, 10, 2522- 2531, 10.1021/acssuschemeng.1c08530
Bourguignon, M.; Grignard, B.; Detrembleur, C. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams. Angew. Chem., Int. Ed. 2022, 61, e202213422 10.1002/anie.202213422
Choong, P. S.; Chong, N. X.; Wai Tam, E. K.; Seayad, A. M.; Seayad, J.; Jana, S. Biobased Nonisocyanate Polyurethanes as Recyclable and Intrinsic Self-Healing Coating with Triple Healing Sites. ACS Macro Lett. 2021, 10 ( 5), 635- 641, 10.1021/acsmacrolett.1c00163
McKenna, K. A.; Hinds, M. T.; Sarao, R. C.; Wu, P.-C.; Maslen, C. L.; Glanville, R. W.; Babcock, D.; Gregory, K. W. Mechanical Property Characterization of Electrospun Recombinant Human Tropoelastin for Vascular Graft Biomaterials. Acta Biomater. 2012, 8 ( 1), 225- 233, 10.1016/j.actbio.2011.08.001
King, W. E., III; Minden-Birkenmaier, B. A.; Bowlin, G. L. Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. In Tissue-Engineered Vascular Grafts; Walpoth, B. H.; Bergmeister, H.; Bowlin, G. L.; Kong, D.; Rotmans, J. I.; Zilla, P., Eds.; Springer International Publishing: Cham, 2020; pp 1- 50.
Hasan, A.; Ragaert, K.; Swieszkowski, W.; Selimović, Š.; Paul, A.; Camci-Unal, G.; Mofrad, M. R. K.; Khademhosseini, A. Biomechanical Properties of Native and Tissue Engineered Heart Valve Constructs. J. Biomech. 2014, 47 ( 9), 1949- 1963, 10.1016/j.jbiomech.2013.09.023
Balguid, A.; Rubbens, M. P.; Mol, A.; Bank, R. A.; Bogers, A. J. J. C.; van Kats, J. P.; de Mol, B. A. J. M.; Baaijens, F. P. T.; Bouten, C. V. C. The Role of Collagen Cross-Links in Biomechanical Behavior of Human Aortic Heart Valve Leaflets─Relevance for Tissue Engineering. Tissue Eng. 2007, 13 ( 7), 1501- 1511, 10.1089/ten.2006.0279
Fung, Y. C. Blood Flow in Arteries. In Biodynamics: Circulation; Fung, Y. C., Ed.; Springer: New York, NY, 1984; pp 77- 165.
Camasão, D.; Mantovani, D. The Mechanical Characterization of Blood Vessels and Their Substitutes in the Continuous Quest for Physiological-Relevant Performances. A Critical Review. Mater. Today Bio 2021, 10, 100106 10.1016/j.mtbio.2021.100106
Mea, H.; Wan, J. Microfluidics-Enabled Functional 3D Printing. Biomicrofluidics 2022, 16 ( 2), 021501 10.1063/5.0083673
Thijssen, Q.; Parmentier, L.; Augustyniak, E.; Mouthuy, P.-A.; Van Vlierberghe, S. From Chain Growth to Step Growth Polymerization of Photoreactive Poly-ϵ-Caprolactone: The Network Topology of Bioresorbable Networks as Tool in Tissue Engineering. Adv. Funct. Mater. 2022, 32, 2108869 10.1002/adfm.202108869
Kuhnt, T.; Morgan, F. L. C.; Baker, M. B.; Moroni, L. An Efficient and Easily Adjustable Heating Stage for Digital Light Processing Set-Ups. Addit. Manuf. 2021, 46, 102102 10.1016/j.addma.2021.102102
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) . Q3C - Tables and List Guidance for Industry 2017 https://www.fda.gov/media/71737/download.
Brown, J. A.; Lee, J. H.; Smith, M. A.; Wells, D. R.; Barrett, A.; Puelz, C.; Vavalle, J. P.; Griffith, B. E. Patient-Specific Immersed Finite Element-Difference Model of Transcatheter Aortic Valve Replacement. Ann. Biomed. Eng. 2023, 51 ( 1), 103- 116, 10.1007/s10439-022-03047-3
ISO 10993-5:2009 - Biological Evaluation of Medical Devices - Part 5: Tests for In Vitro Cytotoxicity, 2009.
Calvo-Correas, T.; Gabilondo, N.; Alonso-Varona, A.; Palomares, T.; Corcuera, M. A.; Eceiza, A. Shape-Memory Properties of Crosslinked Biobased Polyurethanes. Eur. Polym. J. 2016, 78, 253- 263, 10.1016/j.eurpolymj.2016.03.030
Valdés, B. G.; Gomes, C. S. B.; Gomes, P. T.; Ascenso, J. R.; Diogo, H. P.; Gonçalves, L. M.; dos Santos, R. G.; Ribeiro, H. M.; Bordado, J. C. Synthesis and Characterization of Isosorbide-Based Polyurethanes Exhibiting Low Cytotoxicity Towards HaCaT Human Skin Cells. Polymers 2018, 10 ( 10), 1170, 10.3390/POLYM10101170
Ward, R. S.; Jones, R. L. 1.26: Polyurethanes and Silicone Polyurethane Copolymers (Comprehensive Biomaterials II). In Reference Module in Materials Science and Materials Engineering; Elsevier, 2017; pp 570- 619.
Wang, W.; Wang, C. Polyurethane for Biomedical Applications: A Review of Recent Developments. In The Design and Manufacture of Medical Devices; Elsevier, 2012; pp 115- 151.
Shelke, N. B.; Nagarale, R. K.; Kumbar, S. G. Polyurethanes. In Natural and Synthetic Biomedical Polymers; Elsevier, 2014; pp 123- 144.
Bonfil, M.; Sirkecioglu, A.; Bingol-Ozakpinar, O.; Uras, F.; Güner, F. S. Castor Oil and PEG-Based Shape Memory Polyurethane Films for Biomedical Applications. J. Appl. Polym. Sci. 2014, 131 ( 15), 40590, 10.1002/app.40590
Duarah, R.; Singh, Y. P.; Mandal, B. B.; Karak, N. Sustainable Starch Modified Polyol Based Tough, Biocompatible, Hyperbranched Polyurethane with a Shape Memory Attribute. New J. Chem. 2016, 40 ( 6), 5152- 5163, 10.1039/C5NJ03294F
ASTM F756-00: Standard Practice for Assessment of Hemolytic Properties of Materials, 2010.
Mystkowska, J.; Mazurek-Budzyńska, M.; Piktel, E.; Niemirowicz, K.; Karalus, W.; Deptuła, P.; Pogoda, K.; Łysik, D.; Dąbrowski, J. R.; Rokicki, G.; Bucki, R. Assessment of Aliphatic Poly(Ester-Carbonate-Urea-Urethane)s Potential as Materials for Biomedical Application. J. Polym. Res. 2017, 24 ( 9), 144, 10.1007/s10965-017-1296-2
Zhu, R.; Wang, Y.; Zhang, Z.; Ma, D.; Wang, X. Synthesis of Polycarbonate Urethane Elastomers and Effects of the Chemical Structures on Their Thermal, Mechanical and Biocompatibility Properties. Heliyon 2016, 2 ( 6), e00125 10.1016/j.heliyon.2016.e00125
Motlagh, D.; Yang, J.; Lui, K. Y.; Webb, A. R.; Ameer, G. A. Hemocompatibility Evaluation of Poly(Glycerol-Sebacate) in Vitro for Vascular Tissue Engineering. Biomaterials 2006, 27 ( 24), 4315- 4324, 10.1016/j.biomaterials.2006.04.010
Zheng, M.; Guo, J.; Li, Q.; Yang, J.; Han, Y.; Yang, H.; Yu, M.; Zhong, L.; Lu, D.; Li, L.; Sun, L. Syntheses and Characterization of Anti-Thrombotic and Anti-Oxidative Gastrodin-Modified Polyurethane for Vascular Tissue Engineering. Bioact. Mater. 2021, 6 ( 2), 404- 419, 10.1016/j.bioactmat.2020.08.008
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.