Eprint already available on another site (E-prints, working papers and research blog)
Ketamine selectively enhances AMPA neurotransmission onto a subgroup of identified serotoninergic neurons of the rat dorsal raphe
Hmaied, Cyrine; Koulchitsky, Stanislav; Gladwyn-Ng, Ivan et al.
2020
 

Files


Full Text
Ketamine selectively enhances AMPA neurotransmission onto a subgroup.pdf
Author postprint (6.08 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
EPSC, Ketamine, patch clamp, NMDA receptor, Hydroxynorketamine.
Abstract :
[en] ABSTRACTAlthough the fast antidepressant effect of ketamine is now well established clinically, neither its mechanism(s) nor its main site(s) of action is clearly defined. Because enhanced serotoninergic (5-HT) transmission is an important part of the antidepressant effect of various drug classes, we asked whether ketamine and one of its metabolites (hydroxynorketamine [HNK]), both used in their racemic form, may modulate the excitatory drive onto these neurons.Using whole-cell recordings from pharmacologically identified 5-HT and non-5-HT neurons in juvenile rat dorsal raphe slices, we found that both ketamine and HNK (10 µM) increase excitatory AMPA neurotransmission onto a subset (50%) of 5-HT neurons, whereas other 5-HT cells were unaffected. Both compounds increased the amplitude as well as the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) mediated by AMPA receptors. The effect of ketamine was more robust than the one of HNK, since it significantly enhanced the charge transfer through AMPA channels, whereas HNK did not. The increase in the excitatory drive induced by ketamine was dependent on NMDA receptor blockade. In the presence of tetrodotoxin, the effect of ketamine was markedly reduced. Non-5-HT neurons, on the other hand, were unaffected by the drugs.We conclude that ketamine and HNK increase the excitatory drive onto a subset of 5-HT neurons by promoting glutamate release and possibly also through a postsynaptic action. The effect of ketamine is dependent on NMDA receptor modulation and appears to involve a network effect. These findings improve our understanding of the fast-acting antidepressant effect of ketamine.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Hmaied, Cyrine  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Koulchitsky, Stanislav  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Gladwyn-Ng, Ivan ;  Université de Liège - ULiège > Centres attachés à la Faculté (Médecine) > Giga - Neurosciences
Seutin, Vincent  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
Ketamine selectively enhances AMPA neurotransmission onto a subgroup of identified serotoninergic neurons of the rat dorsal raphe
Publication date :
19 August 2020
Funders :
WBI - Wallonia-Brussels International [BE]
F.R.S.-FNRS - Fund for Scientific Research [BE]
Available on ORBi :
since 20 March 2024

Statistics


Number of views
12 (7 by ULiège)
Number of downloads
2 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi