[en] Measurements of the temperature-dependent ac magnetic susceptibility of superconducting films reveal reversible responses, i.e., irrespective of the magnetic and thermal history of the sample. This experimental fact is observed even in the presence of stochastic and certainly irreversible magnetic flux avalanches, which, in principle, should randomly affect the results. In this work, we explain such a paradoxical result by exploiting the spatial resolution of magneto-optical imaging. To achieve this, we successfully compare standard frequency-independent first-harmonic ac magnetic susceptibility results for a superconducting thin film with those obtained by ac-emulating magneto-optical imaging (acMOI). To demonstrate the possibilities of the acMOI technique, we further explore the experimental data. A quantitative analysis provides information regarding flux avalanches, reveals the presence of a vortex-antivortex annihilation zone in the region in which a smooth flux front interacts with preestablished avalanches, and demonstrates that the major impact on the flux distribution within the superconductor happens during the first ac cycle. Our results establish acMOI as a reliable approach for studying frequency-independent ac field effects in superconducting thin films while capturing local aspects of flux dynamics, otherwise inaccessible via global magnetometry techniques.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Chaves, Davi A. D.
Filho, J. C. Corsaletti
Abbey, E. A.
Bosworth, D.
Barber, Z. H.
Blamire, M. G.
Johansen, T. H.
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Ortiz, W. A.
Motta, M.
Language :
English
Title :
Using quantitative magneto-optical imaging to reveal why the ac susceptibility of superconducting films is history independent
CAPES - Coordenação de Aperfeicoamento de Pessoal de Nível Superior FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico EPSRC - Engineering and Physical Sciences Research Council
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn, Quantum technology: The second quantum revolution, Philos. Trans. R. Soc. London A 361, 1655 (2003) 1364-503X 10.1098/rsta.2003.1227.
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339, 1169 (2013) 0036-8075 10.1126/science.1231930.
G. Wendin, Quantum information processing with superconducting circuits: A review, Rep. Prog. Phys. 80, 106001 (2017) 0034-4885 10.1088/1361-6633/aa7e1a.
M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11, 369 (2020) 1947-5454 10.1146/annurev-conmatphys-031119-050605.
A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021) 0034-6861 10.1103/RevModPhys.93.025005.
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Superconducting nanowire single-photon detectors: Physics and applications, Supercond. Sci. Technol. 25, 063001 (2012) 0953-2048 10.1088/0953-2048/25/6/063001.
A. N. McCaughan and K. K. Berggren, A superconducting-nanowire three-terminal electrothermal device, Nano Lett. 14, 5748 (2014) 1530-6984 10.1021/nl502629x.
Q.-Y. Zhao, E. A. Toomey, B. A. Butters, A. N. McCaughan, A. E. Dane, S.-W. Nam, and K. K. Berggren, A compact superconducting nanowire memory element operated by nanowire cryotrons, Supercond. Sci. Technol. 31, 035009 (2018) 0953-2048 10.1088/1361-6668/aaa820.
E. Strambini, A Josephson phase battery, Nat. Nanotechnol. 15, 656 (2020) 1748-3387 10.1038/s41565-020-0712-7.
L. Chen, Miniaturization of the superconducting memory cell via a three-dimensional Nb nano-superconducting quantum interference device, ACS Nano. 14, 11002 (2020) 1936-0851 10.1021/acsnano.0c04405.
N. Ligato, F. Paolucci, E. Strambini, and F. Giazotto, Thermal superconducting quantum interference proximity transistor, Nat. Phys. 18, 627 (2022) 10.1038/s41567-022-01578-z.
T. Golod and V. M. Krasnov, Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity, Nat. Commun. 13, 3658 (2022) 2041-1723 10.1038/s41467-022-31256-w.
D. A. D. Chaves, L. Nulens, H. Dausy, B. Raes, D. Yue, W. A. Ortiz, M. Motta, M. J. Van Bael, and J. Van de Vondel, Nanobridge SQUIDs as multilevel memory elements, Phys. Rev. Appl. 19, 034091 (2023) 2331-7019 10.1103/PhysRevApplied.19.034091.
J. R. Clem and A. Sanchez, Hysteretic AC losses and susceptibility of thin superconducting disks, Phys. Rev. B 50, 9355 (1994) 0163-1829 10.1103/PhysRevB.50.9355.
M. Willemin, C. Rossel, J. Hofer, H. Keller, A. Erb, and E. Walker, Strong shift of the irreversibility line in high-(Equation presented) superconductors upon vortex shaking with an oscillating magnetic field, Phys. Rev. B 58, R5940 (1998) 0163-1829 10.1103/PhysRevB.58.R5940.
E. H. Brandt and G. P. Mikitik, Why an ac magnetic field shifts the irreversibility line in type-II superconductors, Phys. Rev. Lett. 89, 027002 (2002) 0031-9007 10.1103/PhysRevLett.89.027002.
C. Hoffmann, D. Pooke, and A. D. Caplin, Flux pump for HTS magnets, IEEE Trans. Appl. Supercond. 21, 1628 (2011) 1051-8223 10.1109/TASC.2010.2093115.
J. Geng and T. A. Coombs, Mechanism of a high-Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow, Appl. Phys. Lett. 107, 142601 (2015) 0003-6951 10.1063/1.4932950.
C. C. de Souza Silva, B. Raes, J. Brisbois, L. R. E. Cabral, A. V. Silhanek, J. Van de Vondel, and V. V. Moshchalkov, Probing the low-frequency vortex dynamics in a nanostructured superconducting strip, Phys. Rev. B 94, 024516 (2016) 2469-9950 10.1103/PhysRevB.94.024516.
I. Ivan, A. M. Ionescu, V. Sandu, A. Crisan, and L. Miu, Vortex dynamics driven by AC magnetic field in YBCO thin films with complex pinning structures, Supercond. Sci. Technol. 31, 105012 (2018) 0953-2048 10.1088/1361-6668/aadbfd.
B. Shen, F. Grilli, and T. Coombs, Review of the AC loss computation for HTS using H formulation, Supercond. Sci. Technol. 33, 033002 (2020) 0953-2048 10.1088/1361-6668/ab66e8.
G. Pasquini, M. M. Bermúdez, and V. Bekeris, AC dynamic reorganization and critical phase transitions in superconducting vortex matter, Supercond. Sci. Technol. 34, 013003 (2021) 0953-2048 10.1088/1361-6668/abbbc8.
A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174 (1957).
G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66, 1125 (1994) 0034-6861 10.1103/RevModPhys.66.1125.
E. H. Brandt, Vortex-vortex interaction in thin superconducting films, Phys. Rev. B 79, 134526 (2009) 1098-0121 10.1103/PhysRevB.79.134526.
A. Chaves, F. M. Peeters, G. A. Farias, and M. V. Milošević, Vortex-vortex interaction in bulk superconductors: Ginzburg-Landau theory, Phys. Rev. B 83, 054516 (2011) 1098-0121 10.1103/PhysRevB.83.054516.
E. Sardella, P. N. Lisboa Filho, C. C. de Souza Silva, L. R. Eulálio Cabral, and W. Aires Ortiz, Vortex-antivortex annihilation dynamics in a square mesoscopic superconducting cylinder, Phys. Rev. B 80, 012506 (2009) 1098-0121 10.1103/PhysRevB.80.012506.
C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys. 36, 31 (1964) 0034-6861 10.1103/RevModPhys.36.31.
Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Critical persistent currents in hard superconductors, Phys. Rev. Lett. 9, 306 (1962) 0031-9007 10.1103/PhysRevLett.9.306.
C. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmüller, Magneto-optical studies of current distributions in high-Tc superconductors, Rep. Prog. Phys. 65, 651 (2002) 0034-4885 10.1088/0034-4885/65/5/202.
F. Colauto, M. Motta, and W. A. Ortiz, Controlling magnetic flux penetration in low-(Equation presented) superconducting films and hybrids, Supercond. Sci. Technol. 34, 013002 (2021) 0953-2048 10.1088/1361-6668/abac1e.
E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Magnetization and transport currents in thin superconducting films, Phys. Rev. B 49, 9802 (1994) 0163-1829 10.1103/PhysRevB.49.9802.
E. H. Brandt, Superconductor disks and cylinders in an axial magnetic field. I. flux penetration and magnetization curves, Phys. Rev. B 58, 6506 (1998) 0163-1829 10.1103/PhysRevB.58.6506.
D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Thin superconducting disk with (Equation presented)-dependent (Equation presented) Flux and current distributions, Phys. Rev. B 60, 13112 (1999) 0163-1829 10.1103/PhysRevB.60.13112.
S. L. Wipf, Review of stability in high temperature superconductors with emphasis on flux jumping, Cryogenics 31, 936 (1991) 0011-2275 10.1016/0011-2275(91)90217-K.
D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Dendritic and uniform flux jumps in superconducting films, Phys. Rev. B 73, 014512 (2006) 1098-0121 10.1103/PhysRevB.73.014512.
D. V. Denisov, D. V. Shantsev, Y. M. Galperin, E.-M. Choi, H.-S. Lee, S.-I. Lee, A. V. Bobyl, P. E. Goa, A. A. F. Olsen, and T. H. Johansen, Onset of dendritic flux avalanches in superconducting films, Phys. Rev. Lett. 97, 077002 (2006) 0031-9007 10.1103/PhysRevLett.97.077002.
P. Leiderer, J. Boneberg, P. Brüll, V. Bujok, and S. Herminghaus, Nucleation and growth of a flux instability in superconducting (Equation presented) films, Phys. Rev. Lett. 71, 2646 (1993) 0031-9007 10.1103/PhysRevLett.71.2646.
C. A. Durán, P. L. Gammel, R. E. Miller, and D. J. Bishop, Observation of magnetic-field penetration via dendritic growth in superconducting niobium films, Phys. Rev. B 52, 75 (1995) 0163-1829 10.1103/PhysRevB.52.75.
T. H. Johansen, M. Baziljevich, D. Shantsev, P. E. Goa, Y. M. Galperin, W. N. Kang, H. J. Kim, E. M. Choi, M.-S. Kim, and S. I. Lee, Dendritic flux patterns in (Equation presented) films, Supercond. Sci. Technol. 14, 726 (2001) 0953-2048 10.1088/0953-2048/14/9/319.
U. Bolz, B. Biehler, D. Schmidt, B.-U. Runge, and P. Leiderer, Dynamics of the dendritic flux instability in (Equation presented) films, Europhys. Lett. 64, 517 (2003) 0295-5075 10.1209/epl/i2003-00261-y.
I. S. Aranson, A. Gurevich, M. S. Welling, R. J. Wijngaarden, V. K. Vlasko-Vlasov, V. M. Vinokur, and U. Welp, Dendritic flux avalanches and nonlocal electrodynamics in thin superconducting films, Phys. Rev. Lett. 94, 037002 (2005) 0031-9007 10.1103/PhysRevLett.94.037002.
J. I. Vestgården, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Dynamics and morphology of dendritic flux avalanches in superconducting films, Phys. Rev. B 84, 054537 (2011) 1098-0121 10.1103/PhysRevB.84.054537.
F. Colauto, M. Motta, A. Palau, M. G. Blamire, T. H. Johansen, and W. A. Ortiz, First observation of flux avalanches in a-MoSi superconducting thin films, IEEE Trans. Appl. Supercond. 25, 1 (2015) 1051-8223 10.1109/TASC.2014.2376183.
J. I. Vestgården, T. H. Johansen, and Y. M. Galperin, Nucleation and propagation of thermomagnetic avalanches in thin-film superconductors (Review Article), Low Temp. Phys. 44, 460 (2018) 1063-777X 10.1063/1.5037549.
A. L. Schawlow, Structure of the intermediate state in superconductors, Phys. Rev. 101, 573 (1956) 0031-899X 10.1103/PhysRev.101.573.
Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and critical supercurrents, Phys. Rev. 129, 528 (1963) 0031-899X 10.1103/PhysRev.129.528.
P. Esquinazi, A. Setzer, D. Fuchs, Y. Kopelevich, E. Zeldov, and C. Assmann, Vortex avalanches in Nb thin films: Global and local magnetization measurements, Phys. Rev. B 60, 12454 (1999) 0163-1829 10.1103/PhysRevB.60.12454.
E. Altshuler and T. H. Johansen, Colloquium: Experiments in vortex avalanches, Rev. Mod. Phys. 76, 471 (2004) 0034-6861 10.1103/RevModPhys.76.471.
A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Paramagnetic reentrance of (Equation presented) screening: Evidence of vortex avalanches in Pb thin films, Phys. Rev. B 70, 144504 (2004) 1098-0121 10.1103/PhysRevB.70.144504.
M. Menghini, R. J. Wijngaarden, A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Dendritic flux penetration in Pb films with a periodic array of antidots, Phys. Rev. B 71, 104506 (2005) 1098-0121 10.1103/PhysRevB.71.104506.
M. Motta, F. Colauto, R. Zadorosny, T. H. Johansen, R. B. Dinner, M. G. Blamire, G. W. Ataklti, V. V. Moshchalkov, A. V. Silhanek, and W. A. Ortiz, Visualizing the ac magnetic susceptibility of superconducting films via magneto-optical imaging, Phys. Rev. B 84, 214529 (2011) 1098-0121 10.1103/PhysRevB.84.214529.
R. B. Goldfarb, M. Lelental, and C. A. Thompson, Alternating-field susceptometry and magnetic susceptibility of superconductors, in Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by R. A. Hein, T. L. Francavilla, and D. H. Liebenberg (Springer, Boston, 1991), pp. 49-80.
F. Gömöry, Characterization of high-temperature superconductors by AC susceptibility measurements, Supercond. Sci. Technol. 10, 523 (1997) 0953-2048 10.1088/0953-2048/10/8/001.
K.-H. Müller, Ac susceptibility of high temperature superconductors in a critical state model, Physica C 159, 717 (1989) 0921-4534 10.1016/0921-4534(89)90143-3.
A. A. M. Oliveira, N. Hur, S.-W. Cheong, and W. A. Ortiz, Vortex glass melting in Mg-deficient (Equation presented), Phys. Rev. B 82, 104506 (2010) 1098-0121 10.1103/PhysRevB.82.104506.
R. B. G. Kramer, G. W. Ataklti, V. V. Moshchalkov, and A. V. Silhanek, Direct visualization of the Campbell regime in superconducting stripes, Phys. Rev. B 81, 144508 (2010) 1098-0121 10.1103/PhysRevB.81.144508.
L. L. Zhao, S. Lausberg, H. Kim, M. A. Tanatar, M. Brando, R. Prozorov, and E. Morosan, Type-I superconductivity in (Equation presented) single crystals, Phys. Rev. B 85, 214526 (2012) 1098-0121 10.1103/PhysRevB.85.214526.
C. V. Topping and S. J. Blundell, A.C. susceptibility as a probe of low-frequency magnetic dynamics, J. Phys.: Condens. Matter 31, 013001 (2019) 0953-8984 10.1088/1361-648X/aaed96.
M. I. Eremets, V. S. Minkov, A. P. Drozdov, P. P. Kong, V. Ksenofontov, S. I. Shylin, S. L. Bud'ko, R. Prozorov, F. F. Balakirev, D. Sun, S. Mozaffari, and L. Balicas, High-temperature superconductivity in hydrides: Experimental evidence and details, J. Supercond. Novel Magn. 35, 965 (2022) 1557-1939 10.1007/s10948-022-06148-1.
G. Ghigo, M. Fracasso, R. Gerbaldo, L. Gozzelino, F. Laviano, A. Napolitano, G.-H. Cao, M. J. Graf, R. Prozorov, T. Tamegai, Z. Shi, X. Xing, and D. Torsello, High-frequency ac susceptibility of iron-based superconductors, Materials 15, 1079 (2022) 1996-1944 10.3390/ma15031079.
D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, Amorphous molybdenum silicon superconducting thin films, AIP Adv. 5, 087106 (2015) 2158-3226 10.1063/1.4928285.
S. Kubo, Superconducting properties of amorphous MoX ((Equation presented) = Si, Ge) alloy films for Abrikosov vortex memory, J. Appl. Phys. 63, 2033 (1988) 0021-8979 10.1063/1.341105.
A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires, Supercond. Sci. Technol. 30, 084010 (2017) 0953-2048 10.1088/1361-6668/aa76d8.
V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films, Opt. Express 23, 33792 (2015) 1094-4087 10.1364/OE.23.033792.
M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors, Appl. Phys. Lett. 112, 061103 (2018) 0003-6951 10.1063/1.5010102.
X. Zhang, I. Charaev, H. Liu, T. X. Zhou, D. Zhu, K. K. Berggren, and A. Schilling, Physical properties of amorphous molybdenum silicide films for single-photon detectors, Supercond. Sci. Technol. 34, 095003 (2021) 0953-2048 10.1088/1361-6668/ac1524.
L. E. Helseth, R. W. Hansen, E. I. Il'yashenko, M. Baziljevich, and T. H. Johansen, Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization, Phys. Rev. B 64, 174406 (2001) 0163-1829 10.1103/PhysRevB.64.174406.
G. Shaw, J. Brisbois, L. B. G. L. Pinheiro, Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures, Rev. Sci. Instrum. 89, 023705 (2018) 0034-6748 10.1063/1.5016293.
P. Thevenaz, U. Ruttimann, and M. Unser, A pyramid approach to subpixel registration based on intensity, IEEE Trans. Image Proc. 7, 27 (1998) 1057-7149 10.1109/83.650848.
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 671 (2012) 1548-7091 10.1038/nmeth.2089.
H. Ferrari, V. Bekeris, and T. Johansen, Magneto-optic imaging of domain walls in ferrimagnetic garnet films, Phys. B: Condens. Matter 398, 476 (2007) 0921-4526 10.1016/j.physb.2007.05.015.
S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov, Flux-pinning properties of superconducting films with arrays of blind holes, Phys. Rev. B 70, 024509 (2004) 1098-0121 10.1103/PhysRevB.70.024509.
V. V. Yurchenko, D. V. Shantsev, T. H. Johansen, M. R. Nevala, I. J. Maasilta, K. Senapati, and R. C. Budhani, Reentrant stability of superconducting films and the vanishing of dendritic flux instability, Phys. Rev. B 76, 092504 (2007) 1098-0121 10.1103/PhysRevB.76.092504.
L. Jiang, C. Xue, L. Burger, B. Vanderheyden, A. V. Silhanek, and Y.-H. Zhou, Selective triggering of magnetic flux avalanches by an edge indentation, Phys. Rev. B 101, 224505 (2020) 2469-9950 10.1103/PhysRevB.101.224505.
Quantum Design, Magnetic property measurement system: AC option user's manual, San Diego Introduction to AC susceptibility (1999), available at qdusa.com.
J. R. Clem, Ac losses in type-II superconductors, in Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by R. A. Hein, T. L. Francavilla, and D. H. Liebenberg (Springer, New York, 1991), pp. 177-211.
A. Soibel, E. Zeldov, M. Rappaport, Y. Myasoedov, T. Tamegai, S. Ooi, M. Konczykowski, and V. B. Geshkenbein, Imaging the vortex-lattice melting process in the presence of disorder, Nature (London) 406, 282 (2000) 0028-0836 10.1038/35018532.
P. Mandal, D. Chowdhury, S. S. Banerjee, and T. Tamegai, High sensitivity differential magneto-optical imaging with a compact Faraday-modulator, Rev. Sci. Instrum. 83, 123906 (2012) 0034-6748 10.1063/1.4770128.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.109.104510 for videos highlighting aspects of the flux penetration dynamics revealed in the main text.
Z. Jing and M. D. Ainslie, Numerical simulation of flux avalanches in type-II superconducting thin films under transient AC magnetic fields, Supercond. Sci. Technol. 33, 084006 (2020) 0953-2048 10.1088/1361-6668/ab9aa2.
A. J. Qviller, V. V. Yurchenko, K. Eliassen, J. I. Vestgården, T. H. Johansen, M. R. Nevala, I. J. Maasilta, K. Senapati, and R. C. Budhani, Irreversibility of the threshold field for dendritic flux avalanches in superconductors, Physica C 470, 897 (2010) 0921-4534 10.1016/j.physc.2010.02.066.
L. B. L. G. Pinheiro, L. Jiang, E. A. Abbey, D. A. D. Chaves, A. J. Chiquito, T. H. Johansen, J. Van de Vondel, C. Xue, Y.-H. Zhou, A. V. Silhanek, W. A. Ortiz, and M. Motta, Magnetic flux penetration in nanoscale wedge-shaped superconducting thin films, Phys. Rev. B 106, 224520 (2022) 2469-9950 10.1103/PhysRevB.106.224520.
L. Ceccarelli, D. Vasyukov, M. Wyss, G. Romagnoli, N. Rossi, L. Moser, and M. Poggio, Imaging pinning and expulsion of individual superconducting vortices in amorphous mosi thin films, Phys. Rev. B 100, 104504 (2019) 2469-9950 10.1103/PhysRevB.100.104504.
A. I. Bezuglyj, V. A. Shklovskij, B. Budinská, B. Aichner, V. M. Bevz, M. Y. Mikhailov, D. Y. Vodolazov, W. Lang, and O. V. Dobrovolskiy, Vortex jets generated by edge defects in current-carrying superconductor thin strips, Phys. Rev. B 105, 214507 (2022) 2469-9950 10.1103/PhysRevB.105.214507.
D. A. D. Chaves, I. M. de Araújo, D. Carmo, F. Colauto, A. A. M. de Oliveira, A. M. H. de Andrade, T. H. Johansen, A. V. Silhanek, W. A. Ortiz, and M. Motta, Enhancing the effective critical current density in a Nb superconducting thin film by cooling in an inhomogeneous magnetic field, Appl. Phys. Lett. 119, 022602 (2021) 0003-6951 10.1063/5.0058680.
L. Nulens, N. Lejeune, J. Caeyers, S. Marinković, I. Cools, H. Dausy, S. Basov, B. Raes, M. J. V. Bael, A. Geresdi, A. V. Silhanek, and J. V. de Vondel, Catastrophic magnetic flux avalanches in NbTiN superconducting resonators, Commun. Phys. 6, 267 (2023) 2399-3650 10.1038/s42005-023-01386-8.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.