Forestry; allometric models; tree aboveground biomass; Congo basin; tropical forests
Abstract :
[en] Abstract
Many allometric models to predict tree aboveground biomass have been developed in tropical moist forests, but few models are available for tree belowground biomass. Theory predicts that belowground biomass scales in an isometric way with aboveground biomass. Estimates of belowground biomass could then be derived from aboveground biomass using the root:shoot ratio. Using a dataset of 118 tropical trees for which both aboveground and belowground biomass and other tree and species characteristics were measured in Gabon and Cameroon, we found a near isometric, yet significantly allometric, relationship between belowground biomass (B, in kilograms) and aboveground biomass (A, in kilograms): B = 0.324 A0.939. The root:shoot ratio was 0.20–0.22, regardless of tree size. An efficient model to predict belowground biomass from tree diameter (D, in centimeters), height (H, in meters) and wood density (ρ, in grams per cubic centimeter) was B = 0.0188 (ρD2H)0.977. A significant residual effect of species and leaf habit was found in this model, indicating that further tree and species characteristics are likely to explain additional variation in belowground biomass. Yet, the future development of belowground allometric models can benefit from the many models already developed for aboveground biomass. On the basis of this unprecedented sampling effort on tree belowground biomass in the dense tropical forests of the Congo Basin, we conclude that the scaling of belowground biomass with aboveground biomass should be the relationship to focus on.
Kossi Ditsouga, Alain Franck; Institut de Recherche en Ecologie Tropicale (IRET), Centre National de la Recherche Scientifique et Technologique (CENAREST) , Libreville , Gabon ; Université des Sciences et Techniques de Masuku , Franceville , Gabon
Moundounga Mavouroulou, Quentin; Institut de Recherche en Ecologie Tropicale (IRET), Centre National de la Recherche Scientifique et Technologique (CENAREST) , Libreville , Gabon
Moundounga, Cynel Gwenael; Institut de Recherche en Ecologie Tropicale (IRET), Centre National de la Recherche Scientifique et Technologique (CENAREST) , Libreville , Gabon
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières ; Cirad Forêts et Sociétés, Campus International de Baillarguet , Montpellier 34398 , France
Picard, Nicolas; GIP ECOFOR , Paris 75116 , France
Sato, Akinobu; Japan Forest Technology Association (JAFTA), Forest Information Group , Tokyo 102-0085 , Japan
Ngomanda, Alfred; Institut de Recherche en Ecologie Tropicale (IRET), Centre National de la Recherche Scientifique et Technologique (CENAREST) , Libreville , Gabon
Language :
English
Title :
Tree belowground biomass in Congo Basin forests: allometric equations and scaling with aboveground biomass
Brown, S., Gillespie, A.J.R. and Lugo, A.E. 1989 Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35, 881–902. https://doi.org/10.1093/forestscience/35.4.881.
Cairns, M.A., Brown, S., Helmer, E.H., et al. 1997 Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11. https://doi.org/10.1007/s004420050201.
Chave, J., Andalo, C., Brown, S., et al. 2005 Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99. https://doi.org/10.1007/s00442-005-0100- x.
Chave, J., Réjou-Méchain, M., Búrquez, A., et al. 2014 Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20, 3177–3190. https://doi.org/10.1111/gcb.12629.
Cheng, D., Zhong, Q., Niklas, K.J., et al. 2015 Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest. Ann Bot 115, 303–313. https://doi.org/10.1093/aob/mcu238.
Clark, D.B. and Kellner, J.R. 2012 Tropical forest biomass estimation and the fallacy of misplaced concreteness. J Veg Sci 23, 1191–1196. https://doi.org/10.1111/j.1654-1103.2012.01471.x.
Corral-Rivas, J.J., Barrio-Anta, M., Aguirre-Calderón, O.A., et al. 2007 Use of stump diameter to estimate diameter at breast height and tree volume for major pine species in El Salto, Durango (Mexico). Forestry 80, 29–40. https://doi.org/10.1093/forestry/cpl048.
Deans, J.D., Moran, J. and Grace, J. 1996 Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon. For Ecol Manage 88, 215–225. https://doi.org/10.1016/ S0378-1127(96)03843-1.
Fayolle, A., Doucet, J.L., Gillet, J.F., et al. 2013 Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manage 305, 29–37. https://doi.org/10.1016/j.foreco.2013.05.036.
Fayolle, A., Ngomanda, A., Mbasi, M., et al. 2018 A regional allometry for the Congo basin forests based on the largest ever destructive sampling. For Ecol Manage 430, 228–240. https://doi.org/10.1016/j.foreco.2018.07.030.
Fayolle, A., Picard, N., Doucet, J.L., et al. 2014 A new insight in the structure, composition and functioning of central African moist forests. For Ecol Manage 329, 195–205. https://doi.org/10.1016/j.foreco.2014.06.014.
Fonseca, W., Alice, F.E. and Rey-Benayas, J.M. 2012 Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests 43, 197–211. https://doi.org/10.1007/ s11056-011-9273-9.
Freycon, V., Wonkam, C., Fayolle, A., et al. 2015 Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types. J Trop Ecol 31, 13–23. https://doi.org/10.1017/S0266467414000595.
Gao, S., Wang, X., Wiemann, M.C., et al. 2017 A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann For Sci 74, 1–13. https://doi.org/10.1007/s13595-017-0623-4.
Gibbs, H.K., Brown, S., Niles, J.O., et al. 2007 Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2, 1–13. https://doi.org/10.1088/1748-9326/2/4/045023.
Guan, K., Pan, M., Li, H., et al. 2015 Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat Geosci 8, 284–289. https://doi.org/10.1038/ngeo2382.
Ketterings, Q.M., Coe, R., van Noordwijk, M., et al. 2001 Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146, 199–209. https://doi.org/10.1016/ S0378-1127(00)00460-6.
Kralicek, K., Huy, B., Poudel, K.P., et al. 2017 Simultaneous estimation of above-and below-ground biomass in tropical forests of Viet Nam. For Ecol Manage 390, 147–156. https://doi.org/10.1016/j.foreco.2017.01.030.
Kuyah, S., Dietz, J., Muthuri, C., et al. 2012 Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agric Ecosyst Environ 158, 225–234. https://doi.org/10.1016/j.agee.2012.05.010.
Leisch, F. 2004 FlexMix: A general framework for finite mixture models and latent class regression in R. J Stat Softw 11, 18. https://doi.org/10.18637/jss.v011.i08.
Lewis, S.L., Edwards, D.P. and Galbraith, D. 2015 Increasing human dominance of tropical forests. Science 349, 827–832. https://doi.org/10.1126/science.aaa9932.
Malhi, Y. 2012 The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100, 65–75. https://doi.org/10.1111/j.1365-2745.2011.01916.x.
Malhi, Y., Doughty, C. and Galbraith, D. 2011 The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc Lond B 366, 3225–3245. https://doi.org/10.1098/rstb.2011. 0062.
Mankou, G.S., Ligot, G., Panzou, G.J.L., et al. 2021 Tropical tree allometry and crown allocation, and their relationship with species traits in central Africa. For Ecol Manage 493, 119262. https://doi.org/10.1016/j.foreco.2021.119262.
Manyanda, B.J., Mugasha, W.A., Nzunda, E.F., et al. 2019 Biomass and volume models based on stump diameter for assessing degradation of miombo woodlands in Tanzania. Int J For Res 2019, 1876329. https://doi.org/10.1155/2019/1876329.
Martin, A.R., Doraisami, M. and Thomas, S.C. 2018 Global patterns in wood carbon concentration across the world’s trees and forests. Nat Geosci 11, 915–920. https://doi.org/10.1038/s41561-018-0246-x.
Metcalf, C.J.E., Clark, J.S. and Clark, D.A. 2009 Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. J Trop Ecol 25, 1–12. https://doi.org/10.1017/S0266467408005646.
Mokany, K., Raison, R.J. and Prokushkin, A.S. 2006 Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12, 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x.
Momo, S.T., Ploton, P., Martin-Ducup, O., et al. 2020 Leveraging signatures of plant functional strategies in wood density profiles of African trees to correct mass estimations from terrestrial laser data. Sci Rep 10, 2001. https://doi.org/10.1038/s41598-020-58733-w.
Mugasha, W.A., Eid, T., Bollandsås, O.M., et al. 2013 Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manage 310, 87–101. https://doi.org/10.1016/j.foreco.2013.08.003.
Nam, V.T., Van Kuijk, M. and Anten, N.P.R. 2016 Allometric equations for aboveground and belowground biomass estimations in an evergreen forest in Vietnam. PloS One 11, e0156827. https://doi.org/10.1371/journal.pone.0156827.
Ngomanda, A., Engone Obiang, N.L., Lebamba, J., et al. 2014 Site-specic versus pantropical allometric equation: Which option to estimate the biomass of a moist central african forest? For Ecol Manage 312, 1–9. https://doi.org/10.1016/j.foreco.2013.10.029.
Niiyama, K., Kajimoto, T., Matsuura, Y., et al. 2010 Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. J Trop Ecol 26, 271–284. https://doi.org/10.1017/ S0266467410000040.
Niklas, K.J. and Enquist, B.J. 2002 Canonical rules for plant organ biomass partitioning and annual allocation. Am J Bot 89, 812–819. https://doi.org/10.3732/ajb.89.5.812.
Ouédraogo, D.Y., Fayolle, A., Gourlet-Fleury, S., et al. 2016 The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J Ecol 104, 924–935. https://doi.org/10.1111/1365-2745.12589.
Parresol, B.R. 1999 Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45, 573–593. https://doi.org/10.1093/forestscience/45.4.573.
Pan, Y., Birdsey, R.A., Fang, J., et al. 2011 A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.
Paul, K.I., Larmour, J., Specht, A., et al. 2019 Testing the generalityof below-ground biomass allometry across plant functional types. For Ecol Manage 432, 102–114. https://doi.org/10.1016/j.foreco.2018.08.043.
Picard, N., Rutishauser, E., Ploton, P., et al. 2015 Should tree biomass allometry be restricted to power models? For Ecol Manage 353, 156–163. https://doi.org/10.1016/j.foreco.2015.05.035.
Ploton, P., Barbier, N., Momo, S.T., et al. 2016 Closing a gap in tropical forest biomass estimation: accounting for crown mass variation in pantropical allometries. Biogeosciences 12, 19711–19750. https://doi.org/10.5194/bg-13-1571-2016.
Qi, Y., Wei, W., Chen, C., et al. 2019 Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecol Conserv 18, e00606. https://doi.org/10.1016/j.gecco.2019.e00606.
Robinson, D. 2004 Scaling the depths: below-ground allocation in plants, forests and biomes. Funct Ecol 18, 290–295. https://doi.org/10.1111/j.0269-8463.2004.00849.x.
Ryan, C.M., Williams, M. and Grace, J. 2011 Above-and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432. https://doi.org/10.1111/j.1744-7429.2010.00713.x.
Van den Boogaart, K.G. and Tolosana-Delgado, R. 2013 Analyzing compositional data with R. Use R! Springer, Heidelberg.
Wang, Z., Huang, X., Li, F., et al. 2023 Global patterns of allometric model parameters prediction. Sci Rep 13, 1550. https://doi.org/10.1038/s41598-023-28843-2.