Contamination; ED-XRF; Geo-accumulation index; Heavy metals pollution; Human health risk; Rocks; Barium; Metals, Heavy; Carcinogens; Trace Elements; Soil Pollutants; Soil; Child; Adult; Humans; Environmental Monitoring; Cameroon; Environmental Pollution/analysis; Carcinogens/analysis; Risk Assessment; China; Metals, Heavy/analysis; Soil Pollutants/analysis; Carcinogenic risk; Contamination factors; Human health risks; Potential risks; Rock sample; Trace elements concentration; Environmental Pollution; Environmental Science (all); Pollution; Management, Monitoring, Policy and Law; General Environmental Science; General Medicine
Abstract :
[en] The present study aimed to assess the ecological and health risks of the Pouma rock samples. Twenty-three (23) trace element concentrations were evaluated. The concentrations of these trace elements were compared with those of quartzite from other countries and with global reported values. When compared with the world values, the concentrations of trace metals were below the world average values except that of Barium. The ecological risk assessment was carried out using the geo-accumulation index, contamination factors and the potential ecological risk index. The geo-accumulation index and contamination factors showed that the quartzite of Pouma subdivision are not polluted and not contaminated by the investigated metal except for Barium and Mercury. The health risk assessment using the USEPA (United States Environmental Protection Agency) method showed that there is a possible non-carcinogenic risk from Al2O3 (for children and adults) and from Cr for Children. However, there is a tolerable and high carcinogenic risk due to Cr for adults and children, respectively. It was found independently for non-carcinogenic and carcinogenic risk that the exposure via the ingestion route is the most dangerous for adults and children.
Disciplines :
Physics Environmental sciences & ecology
Author, co-author :
Degbe, Patricia-Laurelle ; Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon. degbe_patricia@yahoo.fr
Guembou Shouop, Cébastien Joel ; Université de Liège - ULiège > Unités de recherche interfacultaires > Art, Archéologie et Patrimoine (AAP) ; National Radiation Protection Agency, P.O. Box. 33732, Yaounde, Cameroon
Bongue, Daniel; Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon ; Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon
Ndontchueng, Maurice Moyo; Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon ; Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon ; National Radiation Protection Agency, P.O. Box. 33732, Yaounde, Cameroon
Ngwa Ebongue, Alexandre; Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon ; Department of Physics, Faculty of Sciences, University of Douala, P.O. Box. 24157, Douala, Cameroon
Kwato Njock, Moïse Godfroy; Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box. 8085, Douala, Cameroon
Language :
English
Title :
Assessment of heavy metals' pollutions and potential risks associated to the rocks of Pouma subdivision-Cameroon.
This work was supported by the Abdus Salam International Center for Theoretical Physics (ICTP) through the Grant OEA-AF-12.The authors are grateful to the Abdus Salam International Center for Theoretical Physics (ICTP) for its support to the Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ) of the University of Douala (Cameroon), through the OEA-AF-12 project, and to Dr. SIMO Augustin General Manager of National Radiation Protection Agency (NRPA) for given us the authorization Radioanalysis and Spectrometry Laboratory of the NRPA. We are also grateful to Mr. Abdoul NASSER BABA for his technical assistance during the Lab work, to Ms. DIAMARD Rachel for her contribution during the field trip and sample preparation. We would like to thank the local community for their guidance to reach the mining areas.
Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. 10.1007/S10661-007-9678-2 DOI: 10.1007/S10661-007-9678-2
AL-Areqi, W. M., Majid, A. A., Sarmani, S., & Bahri, C. N. A. C. Z. (2015). Thorium: Issues and prospects in Malaysia. AIP Conference Proceedings, 1659. https://doi.org/10.1063/1.4916865
Alhogbi, B. G., & Alsolame, A. F. (2017). Soil pollution: A case study on the determination of toxic elements in soil in Jeddah City, Saudi Arabia. International Journal of Chemistry, 9(2), 37. 10.5539/ijc.v9n2p37 DOI: 10.5539/ijc.v9n2p37
Allaire, J., Eddelbuettel, D., François, R. (2013). Rcpp Attributes. R Package Version 0.10, 1–12. http://ftp.iitm.ac.in/cran/web/packages/Rcpp/vignettes/Rcpp-attributes.pdf
Aluko, T., Njoku, K., Adesuyi, A., & Akinola, M. (2018). Health risk Assessment of heavy metals in soil from the Iron mines of Itakpe and Agbaja, Kogi state, Nigeria. Pollution, 4(3), 527–538. 10.22059/poll.2018.243543.330 DOI: 10.22059/poll.2018.243543.330
Anon. (1982). Environmental health Criteria 24: Titanium. Environmental Health Criteria. https://doi.org/10.1016/0278-6915(84)90059-0
Aydin, M., Karadurmuş, U., & Tunca, E. (2014). Biological characteristics of Pachygrapsus marmoratus in the southern Black Sea (Turkey). Journal of the Marine Biological Association of the United Kingdom, 94(7), 1441–1449. 10.1017/S0025315414000253 DOI: 10.1017/S0025315414000253
Aydın, M., Tunca, E., & Alver Şahin, Ü. (2017). Effects of anthropological factors on the metal accumulation profiles of sea cucumbers in near industrial and residential coastlines of İzmir, Turkey. International Journal of Environmental Analytical Chemistry, 97(4), 368–382. 10.1080/03067319.2017.1315112 DOI: 10.1080/03067319.2017.1315112
Ayodele, O. S., Asowata, I. T., & Adeoti, B. (2018). Assessment of the distribution of potentially harmful trace elements in bedrocks and stream sediments of Okemesi-Ijero area, southwestern, Nigeria. Journal of Geology and Mining Research, 10(4), 39–47. 10.5897/jgmr2018.0286 DOI: 10.5897/jgmr2018.0286
Babalola, S. O., Ajani, O. S., & Oni, A. A. (2016). Semen characteristics and testicular biometry of Swiss albino mice treated with water soluble fractions of spent engine oil. International Journal of Biological and Chemical Sciences, 10(1), 211. 10.4314/ijbcs.v10i1.16 DOI: 10.4314/ijbcs.v10i1.16
Bala, M., Sharma, A., & Sharma, G. (2020). Assessment of heavy metals in faecal pellets of blue rock pigeon from rural and industrial environment in India. Environmental Science and Pollution Research, 27(35), 43646–43655. 10.1007/s11356-020-09409-5 DOI: 10.1007/s11356-020-09409-5
Blanchard, D. G., Louis, N. E., Abdourahimi, B. D., Saïdou, N. N. I. I. J. E., Boniface, K., & Godfroy, K. N. M. (2018). Environmental pollution by heavy metals in the gold mining region of East Cameroon. American Journal of Environmental Sciences, 14(5), 212–225. 10.3844/ajessp.2018.212.225 DOI: 10.3844/ajessp.2018.212.225
Böning, P., Fröllje, H., Beck, M., Schnetger, B., & Brumsack, H. (2012). Underestimation of the authigenic fraction of cu and Ni in organic-rich sediments, 325, 24–26.
Camargo, S. P., Figueiredo, A. M. G., & Sígolo, J. B. (2009). Uranium and Thorium in Urban Park Soils of São Paulo. International Nuclear Atlantic Conference. https://www.ipen.br/biblioteca/2009/inac/15068.pdf
Cebastien, J., Guembou, S., Ndontchueng, M. M., Eric, J., Nguelem, M. (2019). Elemental quantification and radioactive characterization of soil from Douala Bassa area: littoral region of Cameroon using X- and γ-rays spectrometry Elemental quanti fi cation and radioactive characterization of soil from Douala Bassa area: littoral r.
Chen, L., Wu, J., Xia, C., Gong, L., & Xu, Z. (2019). Chemical speciation and potential ecological risk assessment of heavy metals in volcanic rocks of southern Qinghai, China. Chemistry and Ecology, 35(8), 775–787. 10.1080/02757540.2019.1640686 DOI: 10.1080/02757540.2019.1640686
Chowdhury, R., Favas, P. J. C., Pratas, J., Jonathan, M. P., Ganesh, P. S., & Sarkar, S. K. (2015). Accumulation of trace metals by mangrove plants in Indian Sundarban wetland: Prospects for phytoremediation. International Journal of Phytoremediation, 17(9), 885–894. 10.1080/15226514.2014.981244 DOI: 10.1080/15226514.2014.981244
Cocârţă, D. M., Neamţu, S., & Reşetar Deac, A. M. (2016). Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. International journal of Environmental Science and Technology, 13(8), 2025–2036. 10.1007/s13762-016-1031-2 DOI: 10.1007/s13762-016-1031-2
Committee, Effects, O. B., & Atmospheric, P. (1974). Vanadium (1974) (National A). https://doi.org/10.17226/20108.
Dameron, C. T., Howe, P., WHO Task Group on Environmental Health Criteria for Copper., United Nations Environment Programme., International Labour Organisation., World Health Organization., Inter-Organization Programme for the Sound Management of Chemicals., & International Program on Chemical Safety. (1998). Copper. 360.
Degbe, P., Joel, C., Shouop, G., Bongue, D., Beyinda, M. G., Moyo, M. N., & Godfroy, M. (2022). Elemental characterization of quartzite of Pouma sub-division of Cameroon and radiation attenuation properties based on XCOM and GEANT4 Monte Carlo simulation. RADIATION EFFECTS & DEFECTS IN SOLIDS, 177. https://doi.org/10.1080/10420150.2022.2073881
Dhanakumar, S., Murthy, K. R., Solaraj, G., & Mohanraj, R. (2013). Heavy-metal fractionation in surface sediments of the Cauvery River estuarine region, southeastern coast of India. Archives of Environmental Contamination and Toxicology, 65(1), 14–23. 10.1007/s00244-013-9886-4 DOI: 10.1007/s00244-013-9886-4
PCD. (2011). Plan communal de developpement de Pouma. 176.
Edith-Etak, B. T., Shapi, M., Penaye, J., Mimba, M. E., NguemheFil, S. C., Nadasan, D. S., Davies, T. C., & Jordaan, M. A. (2016). Background concentrations of potentially harmful elements in soils of the Kette-Batouri region, eastern Cameroon. Research Journal of Environmental Toxicology, 11(1), 40–54. 10.3923/rjet.2017.40.54 DOI: 10.3923/rjet.2017.40.54
El-Reefy, H. I., Badran, H. M., Sharshar, T., Hilal, M. A., & Elnimr, T. (2014). Factors affecting the distribution of natural and anthropogenic radionuclides in the coastal Burullus Lake. Journal of Environmental Radioactivity, 134, 35–42. DOI: 10.1016/j.jenvrad.2014.02.020
Emmanuel, A., Cobbina, S. J., Adomako, D., Duwiejuah, A. B., & Asare, W. (2014). Assessment of heavy metals concentration in soils around oil filling and service stations in the tamale Metropolis, Ghana. African Journal of Environmental Science and Technology, 8(4), 256–266. 10.5897/ajest2014.1664 DOI: 10.5897/ajest2014.1664
Etame, J., Ngouabe, E. G. T., Ngon, G. F. N., Nida, M. J. N.-N., Suh, C. E., Gerard, M., & Bilong, P. (2013). Mineralogy and geochemistry of active stream sediments from the Kéllé River drainage system (Pouma, Cameroon). Sciences, Technologies & Dévelopment, 14, 35–47.
FAO, & WHO. (1996). Trace elements in human nutrition and health World Health Organization (pp. 1–343). World Health Organization https://apps.who.int/iris/handle/10665/37931
Geise, G., LeGalley, E., & Krekeler, M. P. S. (2011). Mineralogical and geochemical investigations of silicate-rich mine waste from a kyanite mine in Central Virginia: Implications for mine waste recycling. Environmental Earth Sciences, 62(1), 185–196. 10.1007/s12665-010-0513-7 DOI: 10.1007/s12665-010-0513-7
Goyer, R. A., Clarkson, T. W., & Ag, S. (1950). Clinical trials of antihistaminc drugs in the prevention and treatment of the common cold: Report by a special committee of the medical research council large-scale therapeutic field trial. British Medical Journal, 2(4676), 425–429. 10.1136/bmj.2.4676.425 DOI: 10.1136/bmj.2.4676.425
Guembou Shouop, C. J., & Bak, S. (2019). Maze influence to radiological protection around industrial radiographic sources (co-60) under 100 ci. Transactions of the Korean Nuclear Society Autumn Meeting Goyang, Korea, October, 24-25(2019), 3–6.
Guembou Shouop, C. J., Ndontchueng Moyo, M., Nguelem Mekongtso, E. J., Motapon, O., & Strivay, D. (2021). Application of energy dispersive X-ray fluorescence, γ-ray spectrometry and multivariate statistical approach for the classification of soil/sand from Douala – Cameroon. Radiation Physics and Chemistry, 188. 10.1016/j.radphyschem.2021.109589
Gülşen-Rothmund, H. İ., Avşar, Ö., Avşar, U., Kurtuluş, B., & Tunca, E. (2018). Spatial distribution of some elements and elemental contamination in the sediments of Köyceğiz Lake (SW Turkey). Environmental Earth Sciences, 77(14). 10.1007/s12665-018-7724-8
Guo, G., Yuan, T., Wang, W., Li, D., Cheng, J., Gao, Y., & Zhou, P. (2011). Bioavailability, mobility, and toxicity of cu in soils around the Dexing cu mine in China. Environmental Geochemistry and Health, 33(2), 217–224. 10.1007/s10653-010-9334-6 DOI: 10.1007/s10653-010-9334-6
Guy Blanchard, D., Engola Louis, N., Daniel, B., Nkoulou Joseph Emmanuel, N. I., Boniface, K., & Njock Moïse Godfroy, K. (2018). Environmental pollution by heavy metals in the gold mining region of East Cameroon. https://doi.org/10.3844/ajessp.2018.212.225
Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. 10.1016/0043-1354(80)90143-8 DOI: 10.1016/0043-1354(80)90143-8
Hanfi, M. Y., & Yarmoshenko, I. V. (2020). Health risk assessment quantification from heavy metals contamination in the urban soil and urban surface deposited sediment. Journal of Taibah University for Science, 14(1), 285–293. 10.1080/16583655.2020.1735735 DOI: 10.1080/16583655.2020.1735735
Hanfi, M. Y., Yarmoshenko, I. V., Seleznev, A. A., & Zhukovsky, M. V. (2019). The gross beta activity of surface sediment in different urban landscape areas. Journal of Radioanalytical and Nuclear Chemistry, 321(3), 831–839. 10.1007/s10967-019-06657-9 DOI: 10.1007/s10967-019-06657-9
Hans Wedepohl, K. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232. 10.1016/0016-7037(95)00038-2 DOI: 10.1016/0016-7037(95)00038-2
Hazou, E., Zorko, B., Nečemer, M., Haliba, E. M., Aziable, E., Guembou Shouop, C. J., & Tchakpele, K. P. (2021). Heavy metal pollution Assessment using energy-dispersive X-ray fluorescence and multivariate statistical approach of soil from phosphate ore sites, southern region of Togo. Water, Air, and Soil Pollution, 232(12). 10.1007/s11270-021-05439-y
Hurst, F. J. (1989). Recovery of uranium from phosphates: current status and trends. Report of an advisory group meeting organized by the IAEA. Iaea, IAEA-TECDOC-533, 9–15.
IARC. (2007). Human Exposure Assessment Human Exposure Assessment. 1–284.
Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China. PLoS One, 10(5), 1–9. 10.1371/journal.pone.0127736 DOI: 10.1371/journal.pone.0127736
Jude, P. N., Jean Victor, K., Pierre, W., Anoh, N. O., Abasoh, M. E., Malick Rosvelt, D. M., & Tabod, T. C. (2021). Petrographic, morpho-structural and geophysical study of the quartzite deposit in the central part of Pouma, Littoral-Cameroon. Results in Geophysical Sciences, 7, 100019. 10.1016/j.ringps.2021.100019 DOI: 10.1016/j.ringps.2021.100019
Karim, Z., Qureshi, B. A., Mumtaz, M., & Qureshi, S. (2014). Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi - a multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31. 10.1016/j.ecolind.2013.07.020 DOI: 10.1016/j.ecolind.2013.07.020
Kim, J. H., Gibb, H. J., & Howe, P. D. (2006). Cobalt and inorganic cobalt compounds. IPCS Concise International Chemical Assessment Documents, 69, 1–82.
Kusin, F. M., Awang, N. H. C., Hasan, S. N. M. S., Rahim, H. A. A., Azmin, N., Jusop, S., & Kim, K. W. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. Catena, 183, 104229. 10.1016/j.catena.2019.104229 DOI: 10.1016/j.catena.2019.104229
Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165, 454–464. 10.1016/j.catena.2018.02.029 DOI: 10.1016/j.catena.2018.02.029
Kusin, F. M., Rahman, M. S. A., Madzin, Z., Jusop, S., Mohamat-Yusuff, F., Ariffin, M., & Mohd Syakirin, M. Z. (2017). The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 24(2), 1306–1321. 10.1007/s11356-016-7814-7 DOI: 10.1007/s11356-016-7814-7
Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of as, cd, cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 27(2), 185–191. 10.1007/s10653-005-0131-6 DOI: 10.1007/s10653-005-0131-6
Lee, J. S., Lee, S. W., Chon, H. T., & Kim, K. W. (2008). Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong au-Ag mine site, Korea. Journal of Geochemical Exploration, 96(2–3), 231–235. 10.1016/j.gexplo.2007.04.009 DOI: 10.1016/j.gexplo.2007.04.009
Lin, C., Liu, Y., Li, W., Sun, X., & Ji, W. (2014). Speciation, distribution, and potential ecological risk assessment of heavy metals in Xiamen Bay surface sediment. Acta Oceanologica Sinica, 33(4), 13–21. 10.1007/s13131-014-0453-2 DOI: 10.1007/s13131-014-0453-2
Lindeman, C., Oglesbee, T., McLeod, C., & Krekeler, M. P. S. (2020). Mineralogy and geochemistry of the kinnikinic quartzite at the Arco hills silica and gold project in butte county, Idaho: Results of an ore quality spot check and implications for potential plasma furnace processing. Minerals, 10(6), 1–19. 10.3390/min10060523 DOI: 10.3390/min10060523
Liu, X., Wu, J., & Xu, J. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141(2), 257–264. 10.1016/J.ENVPOL.2005.08.048 DOI: 10.1016/J.ENVPOL.2005.08.048
Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96. 10.1016/j.scitotenv.2012.02.053 DOI: 10.1016/j.scitotenv.2012.02.053
Mason, B. (1966). Principles of geochemistry (3rd ed.). John Wiley & Sons Inc. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2240927&msclkid=91fc5d28cf9e11ecac28e91ac04a2a5a
Mohammadi, A. A., Zarei, A., Esmaeilzadeh, M., Taghavi, M., Yousefi, M., Yousefi, Z., Sedighi, F., & Javan, S. (2020). Assessment of heavy metal pollution and human health risks Assessment in soils around an industrial zone in Neyshabur, Iran. Biological Trace Element Research, 195(1), 343–352. 10.1007/s12011-019-01816-1 DOI: 10.1007/s12011-019-01816-1
Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6, 1642–1651. 10.1016/j.mex.2019.07.017 DOI: 10.1016/j.mex.2019.07.017
Muller, G. (1969). Index of Geoaccumulation in sediments of the Rhine River. - references - Scientific Research Publishing. GeoJournal, 2, 108–118.
Organization, WH. (1992). Environmental health criteria 1: Cadmium. Food and Cosmetics Toxicology, 17(1), 78. 10.1016/0015-6264(79)90165-2 DOI: 10.1016/0015-6264(79)90165-2
Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385. 10.1016/J.ECOENV.2015.06.019 DOI: 10.1016/J.ECOENV.2015.06.019
Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment, 23(4), 767–787. 10.1080/10807039.2016.1278519 DOI: 10.1080/10807039.2016.1278519
Raza, M., Bhardwaj, V. R., Ahmad, A. H. M., Mondal, M. E. A., Khan, A., & Khan, M. S. (2010). Provenance and weathering history of archaean Naharmagra quartzite of Aravalli craton, NW Indian shield: Petrographic and geochemical evidence. Geochemical Journal, 44(5), 331–345. 10.2343/geochemj.1.0075 DOI: 10.2343/geochemj.1.0075
Ross, R. B. (1992). Barium Ba. In Metallic materials specification handbook (p. 71). 10.1007/978-1-4615-3482-2_4 DOI: 10.1007/978-1-4615-3482-2_4
Sabiha-Javied, T. M., Chaudhry, M. M., Tufail, M., & Irfan, N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91(1), 94–99. 10.1016/j.microc.2008.08.009 DOI: 10.1016/j.microc.2008.08.009
Seleznev, A. A., Yarmoshenko, I. V., & Malinovsky, G. P. (2019). Assessment of Total amount of surface sediment in urban environment using data on solid matter content in snow-dirt sludge. Environmental Processes, 6(3), 581–595. 10.1007/s40710-019-00383-w DOI: 10.1007/s40710-019-00383-w
Service, H. (2002). Toxicological Profile for Strontium. ATSDR’s Toxicological Profiles, April. https://doi.org/10.1201/9781420061888_ch141.
Service, P. H. (2004). STRONTIUM. April.
Shahin, T. (2021). Geological Characterization of Quartzites, Southwest Gabal Umm Rihiyat, Geological Characterization of Quartzites, Southwest Gabal Umm Rihiyat, North Eastern Desert, Egypt. January.
Shouop, C. J. G., Kamkumo, C. T., Mekongtso, E. J. N., Ateba, J. F. B., Moyo, M. N., Simo, A., & Strivay, D. (2021). Direct submission title: Recovering and restitution of unknown, unidentified, and unlabeled samples in laboratories using EDXRF analysis. MethodsX, 8, 101435. 10.1016/j.mex.2021.101435 DOI: 10.1016/j.mex.2021.101435
Shouop Guembou, J. C., Moyo Ndontchueng, M., Chene, G., Mekongtso Nguelem, J. E., Motapon, O., & Strivay, D. (2019). Simultaneously gamma spectrometry & energy dispersive X-ray fluorescence-based color differentiation analysis of Douala-Bassa area’s soil. Environmental Technology & Innovation, 16, 100486. 10.1016/J.ETI.2019.100486 DOI: 10.1016/J.ETI.2019.100486
Simon-Hertich, B., Wibbertmann, A., Wagner, D., Tomaska, L., & Malcolm, H. (2000). Environmental health Criteria 221 ZINC. Environmental Health Criteria, 221.
Smith, K. S., & Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. Reviews in Economic Geology, 6, 29–70.
Souffit, G. D., Mohamadou, L. L., Guembou Shouop, C. J., Beyala Ateba, J. F., & Saïdou-. (2022). Assessment of trace elements pollution and their potential health risks in the cobalt–nickel bearing areas of Lomié, East Cameroon. Environmental Monitoring and Assessment, 194(2). https://doi.org/10.1007/s10661-022-09776-1
Stoffers, P., Glasby, G. P., Wilson, C. J., Davis, K. R., & Walter, P. (1986). Heavy metal pollution in wellington harbour. New Zealand Journal of Marine and Freshwater Research, 20(3), 495–512. 10.1080/00288330.1986.9516169 DOI: 10.1080/00288330.1986.9516169
Taylor, S. R., & Mclennan, S. M. (1981). The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461), 381–399. 10.1098/rsta.1981.0119 DOI: 10.1098/rsta.1981.0119
Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. 10.1029/95RG00262 DOI: 10.1029/95RG00262
Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. 10.1007/BF02414780 DOI: 10.1007/BF02414780
Tunca, E., Aydın, M., & Şahin, Ü. A. (2016). Interactions and accumulation differences of metal(loid)s in three sea cucumber species collected from the northern Mediterranean Sea. Environmental Science and Pollution Research, 23(20), 21020–21031. 10.1007/s11356-016-7288-7 DOI: 10.1007/s11356-016-7288-7
Tunca, E., Aydın, M., & Şahin, Ü. A. (2018). An ecological risk investigation of marine sediment from the northern Mediterranean coasts (Aegean Sea) using multiple methods of pollution determination. Environmental Science and Pollution Research, 25(8), 7487–7503. 10.1007/s11356-017-0984-0 DOI: 10.1007/s11356-017-0984-0
Tunca, E., Üçüncü, E., Kurtuluş, B., Ozkan, A. D., & Atasagun, S. (2013). Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçaǧa (Turkey). Chemistry and Ecology, 29(8), 754–769. 10.1080/02757540.2013.810724 DOI: 10.1080/02757540.2013.810724
Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192. DOI: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
U.S. Departement of Health and Human and Agency for Toxic Substances and Disease Registry. (2002). Toxicological Profile for Thorium. ATSDR’s Toxicological Profiles, September. https://doi.org/10.1201/9781420061888_ch150.
United Nations. (2017). Guidelines for UNFC to uranium and thorium resources.
US EPA. (1992). Guidelines for Exposure Assessment, EPA/600/Z-92/001. Risk Assessment Forum, Washington, DC, 1992., 57(May), 22888–22938. http://ngha.med.sa/English/MedicalCities/AlMadinah/MedicalDepartments/Pages/default.aspx
USEPA. (1987). The Risk Assessment Guidelines of 1986-EPA/600/8–87/045. US Environmental Protection Agency Washington, D.C., EPA/600/8–87/045, 81.
USEPA. (1989). Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A), I, 289 https://doi.org/EPA/540/1-89/002
USEPA. (1991). Risk assessment guidance for superfund (RAGS), volume I: Human health evaluation manual (HHEM)—Supplemental guidance, interim final. Environmental Protection, I(202), 28.
USEPA. (1996). ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS, 18(7), 723.
USEPA. (2001). Risk Assessment guidance for superfund (RAGS) volume III - part a: Process for conducting probabilistic risk Assessment, appendix B. Office of Emergency and Remedial Response U.S. Environmental Protection Agency, III, 1–385 http://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf
USEPA. (2002). A review of the reference dose and reference concentration process. Epa/630/P-02/002F, December, 1–192. http://www.epa.gov/raf/publications/pdfs/rfd-final.pdf
USEPA. (2009). Integrated risk information system (IRIS).
USEPA. (2012). Drinking water standards and health advisories. EPA 822-S-12-001. https://nepis.epa.gov/Exe/ZyNET.exe/901Q0J00.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery =.
Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena, 125, 200–205. 10.1016/j.catena.2014.10.023 DOI: 10.1016/j.catena.2014.10.023
War, G., Environmental, I., Criteria, H., International, C., Assessment, C., Observed, N., Effect, A., Observed, L., Level, A. E., & Noael, T. (2000). The chemical toxicity of uranium (pp. 67–149).
Warnau, M., Ledent, G., Temara, A., Jangoux, M., & Dubois, P. (1995). Experimental cadmium contamination of the echinoid Paracentrotus lividus: Influence of exposure mode and distribution of the metal in the organism. Marine Ecology Progress Series, 116(1–3), 117–124. 10.3354/meps116117 DOI: 10.3354/meps116117
Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192. 10.1016/j.ecoenv.2014.11.005 DOI: 10.1016/j.ecoenv.2014.11.005
WHO. Regional Office for Europe. (2000a). Chapter 6.9 Mercury General description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000b). Chapter 6.10 Nickel General description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000c). Chapter 6.3 Cadmium General description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000d). Chapter 6.12 Vanadium General Description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000e). Chapter 6.4 Chromium General description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000f). Chapter 6.7 Lead General description. Air Quality Guidelines - Second Edition, Denmark.
WHO. Regional Office for Europe. (2000g). Chapter 6.8 Manganese General description. Air Quality Guidelines - Second Edition, DEnmark.
WHO/Europe. (2007). Levels of lead in children’s blood (ENHIS 2007 fact sheet 4.5). https://www.euro.who.int/en/data-and-evidence/environment-and-health-information-system-enhis/publications/pre-2009/archived-enhis-fact-sheets-2007/levels-of-lead-in-childrens-blood-enhis-2007-fact-sheet-4.5
World Health Organisation. (2009). Aluminium in drinking-water background. Guidelines for Drinking-Water Quality, 2, 29 http://www.who.int/es/
World Health Organization. (2010). Exposure to cadmium: A major public health concern. In Preventing disease through healthy environments (pp. 3–6) http://www.who.int/ipcs/features/cadmium.pdf
World Health Organization Geneva. (1998). Copper. ENVIRONMENTAL HEALTH CRITERIA 200. https://inchem.org/documents/ehc/ehc/ehc200.htm
World Health Organization Geneva. (2005). Mercury in Health Care. August. http://www.who.int/water_sanitation_health/medicalwaste/mercurypolpaper.pdf
Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wan, H., & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78. 10.1016/j.gexplo.2014.08.009 DOI: 10.1016/j.gexplo.2014.08.009
Xie, Y., Chen, T. B., Lei, M., Yang, J., Guo, Q. J., Song, B., & Zhou, X. Y. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82(3), 468–476. 10.1016/j.chemosphere.2010.09.053 DOI: 10.1016/j.chemosphere.2010.09.053
Yang, L., Wang, L., Wang, Y., & Zhang, W. (2015). Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China. Environmental Monitoring and Assessment, 187(5), 1–9. 10.1007/s10661-015-4480-z DOI: 10.1007/s10661-015-4480-z
Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. 10.1016/j.envpol.2005.10.028 DOI: 10.1016/j.envpol.2005.10.028
Zhang, Y., Shao, X., Yin, L., & Ji, Y. (2021). Estimation of inhaled effective doses of uranium and thorium for workers in bayan obo ore and the surrounding public, Inner mongolia, China. International Journal of Environmental Research and Public Health, 18(3), 1–8. 10.3390/ijerph18030987 DOI: 10.3390/ijerph18030987