[en] The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.
Disciplines :
Earth sciences & physical geography Zoology
Author, co-author :
Bianucci, Giovanni; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Lambert, Olivier; D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium
Urbina, Mario; Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú
Merella, Marco; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Collareta, Alberto; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Bennion, Rebecca ; Université de Liège - ULiège > Geology ; D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium
Salas-Gismondi, Rodolfo ; Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú ; Facultad de Ciencias y Filosofía/Centro de Investigación para el Desarrollo Integral y Sostenible, Laboratorios de Investigación y Desarrollo, Universitad Peruana Cayetano Heredia Lima, Lima, Perú
Benites-Palomino, Aldo ; Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú ; Department of Paleontology, University of Zurich, Zurich, Switzerland
Post, Klaas; Natuurhistorisch Museum Rotterdam, Rotterdam, The Netherlands
de Muizon, Christian; Département Origines et Évolution, CR2P (CNRS, MNHN, Sorbonne Université), Muséum National d'Histoire Naturelle, Paris, France
Bosio, Giulia; Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milano, Italy
Di Celma, Claudio; School of Science and Technology, University of Camerino, Camerino, Italy
Malinverno, Elisa; Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milano, Italy
Pierantoni, Pietro Paolo; School of Science and Technology, University of Camerino, Camerino, Italy
Villa, Igor Maria; Institut für Geologie, Universität Bern, Bern, Switzerland
Amson, Eli ; Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany. eli.amson@smns-bw.de
We thank A. Altamirano, A. Martinez Luna, E. Diaz Ramoz, G. Olmedo, J. Chauca-Luyo, M. Laime Molina, M. Burga, M. Martínez-Cáceres, N. Ramirez, P. Giuffra, R. Varas-Malca, and W. Aguirre Diaz for field fossil collection and laboratory assistance; A. Ball, L. Cornish and R. Sabin for access to the Wexford blue whale model and related data, as well as the rest of the staff in the Imaging and Analysis Centre at the NHM London who digitized the model; A. Martinez Luna for his help with the core drilling; A. Risplendente for EPMA analysis on biotite; A. Gioncada for tephra analyses; A. Larramendi for his advice on body density analyses; C. Wimmer-Pfeil and S. Morel for preparing the thin-sections; D. Hagmann, J. Schaeffer, G. Billet, F. Zachos and U. Göhlich for their help with surface models; E. Steurbaut for preliminary biostratigraphic investigation; F. Goussard for capturing the surface model of C. peruvianus’ holotype; G. Bagnoli, C. Chacaltana, T. J. DeVries, K. Gariboldi, W. Landini, G. Molli and G. Sarti for discussions about the geology and palaeontology of the East Pisco Basin; G. Carnevale for fossil fish identifications; N. Fusi for grain-size analysis; N. Valencia for his support both in the field and at the MUSM; Q. Martinez for discussions and help with CT data acquisition; V. Barberini for the assistance in Ar–Ar dating; V. de Buffrénil for preliminary assessment of bone histology at an early stage of the study; V. Fischer for the surface model of a vertebra of Basilosaurus cetoides; V. de Buffrénil and D. Germain for sharing CT data; and W. Aguirre Diaz for the fossil preparation. The stay of R.B. at the MUSM has been funded by a Stan Wood Award from the Palaeontological Association. Grants from the University of Pisa (PRA_2017_0032 to G. Bianucci) and the University of Camerino (FAR 2019, STI000102 to C.D.C.), and the Italian Ministero dell’Istruzione dell’Università e della Ricerca (PRIN Project 2012YJSBMK to G.B.) supported this work. 39 40We thank A. Altamirano, A. Martinez Luna, E. Diaz Ramoz, G. Olmedo, J. Chauca-Luyo, M. Laime Molina, M. Burga, M. Martínez-Cáceres, N. Ramirez, P. Giuffra, R. Varas-Malca, and W. Aguirre Diaz for field fossil collection and laboratory assistance; A. Ball, L. Cornish and R. Sabin for access to the Wexford blue whale model and related data, as well as the rest of the staff in the Imaging and Analysis Centre at the NHM London who digitized the model; A. Martinez Luna for his help with the core drilling; A. Risplendente for EPMA analysis on biotite; A. Gioncada for tephra analyses; A. Larramendi for his advice on body density analyses; C. Wimmer-Pfeil and S. Morel for preparing the thin-sections; D. Hagmann, J. Schaeffer, G. Billet, F. Zachos and U. Göhlich for their help with surface models; E. Steurbaut for preliminary biostratigraphic investigation; F. Goussard for capturing the surface model of C. peruvianus ’ holotype; G. Bagnoli, C. Chacaltana, T. J. DeVries, K. Gariboldi, W. Landini, G. Molli and G. Sarti for discussions about the geology and palaeontology of the East Pisco Basin; G. Carnevale for fossil fish identifications; N. Fusi for grain-size analysis; N. Valencia for his support both in the field and at the MUSM; Q. Martinez for discussions and help with CT data acquisition; V. Barberini for the assistance in39Ar–40Ar dating; V. de Buffrénil for preliminary assessment of bone histology at an early stage of the study; V. Fischer for the surface model of a vertebra of Basilosaurus cetoides; V. de Buffrénil and D. Germain for sharing CT data; and W. Aguirre Diaz for the fossil preparation. The stay of R.B. at the MUSM has been funded by a Stan Wood Award from the Palaeontological Association. Grants from the University of Pisa (PRA_2017_0032 to G. Bianucci) and the University of Camerino (FAR 2019, STI000102 to C.D.C.), and the Italian Ministero dell’Istruzione dell’Università e della Ricerca (PRIN Project 2012YJSBMK to G.B.) supported this work.
Fordyce, R. E. in Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 180–185 (Academic, 2018).
Gingerich, P. D. Evolution of whales from land to sea. Proc. Am. Philos. Soc. 156, 309–323 (2012).
Voss, M., Antar, M. S. M., Zalmout, I. S. & Gingerich, P. D. Stomach contents of the archaeocete Basilosaurus isis: apex predator in oceans of the late Eocene. PLoS ONE 14, e0209021 (2019).
Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017). DOI: 10.1098/rspb.2017.0546
Buffrénil, V. de, Canoville, A., D’Anastasio, R. & Domning, D. P. Evolution of sirenian pachyosteosclerosis, a model-case for the study of bone structure in aquatic tetrapods. J. Mamm. Evol. 17, 101–120 (2010). DOI: 10.1007/s10914-010-9130-1
Clack, J. A. Gaining Ground: The Origin and Evolution of Tetrapods (Indiana Univ. Press, 2012).
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S. & Tiwari, B. N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190–1194 (2007). DOI: 10.1038/nature06343
Burin, G., Park, T., James, T. D., Slater, G. J. & Cooper, N. The dynamic adaptive landscape of cetacean body size. Curr. Biol. https://doi.org/10.1016/j.cub.2023.03.014 (2023).
Sander, P. M. et al. Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science 374, eabf5787 (2021). DOI: 10.1126/science.abf5787
Houssaye, A., Martin Sander, P. & Klein, N. Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr. Comp. Biol. 56, 1349–1369 (2016). DOI: 10.1093/icb/icw120
Cooper, L. N. et al. Aquatic habits of cetacean ancestors: integrating bone microanatomy and stable isotopes. Integr. Comp. Biol. 56, 1370–1384 (2016). DOI: 10.1093/icb/icw119
Di Celma, C. et al. Towards deciphering the Cenozoic evolution of the East Pisco Basin (southern Peru). J. Maps 18, 397–412 (2022). DOI: 10.1080/17445647.2022.2072780
Houssaye, A., Tafforeau, P., Muizon, Cde & Gingerich, P. D. Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10, e0118409 (2015). DOI: 10.1371/journal.pone.0118409
Dewaele, L. et al. Hypersalinity drives convergent bone mass increases in Miocene marine mammals from the Paratethys. Curr. Biol. 32, 248–255 (2022). DOI: 10.1016/j.cub.2021.10.065
Gingerich, P. D., Amane, A. & Zouhri, S. Skull and partial skeleton of a new pachycetine genus (Cetacea, Basilosauridae) from the Aridal Formation, Bartonian middle Eocene, of southwestern Morocco. PLoS ONE 17, e0276110 (2022). DOI: 10.1371/journal.pone.0276110
Kellogg, R. A review of the Archaeoceti. Carn. Inst. Wash. 482, 1–366 (1936).
Uhen, M. D. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. Pap. Paleontol. 34, 1–222 (2004).
Gingerich, P. D. Stromerius nidensis, new archaeocete (Mammalia, Cetacea) from the upper Eocene Qasr el-Sagha Formation, Fayum, Egypt. Contrib. Mus. Paleontol. Univ. Michigan 31, 363–378 (2007).
Moran, M. M. et al. Intervertebral and epiphyseal fusion in the postnatal ontogeny of cetaceans and terrestrial mammals. J. Mamm. Evol. 22, 93–109 (2015). DOI: 10.1007/s10914-014-9256-7
Martínez-Cáceres, M., Lambert, O. & Muizon, C. de. The anatomy and phylogenetic affinities of Cynthiacetus peruvianus, a large Dorudon-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru. Geodiversitas 39, 7–163 (2017).
Anné, J., Tumarkin-Deratzian, A. R., Cuff, H. J., Orsini, P. & Grandstaff, B. Acromegaly in a hog badger (Arctonyx collaris). Proc. Acad. Nat. Sci. Phila. 167, 49–56 (2019). DOI: 10.1635/053.167.0104
Gresky, J., Sokiranski, R., Witzmann, F. & Petiti, E. The oldest case of osteopetrosis in a human skeleton: exploring the history of rare diseases. Lancet Diabetes Endocrinol. 8, 806–808 (2020). DOI: 10.1016/S2213-8587(20)30307-7
Van Benenden, P.-J. &; Gervais, P. Ostéographie des Cétacés (Arthus Bertrand, 1880).
Buffrénil, V. de, Ricqlès, A., de, Ray, C. E. & Domning, D. P. Bone histology of the ribs of the archaeocetes (Mammalia: Cetacea). J. Vertebr. Paleontol. 10, 455–466 (1990). DOI: 10.1080/02724634.1990.10011828
Amson, E., Billet, G. & Muizon, C. de. Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure. Proc. R. Soc. B 285, 20180270 (2018). DOI: 10.1098/rspb.2018.0270
Domning, D. P. & Buffrénil, V. de. Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar. Mammal Sci. 7, 331–368 (1991). DOI: 10.1111/j.1748-7692.1991.tb00111.x
Gingerich, P. D. Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). J. Mamm. Evol. 23, 17–31 (2016). DOI: 10.1007/s10914-015-9304-y
Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976). DOI: 10.1093/icesjms/36.3.259
Taylor, M. A. Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist. Biol. 14, 15–31 (2000). DOI: 10.1080/10292380009380550
Houssaye, A. ‘Pachyostosis’ in aquatic amniotes: a review. Integr. Zool. 4, 325–340 (2009). DOI: 10.1111/j.1749-4877.2009.00146.x
Ricqlès, A. de & Buffrénil, V. de in Secondary Adaptation of Tetrapods to Life in Water (eds Mazin, J. & Buffrénil, V.) 289–310 (Dr Friedrich Pfeil, 2001).
Wall, W. P. The correlation between high limb-bone density and aquatic habits in recent mammals. J. Paleontol. 57, 197–207 (1983).
Clementz, M. T., Goswami, A., Gingerich, P. D. & Koch, P. L. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition. J. Vertebr. Paleontol. 26, 355–370 (2006). DOI: 10.1671/0272-4634(2006)26[355:IRFEWA]2.0.CO;2
Gingerich, P. D., Antar, M. S. M. & Zalmout, I. S. Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales. PLoS ONE 14, e0230596 (2019).
Gingerich, P. D., Smith, B. H. & Simons, E. L. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249, 154–157 (1990). DOI: 10.1126/science.249.4965.154
Buchholtz, E. A. in The Emergence of Whales (ed Thewissen, J.G.M.) 325–351 (Springer New York, 1998).
Kojeszewski, T. & Fish, F. E. Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. J. Exp. Biol. 210, 2411–2418 (2007). DOI: 10.1242/jeb.02790
Fish, F. E. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance. J. Exp. Biol. 201, 2867–2877 (1998). DOI: 10.1242/jeb.201.20.2867
Molnar, J. L., Pierce, S. E., Bhullar, B.-A. S., Turner, A. H. & Hutchinson, J. R. Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. R. Soc. Open Sci. 2, 150439 (2015). DOI: 10.1098/rsos.150439
Gingerich, P. D. Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29, 429–454 (2003). DOI: 10.1666/0094-8373(2003)029<0429:LTIEWE>2.0.CO;2
Gutarra, S. et al. Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc. R. Soc. B 286, 20182786 (2019). DOI: 10.1098/rspb.2018.2786
Wang, W., Shang, Q., Cheng, L., Wu, X. C. & Li, C. Ancestral body plan and adaptive radiation of sauropterygian marine reptiles. iScience 25, 105635 (2022). DOI: 10.1016/j.isci.2022.105635
Verberk, W. C. E. P. et al. Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proc. R. Soc. B 287, 20200488 (2020). DOI: 10.1098/rspb.2020.0488
Lovegrove, B. G. & Mowoe, M. O. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals. J. Evol. Biol. 26, 1317–1329 (2013). DOI: 10.1111/jeb.12138
Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl Acad. Sci. USA 112, 5093–5098 (2015). DOI: 10.1073/pnas.1419823112
Saarinen, J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. R. Soc. B 281, 20132049 (2014). DOI: 10.1098/rspb.2013.2049
Price, S. A. & Hopkins, S. S. B. The macroevolutionary relationship between diet and body mass across mammals. Biol. J. Linn. Soc. 115, 173–184 (2015). DOI: 10.1111/bij.12495
Vermeij, G. J. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era. Proc. R. Soc. B 278, 2362–2368 (2011). DOI: 10.1098/rspb.2010.2362
Perch-Nielsen, K. in Plankton Stratigraphy (eds Bolli, H. M. et al.) 427–554 (Cambridge Univ. Press, 1985).
Young, J. R., Bown, P. R. & Lees, J. A. Nannotax 3 http://www.mikrotax.org/Nannotax3 (International Nannoplankton Association, 2022).
Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proc. 2nd International Conference Planktonic Microfossils (ed. Farinacci, A.) Vol. 2, 739–785 (Tecnoscienza, 1971).
Agnini, C. et al. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 47, 131–181 (2014). DOI: 10.1127/0078-0421/2014/0042
Blott, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001). DOI: 10.1002/esp.261
Bosio, G. et al. Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru). Newsl. Stratigr. 53, 213–247 (2020). DOI: 10.1127/nos/2019/0525
Gillet, A., Frédérich, B. & Parmentier, E. Divergent evolutionary morphology of the axial skeleton as a potential key innovation in modern cetaceans. Proc. R. Soc. B 286, 20191771 (2019). DOI: 10.1098/rspb.2019.1771
R Core Team. R: A Language and Environment for Statistical Computing https://www.r-project.org/ (2023).
Wickham, H. ggplot2: elegant graphics for data analysis https://ggplot2.tidyverse.org (2016).
Padian, K. & Lamm, E.-T. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation 285 (Univ. California Press, 2013).
Stein, K. & Sander, P. M. in Methods in Fossil Preparation: Proceedings of the First Annual Fossil Preparation and Collections Symposium (eds Brown, M. A. et al.) 69–80 (Petrified Forest National Park, 2009).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). DOI: 10.1038/nmeth.2089
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). DOI: 10.1038/nmeth.2019
Canoville, A., Buffrénil, V. de & Laurin, M. Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biol. J. Linn. Soc. 118, 706–733 (2016). DOI: 10.1111/bij.12779
Hayashi, S. et al. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8, e59146 (2013). DOI: 10.1371/journal.pone.0059146
Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021). DOI: 10.1186/s12915-021-01016-1
Dumont, M. et al. Inner architecture of vertebral centra in terrestrial and aquatic mammals: a two-dimensional comparative study. J. Morphol. 274, 570–584 (2013). DOI: 10.1002/jmor.20122
Surowiec, R. K., Allen, M. R. & Wallace, J. M. Bone hydration: how we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 16, 101161 (2022). DOI: 10.1016/j.bonr.2021.101161
Buffrénil, V. de, Sire, J.-Y. & Schoevaert, D. Comparaison de la structure et du volume squelettiques entre un delphinidé (Delphinus delphis L.) et un mammifère terrestre (Panthera leo L.). Can. J. Zool. 64, 1750–1756 (1986).
Buffrénil, V. de & Schoevaert, D. Données quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Müller) (Sirenia, Dugongidae). Can. J. Zool. 67, 2107–2119 (1989).
Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013). DOI: 10.1093/nar/gks1155
Prange, H. D., Anderson, J. F. & Rahn, H. Scaling of skeletal mass to body mass in birds and mammals. Am. Nat. 113, 103–122 (1979). DOI: 10.1086/283367
Buffrénil, V. de, Collet, A. & Pascal, M. Ontogenetic development of skeletal weight in a small delphinid, Delphinus delphis (Cetacea, Odontoceti). Zoomorphology 105, 336–344 (1985).
Buffrénil, V. de. Contribution à l’Étude des Spécialisations de la Structure Osseuse des Mammifères Marins. PhD thesis (Univ. Paris, 1990).
Robineau, D. & Buffrénil, V. de. Nouvelles données sur la masse du squelette chez les grands cétacés (Mammalia, Cetacea). Can. J. Zool. 71, 828–834 (1993). DOI: 10.1139/z93-108
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package v. 3.1-162 (CRAN, 2016).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). DOI: 10.1093/bioinformatics/btg412
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019). DOI: 10.1371/journal.pbio.3000494
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016). DOI: 10.1111/2041-210X.12512
Garnier, S. et al. viridis(Lite)—Colorblind-Friendly Color Maps for R 10.5281/zenodo.4679424 (2023).
Blender Online Community. Blender—a 3D Modelling and Rendering Package http://www.blender.org (2018).
Bianucci, G. et al. 3D models related to the publication: a heavyweight early whale pushes the boundaries of vertebrate morphology Giovanni. MorphoMuseuM 10.18563/journal.m3.187 (2023).
Long, J. H., Pabst, D. A., Shepherd, W. R. & McLellan, W. A. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200, 65–81 (1997). DOI: 10.1242/jeb.200.1.65
Travis, R. B., Gonzales, G. & Pardo, A. in Circum-Pacific Energy and Mineral Resources (eds Halbouty, M. et al.) 331–338 (American Association of Petroleum Geologists, 1976).
Thornburg, T. & Kulm, L. D. Sedimentary basins of the Peru continental margin: structure, stratigraphy, and Cenozoic tectonics from 6°S to 16°S latitude. Mem. Geol. Soc. Am. 154, 393–422 (1981).
Malinverno, E. et al. Biostratigraphic overview and paleoclimatic-paleoceanographic implications of the middle-upper Eocene deposits from the Ica River Valley (East Pisco Basin, Peru). Palaeogeogr. Palaeoclimatol. Palaeoecol. 578, 110567 (2021).
Bianucci, G. & Collareta, A. An overview of the fossil record of cetaceans from the East Pisco Basin (Peru). Boll. Soc. Paleontol. Ital. 61, 19–60 (2022).
Bosio, G. et al. Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower Miocene sediments of southwestern Peru. J. South Am. Earth Sci. 118, 103909 (2022). DOI: 10.1016/j.jsames.2022.103909
Collareta, A. et al. A rhinopristiform sawfish (genus Pristis) from the middle Eocene (Lutetian) of southern Peru and its regional implications. Carnets Géol. 20, 91–105 (2020). DOI: 10.4267/2042/70759