Three-minute nebulization of gentamicin in healthy dogs results in therapeutic concentrations in bronchoalveolar lavage fluid while remaining below the toxic range values in blood.
bronchoalveolar lavage; nebulization; small animal respiratory tract; General Veterinary; General Medicine
Abstract :
[en] [en] OBJECTIVE: To determine and compare the concentration of gentamicin in the lower airways and serum of healthy spontaneously breathing dogs after nebulization with 5% undiluted gentamicin during 3 versus 10 minutes.
ANIMALS: 10 healthy experimental Beagles.
METHODS: This was a prospective crossover study. A standardized bronchoalveolar lavage (BAL) procedure was performed in each dog after 1 week of administration of each of 2 different gentamicin nebulization protocols separated by a 1-week washout period. The 2 protocols consisted of nebulization of 5% undiluted gentamicin (50 mg/mL) twice daily either during 10 minutes per session (± 95 mg; 10-minute protocol) or 3 minutes per session (± 28 mg; 3-minute protocol). BAL fluid (BALF) was obtained under general anesthesia using a bronchoscope within 15 minutes after administration of the last nebulization. Blood was collected within 5 minutes after BALF collection. BALF and serum gentamicin concentrations were determined by particle-enhanced turbidimetric inhibition immunoassay. Concentrations between protocols were compared using a paired t test.
RESULTS: Both BALF and serum gentamicin concentrations were higher after the 10-minute protocol compared with the 3-minute protocol (mean ± SD: 2.41 ± 0.87 mg/L vs 1.25 ± 0.31 mg/L, P = .001; and 1.02 ± 0.59 mg/L vs 0.31 ± 0.24 mg/L, P < .0001 in BALF and serum, respectively), while the BALF-to-serum ratio did not differ between the protocols (3.75 [1.37 to 5.75] (median [IQR]) in the 3-minute protocol vs 2.48 [2.02 to 2.67] in the 10-minute protocol; P = .754).
CLINICAL RELEVANCE: A 3-minute nebulization of gentamicin seems to achieve sufficient concentrations of gentamicin in the BALF to have good efficacy against aminoglycoside-sensitive bacteria while remaining below the toxic range values in blood.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Lyssens, Aurélie ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Biénès, Tom; Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health Research Unit, ULiège, Liège, Belgium
Fastrès, Aline ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Machiels, Hélène ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Moreau, Camille ; Université de Liège - ULiège > Département d'Enseignement et de Clinique des animaux de Compagnie (DCC) > Oncologie médicale des animaux de compagnie
Tutunaru, Alexandru-Cosmin ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
DEVILLE, Marine ; Centre Hospitalier Universitaire de Liège - CHU > > Service de toxicologie clinique, médicolégale, environnementale et en entreprise
Charlier, Corinne ; Centre Hospitalier Universitaire de Liège - CHU > > Service de toxicologie clinique, médicolégale, environnementale et en entreprise
Clercx, Cécile ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Billen, Frédéric ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Language :
English
Title :
Three-minute nebulization of gentamicin in healthy dogs results in therapeutic concentrations in bronchoalveolar lavage fluid while remaining below the toxic range values in blood.
Publication date :
10 February 2024
Journal title :
American Journal of Veterinary Research
ISSN :
0002-9645
eISSN :
1943-5681
Publisher :
American Veterinary Medical Association (AVMA), United States
Bergogne-Berezin E, Vallee E. Pharmacokinetics of antibiotics in respiratory tissues and fluids. In: Pennington JE. Respiratory Infections: Diagnosis and Management. 3rd ed. Raven Press; 1994:715–740.
Lipworth B. Pharmacokinetics of inhaled drugs. Br J Clin Pharmacol. 1996;42(6):697–705. doi:10.1046/j.1365-2125.1996.00493.x
Canonne A, Roels E, Menard M, Desquilbet L, Billen F, Clercx C. Clinical response to 2 protocols of aerosolized gentamicin in 46 dogs with Bordetella bronchiseptica infection (2012–2018). J Vet Intern Med. 2020;34(5):2078–2085. doi:10.1111/jvim.15843
Goldstein I, Wallet F, Robert J, Becquemin MH, Marquette CH, Rouby JJ. Lung tissue concentrations of nebulized amikacin during mechanical ventilation in piglets with healthy lungs. Am J Respir Crit Care Med. 2002;165(2):171–175. doi:10.1164/ajrccm.165.2.2107025
Boisson M, Mimoz O, Hadzic M, et al. Pharmacokinetics of intravenous and nebulized gentamicin in critically ill patients. J Antimicrob Chemother. 2018;73(10): 2830–2837. doi:10.1093/jac/dky239
Hennessey P, Kohn F, Bickford S, Loy JI. In vitro activity of gentamicin against bacteria isolated from domestic animals. Vet Med Small Anim Clin. 1971;66(11):1118–1122. PMID: 5209421
Tam V, Kabbara S, Vo G, Schilling AN, Coyle EA. Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(8):2626–2631. doi:10.1128/AAC.01165-05
Spangler W, Adelman R, Conzelman G, Ishizaki G. Gentamicin nephrotoxicity in the dog: sequential light and electron microscopy. Vet Pathol. 1980;17(2): 206–217. doi:10.1177/030098588001700209
Destache C. Aminoglycoside-induced nephrotoxicity – a focus on monitoring: a review of literature. J Pharm Pract. 2014;27(2):562–566. doi:10.1177/0897190014546102
Skopnik H, Wallraf R, Nies B, Tröster K, Heimann G. Pharmacokinetics and antibacterial activity of daily gentamicin. Arch of Dis Child. 1992;67:57–61. doi:10.1136/adc.67.1_spec_no.57
Prüller S, Rensch U, Meemken D, et al. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from swine and companion animals and detection of resistance genes. PLoS One. 2015;10(8):e0135703. doi:10.1371/journal.pone.0135703
Murray M, Govan J, Doherty C, et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2011;183(4): 491–499. doi:10.1164/rccm.201005-0756OC
Rennard S, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol. 1985;60(2): 532–538. doi:10.1152/jappl.1986.60.2.532
Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–99. doi:10.1093/infdis/155.1.93
Zar H, Weinberg E, Binns H, Gallie F, Mann MD. Lung deposition of aerosol—a comparison of different spacers. Arch Dis in Child. 2000;82(6):495–498. doi:10.1136/adc.82.6.495
DiBlasi R. Clinical controversies in aerosol therapy for infants and children. Respir Care. 2015;60(6):894–914. doi:10.4187/respcare.04137
Bexfield N, Foale R, Davison L, Watson PJ, Skelly BJ, Herrtage ME. Management of 13 cases of canine respiratory disease using inhaled corticosteroids. J Small Anim Pract. 2006;47(7):377–382. doi:10.1111/j.1748-5827.2006.00028.x
Canonne A, Bolen G, Peeters D, Billen F, Clercx C. Longterm follow-up in dogs with idiopathic eosinophilic bronchopneumopathy treated with inhaled steroid therapy. J Small Anim Pract. 2016;57(10):537–542. doi:10.1111/jsap.12529
Hirt R, Haderer A, Bilek A. Effectiveness of inhaled glucocorticoids in canine chronic inflammatory respiratory tract disease. Wiener Tierärztlichen Monatsschrift. 2008;92(1):45–51.
Cohn L, DeClue A, Cohen R, Reinero C. Effects of fluticasone propionate dosage in an experimental model of feline asthma. J Feline Med Surg. 2010;12(2):91–96. doi:10.1016/j.jfms.2009.05.024
Chow K, Tyrrell D, Yang M, Anderson GA, Mansfield CS. Scintigraphic assessment of deposition of radiolabelled fluticasone delivered from a nebulizer and metered dose inhaler in 10 healthy dogs. J Vet Intern Med. 2017;31(6):1849–1857. doi:10.1111/jvim.14832
Carranza Valencia A, Hirt R, Kampner D, et al. Comparison of pulmonary deposition of nebulized 99mtechnetium-diethylenetriamine-pentaacetic acid through 3 inhalation devices in healthy dogs. J Vet Intern Med. 2021;35(2):1080–1087. doi:10.1111/jvim.16064
Dehard S, Bernaerts F, Peeters D, et al. Comparison of bronchoalveolar lavage cytospins and smears in dogs and cats. J Am Anim Hosp Assoc. 2008;44(6):285–294. doi:10.5326/0440285
Dubois N, Sqalli G, Gilson M, Charlier C. Analytical validation of a quantitative method for therapeutic drug monitoring on the Alinity®c Abbott. Ann Biol Clin. 2020;78(2):147–155. doi:10.1684/abc.2020.1535
Biénès T, Lyssens A, Machiels H, et al. Intranasal and serum gentamicin concentration: comparison of three topical administration protocols in dogs. Vet Sci. 2023;10(8):490. doi:10.3390/vetsci10080490
Anderton T, Maskell D, Preston A. Ciliostasis is a key early event during colonization of canine tracheal tissue by Bordetella bronchiseptica. Microbiology (Reading). 2004;150(9):2843–2855. doi:10.1099/mic.0.27283-0
Skinner J, Pilione M, Shen H, Harvill ET, Yuk MH. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol. 2005;175(7):4647–4652. doi:10.4049/jimmunol.175.7.4647
Cattelan N, Dubey P, Arnal L, Yantorno OM, Deora R. Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis. 2016;74(1):108. doi:10.1093/femspd/ftv108
Hawkins E, Boothe D, Guinn A, Aucoin DP, Ngyuen J. Concentration of enrofloxacin and its active metabolite in alveolar macrophages and pulmonary epithelial lining fluid in dogs. J Vet Pharmacol Ther. 1998;21(1):18–23. doi:10.1046/j.1365-2885.1998.00103.x
Melamies MA, Järvinen AK, Seppälä KM, Rita HJ, Rajamäki MM. Comparison of results for weight-adjusted and fixed-amount bronchoalveolar lavage techniques in healthy Beagles. Am J Vet Res. 2011;72(5):694–698. doi:10.2460/ajvr.72.5.694
Marcy T, Merrill W, Rankin J, Reynolds HY. Limitations of using urea to quantify epithelial lining fluid recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1987;135(6): 1276–1280. doi:10.1164/arrd.1987.135.6.1276
Reagan K, Sykes J. Canine infectious respiratory disease. Vet Clin North Am Small Anim Pract. 2020;50(2):405-418. doi:10.1016/j.cvsm.2019.10.009
Chalker V. Canine mycoplasmas. Res Vet Sci. 2005;79(1): 1–8. doi:10.1016/j.rvsc.2004.10.002
Taylor-Robinson D, Bébéar C. Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J Antimicrob Chemother. 1997;40(5):622–630. doi:10.1093/jac/40.5.622
Dowling P. Aminoglycosides and aminocyclitols. In: Antimicrobial Therapy in Veterinary Medicine. 5th ed. Wiley Blackwell; 2013:233–255.
Bucki E, Giguère S, Macpherson M, Davis R. Pharmacokinetics of once-daily amikacin in healthy foals and therapeutic drug monitoring in hospitalized equine neonates. J Vet Intern Med. 2004;18(5):728–733. doi:10.1892/0891-6640(2004)18<728:pooaih>2.0.co;2
Freeman C, Nicolau D, Belliveau P, Nightingale CH. Oncedaily dosing of aminoglycosides: review and recommendations for clinical practice. J Antimicrob Chemother. 1997;39(6):677–686. doi:10.1093/jac/39.6.677
Lent-Evers N, Mathot R, Geus W, van Hout BA, Vinks AA. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit. 1999;21(1):63–73. doi:10.1097/00007691-199902000-00010
Rivière E, Silver G, Coppoc G, Richardson RC. Gentamicin aerosol therapy in 18 dogs: failure to induce detectable serum concentrations of the drug. J Am Vet Med Assoc. 1981;179(2):166–168.
Saeed H, Mohsen M, Fink J, et al. Fill volume, humidification and heat effects on aerosol delivery and fugitive emissions during noninvasive ventilation. J Drug Deliv Sci Technol. 2017;39:372–378. doi:10.1016/j.jddst.2017.04.026
Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med. 2020;167:105987. doi:10.1016/j.rmed.2020.105987
Ari A. Jet, mesh and ultrasonic nebulizers: an evaluation of nebulizers for better clinical practice. Eur J Pulm. 2014;16(5):1–7. doi:10.5152/ejp.2014.00087
Hashmi N, Matthews G, Martin A, Lansley AB, Forbes B. Effect of mucus on transepithelial drug delivery. J Aerosol Med 1999;12:139.
Fernandez T, Casan C. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240–246. doi:10.1016/j.arbres.2012.02.003
Dhanani J, Fraser J, Chan KH, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. Crit Care. 2016;20(1):269. doi:10.1186/s13054-016-1448-5