Achondrites; Core formation; Magma ocean; Moderately siderophile elements; Planetary differentiation; Geochemistry and Petrology
Abstract :
[en] Moderately siderophile elements (MSEs) are potential tracers of the thermodynamic conditions prevailing during planetary core formation because their metal–silicate partition coefficients (Dmet/sil) vary as a function of P, T, and oxygen fugacity (fO2). Those properties result in the production of planetary mantles with unique MSE depletion signatures. Among the MSEs, Ni and Co are reliable barometers in magma oceans because their Dmet/sil values are strongly correlated with pressure, decreasing by almost 3 orders of magnitude between 1 bar and 100 GPa. Current pressure-dependent expressions of Dmet/sil were calibrated based on experiments performed under relatively oxidizing conditions, mostly at fO2 slightly below the iron–wüstite Fe–FeO buffer (IW), which is relevant to the mantles of Earth and Mars. However, planets and asteroids formed under a wide range of redox conditions, from Mercury, the most reduced (∼IW − 5.5), to the most oxidized angrite parent body (IW − 1.5 to IW + 1). In this study, we performed and analyzed 38 metal–silicate partitioning experiments over a wide range of pressures (1 bar to 26 GPa) and oxygen fugacities (IW − 6.4 to IW − 1.9) to expand the available Ni and Co Dmet/sil values to reducing conditions. We then parameterized 255 Ni and 194 Co Dmet/sil values as a function of T (1573–5700 K), P (1 bar to 100 GPa), and fO2 (IW − 6.4 to IW + 0.2). We also modeled the evolution of Ni and Co Dmet/sil values along the liquidus of a chondritic mantle at various P and fO2 conditions to investigate the thermodynamic conditions of various planetary bodies’ magma oceans. The P and fO2 conditions we obtained for Earth, Mars, the Moon, and Vesta are consistent with previous studies using similar methods, and the pressure during core formation is strongly correlated to planetary size. Finally, we also applied our model to several achondrite parent bodies; our results indicate a wide variety of objects, from the asteroid-sized, oxidized angrite parent body to the planet-sized, highly reduced aubrite parent body.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Cartier, Camille ; Université de Lorraine, CNRS, CRPG, Nancy, France
Llado, Laurie ; Université de Liège - ULiège > Geology ; Université de Lorraine, CNRS, CRPG, Nancy, France
FP7 - 209035 - EARLY EARTH - Early Earth evolution: chemical differentiation vs. mantle mixing
Funders :
ERC - European Research Council EU - European Union INSU - Institut National des Sciences de l'Univers AvH - Alexander von Humboldt-Stiftung
Funding text :
The authors thank R. Dasgupta for handling this manuscript, and D. Grewal and an anonymous reviewer for constructive comments. C. Cartier thanks R. Fischer, K. Righter, and D. van Acken for discussions, and R. Dennen for its assistance with English revisions. The IHPV and piston-cylinder experiments were supported by the von Humboldt Foundation and a Marie Curie Intra-European Fellowship (SULFURON-MERCURY – 327046). The evacuated silica tube experiments received funding from the French PNP program (INSU-CNRS). The multi-anvil experiments received funding from the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013 Grant Agreement 209035) and from the French PNP program (INSU-CNRS). The multi-anvil apparatus at the Laboratoire Magmas et Volcans is financially supported by the Centre National de la Recherche Scientifique (Instrument National de l’INSU).
Andrault, D., Bolfan-Casanova, N., Nigro, G., Lo, B.M.A., Garbarino, G., Mezouar, M., Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304 (2011), 251–259.
Asahara, Y., Kubo, T., Kondo, T., Phase relations of a carbonaceouus chondrite at lower mantle conditions. Phys. Earth Planet. Inter. 143 (2004), 421–432.
Barrat, J.A., Chaussidon, M., Yamaguchi, A., Beck, P., Villeneuve, J., Byrne, D.J., Broadley, M.W., Marty, B., A 4,565-My-old andesite from an extinct chondritic protoplanet. Proc. Natl. Acad. Sci. U. S. A. 118 (2021), 1–7.
Barrat, J., Greenwood, R.C., Verchovsky, A., Gillet, P., Bollinger, C., Langlade, J., Liorzou, C., Franchi, I.A., Barrat, J., Greenwood, R.C., Verchovsky, A., Gillet, P., Bollinger, C., Crustal differentiation in the early solar system : clues from the unique achondrite Northwest Africa 7325. Geochim. Cosmochim. Acta 168 (2015), 280–292.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., Koepke, J., A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. Am. Mineral. 87 (2002), 1717–1726.
Berthet, S., Malavergne, V., Righter, K., Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochim. Cosmochim. Acta 73 (2009), 6402–6420.
Bouhifd, M.A., Andrault, D., Bolfan-Casanova, N., Hammouda, T., Devidal, J.L., Metal-silicate partitioning of Pb and U: Effects of metal composition and oxygen fugacity. Geochim. Cosmochim. Acta 114 (2013), 13–28.
Bouhifd, M.A., Boyet, M., Cartier, C., Hammouda, T., Bolfan-Casanova, N., Devidal, J.L., Andrault, D., Superchondritic Sm/Nd ratio of the Earth: Impact of Earth's core formation. Earth Planet. Sci. Lett. 413 (2015), 158–166.
Bouhifd, M.A., Jephcoat, A.P., The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth Planet. Sci. Lett. 209 (2003), 245–255.
Bouhifd, M.A., Jephcoat, A.P., Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet. Sci. Lett. 307 (2011), 341–348.
Boujibar, A., Andrault, D., Bouhifd, M.A., Bolfan-Casanova, N., Devidal, J.-L.-L., Trcera, N., Metal-silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett. 391 (2014), 42–54.
Brennan, M.C., Fischer, R.A., Irving, J.C.E., Core formation and geophysical properties of Mars. Earth Planet. Sci. Lett., 530, 2020, 115923.
Briaud, A., Ganino, C., Fienga, A., Mémin, A., Rambaux, N., The lunar solid inner core and the mantle overturn. Nature, 617, 2023.
Carignan, J., Hild, P., Mevelle, G., Morel, J., Yeghicheyan, D., Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand. Newsl. 25 (2001), 187–198.
Cartier, C., Hammouda, T., Boyet, M., Bouhifd, M.A., Devidal, J.L., Redox control of the fractionation of niobium and tantalum during planetary accretion and core formation. Nat. Geosci. 7 (2014), 573–576.
Cartier, C., Hammouda, T., Doucelance, R., Boyet, M., Devidal, J.L., Moine, B., Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5GPa. Geochim. Cosmochim. Acta 130 (2014), 167–187.
Cartier, C., Namur, O., Nittler, L.R., Weider, S.Z., Crapster-Pregont, E., Vorburger, A., Franck, E.A., Charlier, B., No FeS layer in Mercury? Evidence from Ti/Al measured by MESSENGER. Earth Planet. Sci. Lett., 534, 2020, 116108.
Cartier, C., Wood, B.J., The role of reducing conditions in building Mercury. Elements 15 (2019), 39–45.
Casanova, I., Keil, K., Newsom, H.E., Composition of metal in aubrites: Constraints on core formation. Geochim. Cosmochim. Acta 57 (1993), 675–682.
Chabot, N.L., Draper, D.S., Agee, C.B., Conditions of core formation in the Earth : Constraints from Nickel and Cobalt partitioning. Geochim. Cosmochim. Acta 69 (2005), 2141–2151.
Corgne, A., Keshav, S., Wood, B.J., McDonough, W.F., Fei, Y., Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim. Cosmochim. Acta 72 (2008), 574–589.
Ćuk, M., Gladman, B.J., Nesvorný, D., Hungaria asteroid family as the source of aubrite meteorites. Icarus 239 (2014), 154–159.
Dehant, V., Campuzano, S.A., De Santis, A., van Westrenen, W., Structure, Materials and Processes in the Earth's Core and Mantle. Surv. Geophys. 43 (2022), 263–302.
Delano J. W. 1986. Abdundances of Cobalt, Nickel, and Volatiles in the Silicate Portion of the Moon. In: Origin of the Moon pp. 232–247.
Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., Morbidelli, A., Identification of a primordial asteroid family constrains the original planetesimal population. Science. 357 (2017), 1026–1029.
DeMeo, F.E., Burt, B.J., Marsset, M., Polishook, D., Burbine, T.H., Carry, B., Binzel, R.P., Vernazza, P., Reddy, V., Tang, M., Thomas, C.A., Rivkin, A.S., Moskovitz, N.A., Slivan, S.M., Bus, S.J., Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus, 380, 2022.
Dreibus, G., Wänke, H., The Bulk Composition of the Eucrite Parent Asteroid and its Bearing on Planetary Evolution. Zeitschrift Für Naturforsch. 35 (1980), 204–216.
Dreibus, G., Bruckner, J., Wanke, H., On the Core Mass of the Asteroid Vesta. Meteorit. Planet. Sci. A, 36, 1997.
Fischer, R.A., Nakajima, Y., Campbell, A.J., Frost, D.J., Harries, D., Langenhorst, F., Miyajima, N., Pollok, K., Rubie, D.C., High pressure metal-silicate partitioning of Ni Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167 (2015), 177–194.
Floss, C., Taylor, L.A., Promprated, P., Rumble, D., Northwest Africa 011: A “Eucritic” basalt from a non-eucrite parent body. Meteorit. Planet. Sci. 40 (2005), 343–360.
Fogel, R.A., Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochim. Cosmochim. Acta 69 (2005), 1633–1648.
Fornasier, S., Migliorini, A., Dotto, E., Barucci, M.A., Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission. Icarus 196 (2008), 119–134.
Frossard, P., Boyet, M., Bouvier, A., Hammouda, T., Monteux, J., Evidence for anorthositic crust formed on an inner solar system planetesimal. Geochemical Perspect. Lett. 11 (2019), 28–32.
Gaetani, G.A., Grove, T.L., Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochim. Cosmochim. Acta 61 (1997), 1829–1846.
Gaffey, M.J., Reed, K.L., Kelley, M., Relationship of E-Type Apollo Asteroid 3103 (1982 BB) to the Enstatite Achondrite Meteorites and the Hungaria Asteroids. Icarus 100 (1992), 95–109.
Gagnon, J.E., Fryer, B.J., Samson, I.M., Williams-Jones, A.E., Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J. Anal. at. Spectrom. 23 (2008), 1529–1537.
Gessmann, C.K., Rubie, D.C., The Effect of Temperature on the Partitioning of Nickel, Cobalt, Manganese, Chromium, and Vanadium at 9 GPa and Constraints on Formation of the Earth's Core. Geochim. Cosmochim. Acta 62 (1998), 867–882.
Goodrich, C.A., Kita, N.T., Yin, Q.Z., Sanborn, M.E., Williams, C.D., Nakashima, D., Lane, M.D., Boyle, S., Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochim. Cosmochim. Acta 203 (2017), 381–403.
Greenwood, R.C., Franchi, I.A., Jambon, A., Buchanan, P.C., Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435 (2005), 916–918.
Hammouda, T., High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214 (2003), 357–368.
Herzberg, C.T., Zhang, J., Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. Solid Earth 101 (1996), 8271–8295.
Hillgren, V.J., Drake, M.J., Rubie, D.C., High pressure and high temperature metal-silicate partitioning of siderophile elements: The importance of silicate liquid composition. Geochim. Cosmochim. Acta 60 (1996), 2257–2263.
Holzheid, A., Palme, H., Chakraborty, S., The activities of NiO, CoO and FeO in silicate melts. Chem. Geol. 139 (1997), 21–38.
Huang, D., Badro, J., Fe-Ni ideality during core formation on Earth. Am. Mineral. 103 (2018), 1707–1710.
Irving A. J., Kuehner S.M, Bunch T. E., Ziegler K., Chen G., Herd C. D. K., Conrey R. M. and Ralew S. 2013. Ungrouped mafic achondrite Northwest Africa 7325: A reduced, iron-poor cumulate olivine gabbor from a differentiated planetary parent body. In: 44th Lunar and Planetary Science Conference pp. 2164–2165.
Isa J., Shinotsuka K., Yamaguchi A. and Ebihara M. 2008. Chemical characteristics of Northwest Africa 011 and Northwest Africa 2976. In: 71st Annual Meteoritical Society Meeting.
Jambon, A., Barrat, J., Boudouma, O., Fonteilles, M., Badia, D., Göpel, C., Bohn, M., Mineralogy and petrology of the angrite Northwest Africa 1296. Meteorit. Planet. Sci., 40, 2011 631–375.
Jana, D., Walker, D., siderophile elements among metal and silicate liquids. Earth Planet. Sci. Lett. 150 (1997), 463–472.
Kegler, New Ni and Co metal-silicate partitioning data and their relevance for an early terrestrial magma ocean. Earth Planet. Sci. Lett. 268 (2008), 28–40.
Keil, K., Chemie der Erde Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie Der Erde - Geochemistry 70 (2010), 295–317.
Keil, K., Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie Der Erde 72 (2012), 191–218.
Keil, K., McCoy, T.J., Wilson, L., Barrat, J.A., Rumble, D., Meier, M., Wieler, R., Huss, G.R., A composite Fe, Ni-FeS and enstatite-forsterite-diopside-glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism. Meteorit. Planet. Sci. 46 (2011), 1719–1741.
Kilburn, M.R., Wood, B.J., Metal – silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152 (1997), 139–148.
Lenhart, E.M., Secco, R.A., Implications for the energy source for an early dynamo in Vesta from experiments on electrical resistivity of liquid Fe-10wt%Ni at high pressures. Icarus, 378, 2022, 114962.
Li, J., Agee, C.B., The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate : Implications for the Earth ’ s core formation. Geochim. Cosmochim. Acta 65 (2001), 1821–1832.
Lodders, K., Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591 (2003), 1220–1247.
Lodders, K., Fegley, B., The Planetary Scientist's Companion. 1998, Oxford Uni.
Lodders, K., Palme, H., Wlotzka, F., Trace elements in mineral separayes of the Pena Blanca Spring aubrite: Implications for the evolution of the aubrite parent body. Meteorit. Planet. Sci. 28 (1993), 538–551.
Ma, N., Neumann, W., Néri, A., Schwarz, W.H., Ludwig, T., Trieloff, M., Klahr, H., Bouvier, A., Early formation of primitive achondrites in an outer region of the protoplanetary disc. Geochemical Perspect. Lett. 23 (2022), 33–37.
Mandler, B.E., Elkins-Tanton, L.T., The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48 (2013), 2333–2349.
Mann, U., Frost, D.J., Rubie, D.C., Evidence for high-pressure core-mantle differentiation from the metal – silicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 73 (2009), 7360–7386.
McCoy, T.J., A pyroxene-oldhamite clast in Bustee: igneous aubritic oldamite and a mechanism for the Ti enrichment in aubritic troilite. Antart. Meteor. Res. 11 (1998), 32–48.
McDonough, W.F., Sun, S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253.
Mittlefehldt, D. W. 2014. Achondrites. In: Treatise on Geochemistry: Second Edition pp. 235–266.
Morard, G., Katsura, T., Pressure – temperature cartography of Fe – S – Si immiscible system. Geochim. Cosmochim. Acta 74 (2010), 3659–3667.
Mysen, B.O., The structure of silicate melts. Annu. Rev. Earth Planet. Sci. 11 (1983), 75–97.
Namur, O., Charlier, B., Holtz, F., Cartier, C., Mccammon, C., Sulfur solubility in reduced mafic silicate melts : Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448 (2016), 102–114.
Nicklas, R.W., Day, J.M.D., Gardner-Vandy, K.G., Udry, A., Early silicic magmatism on a differentiated asteroid. Nat. Geosci. 15 (2022), 696–699.
Palme, H. and O'Neill, H. S. C. 2014. Cosmochemical Estimates of Mantle Composition. In: Treatise on Geochemistry: Second Edition pp. 1–39.
Paquet, M., Day, J.M.D., Udry, A., Hattingh, R., Kumler, B., Rahib, R.R., Tait, K.T., Neal, C.R., Highly siderophile elements in shergottite sulfides and the sulfur content of the martian mantle. Geochim. Cosmochim. Acta 293 (2021), 379–398.
Pirotte, H., Cartier, C., Namur, O., Pommier, A., Zhang, Y., Berndt, J., Klemme, S., Charlier, B., Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions. Icarus, 405, 2023, 115699.
Ray, S., Garvie, L.A.J., Rai, V.K., Wadhwa, M., Correlated iron isotopes and silicon contents in aubrite metals reveal structure of their asteroidal parent body. Sci. Rep. 11 (2021), 1–13.
Righter, K., Prediction of metal – silicate partition coef fi cients for siderophile elements : An update and assessment of PT conditions for metal – silicate equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304 (2011), 158–167.
Righter, K., Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles. Am. Mineral. 100 (2015), 1098–1109.
Righter, K., Chabot, N.L., Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 176 (2011), 157–176.
Righter, K., Drake, M.J., Core formation in Earth's moon, Mars, and Vesta. Icarus 124 (1996), 513–529.
Righter, K., Drake, M.J., A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 944 (1997), 929–944.
Righter, K., Drake, M.J., Yaxley, G., Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800°C : the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter. 100 (1997), 115–134.
Righter, K., Ghiorso, M.S., Redox systematics of a magma ocean with variable pressure-temperature gradients and composition. Proc. Natl. Acad. Sci. 109 (2012), 11955–11960.
Righter, K., Hervig, R.L., Kring, D.A., Accretion and core formation on Mars: molybdenum contents of melt inclusion glasses in three SNC meteorites. Geochim. Cosmochim. Acta 62 (1998), 2167–2177.
Righter, K., Pando, K.M., Danielson, L., Lee, C., Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet. Sci. Lett. 291 (2010), 1–9.
Righter, K., Sutton, S.R., Danielson, L., Pando, K., Newville, M., Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. Am. Mineral. 101 (2016), 1928–1942.
Righter, K., Herd, C.D.K., Boujibar, A., Redox Processes in Early Earth Accretion and in Terrestrial Bodies. Elements 16 (2020), 161–166.
Rivoldini, A., Hoolst, T., Van, V.O., Mocquet, A., Dehant, V., Geodesy constraints on the interior structure and composition of Mars. Icarus 213 (2011), 451–472.
Rubie, D.C., Melosh, H.J., Reid, J.E., Liebske, C., Righter, K., Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205 (2003), 239–255.
Rubie, D.C., Frost, D.J., Mann, U., Asahara, Y., Nimmo, F., Tsuno, K., Kegler, P., Holzheid, A., Palme, H., Heterogeneous accretion, composition and core – mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301 (2011), 31–42.
Rubin, A.E., Impact Melt-Rock Clasts in the Hvittis Enstatite Chondrite Breccia: Implications for a Genetic Relationship Between El Chondrites and Aubrites. J. Geophys. Res. 88 (1983), 293–300.
Sarafian, A.R., Nielsen, S.G., Marschall, H.R., Gaetani, G.A., Hauri, H., Righter, K., Sarafian, E., Angrite meteorites record the onset and flux of water to the inner solar system. Geochim. Cosmochim. Acta 212 (2017), 156–166.
Siebert, J., Corgne, A., Ryerson, F.J., Systematics of metal – silicate partitioning for many siderophile elements applied to Earth ’ s core formation. Geochim. Cosmochim. Acta 75 (2011), 1451–1489.
Siebert, J., Badro, J., Antonangeli, D., Ryerson, F.J., Metal – silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 321–322 (2012), 189–197.
Siebert, J., Badro, J., Antonangeli, D., Ryerson, F.J., Terrestrial Accretion Under Oxidizing Conditions. Science 339 (2013), 1194–1197.
Stähler, S.C., Khan, A., Banerdt, W.B., Lognonné, P., Giardini, D., Ceylan, S., Drilleau, M., Duran, A.C., Garcia, R.F., Huang, Q., Kim, D., Lekic, V., Samuel, H., Schimmel, M., Schmerr, N., Sollberger, D., Stutzmann, É., Xu, Z., Antonangeli, D., Charalambous, C., Davis, P.M., Irving, J.C.E., Kawamura, T., Knapmeyer, M., Maguire, R., Marusiak, A.G., Panning, M.P., Perrin, C., Plesa, A.-C., Rivoldini, A., Schmelzbach, C., Zenhäusern, G., Beucler, É., Clinton, J., Dahmen, N., van Driel, M., Gudkova, T., Horleston, A., Pike, W.T., Plasman, M., Smrekar, S.E., Seismic detection of the martian core. Science. 373 (2021), 443–448.
Steenstra, E., Constraints on core formation in Vesta from metal-silicate partitioning of siderophile elements Constraints on core formation in Vesta from metal – silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 177 (2016), 48–61.
Steenstra, E.S., Rai, N., Knibbe, J.S., Lin, Y.H., Van, W.W., New geochemical models of core formation in the Moon from metal – silicate partitioning of 15 siderophile elements. Earth Planet. Sci. Lett. 441 (2016), 1–9.
Steenstra, E.S., Sitabi, A.B., Lin, Y.H., Rai, N., Knibbe, J.S., Berndt, J., Matveev, S., van Westrenen, W., The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body. Geochim. Cosmochim. Acta 212 (2017), 62–83.
Steenstra, E.S., Seegers, A.X., Putter, R., Berndt, J., Klemme, S., Matveev, S., Bullock, E.S., Washington, D.C., Metal-silicate partitioning systematics of siderophile elements at reducing conditions : A new experimental database. Icarus, 335, 2020, 113391.
Steenstra, E.S., Trautner, V.T., Berndt, J., Klemme, S., Van, W.W., Trace element partitioning between sulfide-, metal- and silicate melts at highly reduced conditions : Insights into the distribution of volatile elements during core formation in reduced bodies. Icarus, 335, 2020, 113408.
Sturtz, C., Limare, A., Chaussidon, M., Kaminski, É., Structure of differentiated planetesimals: A chondritic fridge on top of a magma ocean. Icarus, 385, 2022, 115100.
Sutton, S.R., Goodrich, C.A., Wirick, S., Titanium, Vanadium and Chromium Valences in Silicates of Ungrouped Achondrite NWA 7325 and Ureilite Y-791538. Geochim. Cosmochim. Acta 204 (2017), 313–330.
Taylor, G.J., Chemie der Erde The bulk composition of Mars. Chemie Der Erde - Geochemistry 73 (2013), 401–420.
Thibault, Y., Walters, M.J., The influence of pressure and temperature on the metal-silicate partition coefficients of nickel and cobalt in a model Cl chondrite and implications for metal segregation in a deep magma ocean. Geochim. Cosmochim. Acta, 59, 1995.
Tissot, F.L.H., Collinet, M., Namur, O., Grove, T.L., The case for the angrite parent body as the archetypal first-generation planetesimal : Large, reduced and Mg-enriched. Geochim. Cosmochim. Acta 338 (2022), 278–301.
Van Acken, D., Brandon, A.D., Lapen, T.J., Highly siderophile element and osmium isotope evidence for postcore formation magmatic and impact processes on the aubrite parent body. Meteorit. Planet. Sci. 47 (2012), 1606–1623.
van Kooten, E.M.M.E., Kubik, E., Siebert, J., Heredia, B.D., Thomsen, T.B., Moynier, F., Metal compositions of carbonaceous chondrites. Geochim. Cosmochim. Acta 321 (2022), 52–77.
Wade, J., Wood, B.J., The Earth ’s “missing” niobium may be in the core. Nature 409 (2001), 75–79.
Wade, J., Wood, B.J., Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236 (2005), 78–95.
Weber, I., Morlok, A., Bischoff, A., Hiesinger, H., Ward, D., Joy, K.H., Crowther, S.A., Jastrzebski, N.D., Gilmour, J.D., Clay, P.L., Wogelius, R.A., Greenwood, R.C., Franchi, I.A., Münker, C., Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study. Meteorit. Planet. Sci. 51 (2015), 3–30.
Wilbur, Z.E., Udry, A., McCubbin, F.M., vander Kaaden, K.E., DeFelice, C., Ziegler, K., Ross, D.K., McCoy, T.J., Gross, J., Barnes, J.J., Dygert, N., Zeigler, R.A., Turrin, B.D., McCoy, C., The effects of highly reduced magmatism revealed through aubrites. Meteorit. Planet. Sci., 34, 2022.
Wood, B.J., Wade, J., Kilburn, M.R., Core formation and the oxidation state of the Earth : Additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72 (2009), 1415–1426.
Yamaguchi, A., Clayton, R.N., Mayeda, T.K., Ebihara, M., Oura, Y., Miura, Y.N., Haramura, H., Misawa, K., Kojima, H., Nagao, K., A new source of basaltic meteorites inferred from Northwest Africa 011. Science 296 (2002), 334–336.
Yamaguchi A., Barrat J., Chaussidon M., Beck P., Villeneuve J., Byrne D. J., Broadley M. W. and Marty B. 2021. Petrology and geochemistry of Erg Chech 002, the oldest andesite in the solar system. In: 52nd Lunar and Planetary Science Conference.
Yen, A.S., Mittlefehldt, D.W., McLennan, S.M., Gellert, R., Bell, J.F., McSween, J.Y., Ming, D.W., McCoy, T.J., Morris, R.V., Golombek, M.P., Economou, T., Madsen, M.B., Wdowiak, T., Clark, B.C., Jolliff, B.L., Schröder, C., Brückner, J., Zipfel, J., Squyres, S.W., Nickel on Mars: Constraints on meteoritic material at the surface. J. Geophys. Res. Planets, 111, 2006.
Zhu, K., Barrat, J.A., Yamaguchi, A., Rouxel, O., Germain, Y., Langlade, J., Moynier, F., Nickel and Chromium Stable Isotopic Composition of Ureilites: Implications for the Earth's Core Formation and Differentiation of the Ureilite Parent Body. Geophys. Res. Lett., 49, 2022.