Sensitivity of simulated soil water content, evapotranspiration, gross primary production and biomass to climate change factors in Euro-Mediterranean grasslands
Bellocchi, G.; Barcza, Z.; Hollós, R.et al.
2023 • In Agricultural and Forest Meteorology, 343, p. 109778
Biomass; Ecosystem manipulation; Evapotranspiration; Global change experiments; Grassland models; Sensitivity; Forestry; Global and Planetary Change; Agronomy and Crop Science; Atmospheric Science
Abstract :
[en] Grassland models often yield more uncertain outputs than arable crop models due to more complex interactions and the largely undocumented sensitivity of grassland models to environmental factors. The aim of the present study was to assess the impact of single-factor changes in temperature, precipitation, and atmospheric [CO2] on simulated soil water content (SWC), actual evapotranspiration (ET), gross primary production (GPP) and yield biomass, and also to link the sensitivity analysis with experimental results. We employed an unprecedented multi-model framework consisting of seven grassland models at nine sites with different environmental characteristics in Europe and Israel, with two management options at three sites. For warming/cooling and wetting/drying, models showed general consistency in the direction of SWC and ET changes, but less agreement regarding GPP and biomass changes. The simulated responses consistently revealed an overall positive effect of CO2 enrichment on GPP and biomass, while the direction of change differed for SWC and ET. Comparing with single-factor experimental manipulations, SWC simulations slightly underestimated the observed effect of warming, while the overall mean model sensitivity for biomass (+7.5%) closely matched the mean response observed with 1–2 °C warming (+6.6%). The models exhibited lower sensitivity of SWC to wetting or drying compared to the experiments. The overall mean sensitivity of biomass to drying was -4.3%, contrasting with the mean experimental effect size of -9.6%, which proved to be more realistic than the mean wetting effect (+3.2%, against +38.9% in the field trials). The simulated sensitivity of SWC to CO2 enrichment was markedly underestimated, while the biomass response (+12.0%) closely matched the observations (+17.5%). Although the multi-model averaging did not manifestly improve the realism of the simulations, it ensured a realistic response in the direction of change to varying conditions. The results suggest a paradigm shift in grassland modelling meaning that the usual practice of model optimisation/validation needs to be complemented by a sensitivity analysis following the approach presented. The results also highlight the importance of model improvements, especially in terms of soil hydrology representation, a key environmental driver of grassland functioning.
Disciplines :
Agriculture & agronomy
Author, co-author :
Bellocchi, G.; UCA, INRAE, VetAgro Sup, Unité Mixte de Recherche sur l'Écosystème Prairial (UREP), Clermont-Ferrand, France
Barcza, Z. ; ELTE Eötvös Loránd University, Department of Meteorology, Budapest, Hungary ; Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Prague, Czech Republic
Hollós, R. ; ELTE Eötvös Loránd University, Department of Meteorology, Budapest, Hungary ; HUN-REN Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
Acutis, M. ; University of Milan, Department of Agricultural and Environmental Sciences - Production, Milan, Italy
Bottyán, E. ; ELTE Eötvös Loránd University, Department of Meteorology, Budapest, Hungary
Doro, L. ; University of Sassari, Desertification Research Centre, Sassari, Italy ; Texas A&M AgriLife Research, Blackland Research Center, Temple, United States
Hidy, D.; Hungarian University of Agriculture and Life Sciences, MTA-MATE Agroecological Research Group, Gödöllő, Hungary
Lellei-Kovács, E.; HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
Ma, S. ; Tottori University, International Platform for Dryland Research and Education, Tottori, Japan
Minet, Julien ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement)
Pacskó, V.; Lechner Knowledge Center, Space Remote Sensing Unit, Hungary ; ELTE Eötvös Loránd University, Doctoral School of Earth Sciences, Budapest, Hungary
Perego, A.; University of Milan, Department of Agricultural and Environmental Sciences - Production, Milan, Italy
Ruget, F.; French National Institute for Agricultural Research, Modelling Agricultural and Hydrological Systems in the Mediterranean Environment, Avignon, France
Seddaiu, G.; University of Sassari, Desertification Research Centre, Sassari, Italy
Wu, L. ; Rothamsted Research, North Wyke, Okehampton, United Kingdom
Sándor, R.; UCA, INRAE, VetAgro Sup, Unité Mixte de Recherche sur l'Écosystème Prairial (UREP), Clermont-Ferrand, France ; HUN-REN Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary
Sensitivity of simulated soil water content, evapotranspiration, gross primary production and biomass to climate change factors in Euro-Mediterranean grasslands
The present article was published under the auspices of the MACSUR (Modelling European Agriculture with Climate Change for Food Security) Science-Policy Knowledge Forum (MACSUR SciPol Pilot), June 2021-December 2022, with the support of the INRAE metaprogramme “Climate change in agriculture and forests: Adaptation and mitigation” (CLIMAE). The results of this research were obtained within the MACSUR pilot, which received funding in 2012 by a multi-partner call of the Joint Programming Initiative ‘FACCE JPI’ through national financing bodies. We also acknowledge the Hungarian Scientific Research Fund ( OTKA K104816 , OTKA PD115637 ), the Széchenyi 2020 programme, the European Regional Development Fund and the Hungarian Government ( GINOP-2.3.2–15–2016–00028 ), the BioVeL project (Biodiversity Virtual e-Laboratory Project, FP7-INFRASTRUCTURES-2011–2, project number 283359 ), the National Multidisciplinary Laboratory for Climate Change ( RRF-2.3.1–21–2022–00014 ) project, the Italian Ministry of Agricultural, Food and Forestry Policies, the Cabinet of the French Community of Belgium, and the metaprogramme “Adaptation of Agriculture and Forests to Climate Change” (AAFCC) of the former French National Institute for Agricultural Research (INRA). The research has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2021 funding scheme. This study was also supported by the TKP2021-NKTA-06 project that has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund , financed under the [ TKP2021-NKTA ] funding scheme. Renáta Sándor and Gianni Bellocchi received mobility funding from the French-Hungarian bilateral partnership through the BALATON (N° 44703TF)/TéT (2019–2.1.11-TÉT-2019–00031) programme. Zoltán Barcza was supported by grant "Advanced research supporting the forestry and wood-processing sector´s adaptation to global change and the 4th industrial revolution", No. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE". We thank the individual site PIs (Katja Klumpp, Christof Ammann, Damiano Gianelle, Christian Bernhofer) and the technical staff for sharing their eddy covariance data. We also thank Katharina Braunmiller (Thünen Institute of Market Analysis, Braunschweig, Germany) for facilitating contacts with the Partner Institutions which provided grassland data, and acknowledge technical support from the European Fluxes Database Cluster ( http://www.europe-fluxdata.eu ). We thank Haythem Ben Touhami for helping in the calibration of PaSim during his PhD at INRA (2011–2014). We also thank Francesca Piseddu, INRAE PhD at the Unité Mixte de Recherche sur l’Écosystème Prairial (UREP) from 2019 to 2022, who provided access to the core dataset of her meta-analyses ( Piseddu et al., 2021 ), which helped to support the discussion of this study. We thank Mattia Sanna for supporting the project and the modelling work. Biome-BGC version 4.1.1 (the predecessor of Biome-BGCMuSo used here) was provided by the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana, Missoula MT (USA), which assumes no responsibility for the proper use by others. We thank the three Anonymous Reviewers for the valuable comments that helped us to improve the quality of the manuscript.The present article was published under the auspices of the MACSUR (Modelling European Agriculture with Climate Change for Food Security) Science-Policy Knowledge Forum (MACSUR SciPol Pilot), June 2021-December 2022, with the support of the INRAE metaprogramme “Climate change in agriculture and forests: Adaptation and mitigation” (CLIMAE). The results of this research were obtained within the MACSUR pilot, which received funding in 2012 by a multi-partner call of the Joint Programming Initiative ‘FACCE JPI’ through national financing bodies. We also acknowledge the Hungarian Scientific Research Fund (OTKA K104816, OTKA PD115637), the Széchenyi 2020 programme, the European Regional Development Fund and the Hungarian Government (GINOP-2.3.2–15–2016–00028), the BioVeL project (Biodiversity Virtual e-Laboratory Project, FP7-INFRASTRUCTURES-2011–2, project number 283359), the National Multidisciplinary Laboratory for Climate Change (RRF-2.3.1–21–2022–00014) project, the Italian Ministry of Agricultural, Food and Forestry Policies, the Cabinet of the French Community of Belgium, and the metaprogramme “Adaptation of Agriculture and Forests to Climate Change” (AAFCC) of the former French National Institute for Agricultural Research (INRA). The research has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2021 funding scheme. This study was also supported by the TKP2021-NKTA-06 project that has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the [TKP2021-NKTA] funding scheme. Renáta Sándor and Gianni Bellocchi received mobility funding from the French-Hungarian bilateral partnership through the BALATON (N° 44703TF)/TéT (2019–2.1.11-TÉT-2019–00031) programme. Zoltán Barcza was supported by grant "Advanced research supporting the forestry and wood-processing sector´s adaptation to global change and the 4th industrial revolution", No. CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE". We thank the individual site PIs (Katja Klumpp, Christof Ammann, Damiano Gianelle, Christian Bernhofer) and the technical staff for sharing their eddy covariance data. We also thank Katharina Braunmiller (Thünen Institute of Market Analysis, Braunschweig, Germany) for facilitating contacts with the Partner Institutions which provided grassland data, and acknowledge technical support from the European Fluxes Database Cluster (http://www.europe-fluxdata.eu). We thank Haythem Ben Touhami for helping in the calibration of PaSim during his PhD at INRA (2011–2014). We also thank Francesca Piseddu, INRAE PhD at the Unité Mixte de Recherche sur l’Écosystème Prairial (UREP) from 2019 to 2022, who provided access to the core dataset of her meta-analyses (Piseddu et al. 2021), which helped to support the discussion of this study. We thank Mattia Sanna for supporting the project and the modelling work. Biome-BGC version 4.1.1 (the predecessor of Biome-BGCMuSo used here) was provided by the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana, Missoula MT (USA), which assumes no responsibility for the proper use by others. We thank the three Anonymous Reviewers for the valuable comments that helped us to improve the quality of the manuscript.
Ainsworth, E.A., Long, S.P., What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165 (2005), 351–372, 10.1111/j.1469-8137.2004.01224.x.
Ainsworth, E.A., Long, S.P., 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation?. Global Change Biol 27 (2020), 27–49, 10.1111/gcb.15375.
Ainsworth, E.A., Rogers, A., The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30 (2007), 258–270, 10.1111/j.1365-3040.2007.01641.x.
Ammann, C., Flechard, C.R., Leifeld, J., Neftel, A., Fuhrer, J., The carbon budget of newly established temperate grassland depends on management intensity. Agric. Ecosyst. Environ. 121 (2007), 5–20, 10.1016/j.agee.2006.12.002.
Andresen, L.C., Yuan, N., Seibert, R., Moser, G., Kammann, C.I., Luterbacher, J., Erbs, M., Müller, C., Biomass responses in a temperate European grassland through 17 years of elevated CO2. Global Change Biol 24 (2018), 3875–3885, 10.1111/gcb.13705.
Antle, J.M., Basso, B., Conant, R.T., Godfray, H.C.J., Jones, J.W., Herrero, M., Howitt, R.E., Keating, B.A., Munoz-Carpena, R., Rosenzweig, C., Tittonell, P., Wheeler, T.R., Towards a new generation of agricultural system data, models and knowledge products: design and improvement. Agric. Syst. 155 (2017), 255–268, 10.1016/j.agsy.2016.10.002.
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A., Boote, K.J., Thorburn, P., Rötter, R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J.E., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Travasso, M., Tao, F., Waha, K., Wallach, D., White, J.W., Wolf, J., Uncertainties in simulating wheat yields under climate change. Nat. Clim. Change 3 (2013), 827–832, 10.1038/nclimate1916.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., Betts, A.K., A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeorol. 10 (2009), 623–643, 10.1175/2008JHM1068.1.
Bassu, S., Brisson, N., Durand, J.L., Boote, K., Lizaso, J., Jones, J.W., Rosenzweig, C., Ruane, A.C., Adam, M., Baron, C., Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A.R., Kersebaum, K.C., Kim, S.H., Kumar, N.S., Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M.V., Sau, F., Shcherbak, I., Tao, F., Teixeira, E., Timlin, D., Waha, K., How do various maize crop models vary in their responses to climate change factors?. Global Change Biol 20 (2014), 2301–2320, 10.1111/gcb.12520.
Beier, C., Emmett, B., Gundersen, P., Tietema, A., Peñuelas, J., Estiarte, M., Gordon, C., Gorissen, A., Llorens, L., Roda, F., Williams, D., Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7 (2004), 583–597, 10.1007/s10021-004-0178-8.
Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R., Dorich, C.D., Doro, L., Ehrhardt, F., Farina, R., Ferrise, R., Fitton, N., Francaviglia, R., Grace, P., Iocola, I., Klumpp, K., Léonard, J., Martin, R., Massad, R.S., Recous, S., Seddaiu, G., Sharp, J., Smith, P., Smith, W.N., Soussana, J.-F., Bellocchi, G., Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci. Total Environ. 598 (2017), 445–470, 10.1016/j.scitotenv.2017.03.208.
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillere, J.P., Henault, C., Maraux, F., Seguin, B., Sinoquet, H., An overview of the crop model STICS. Eur. J. Agron. 18 (2003), 309–332, 10.1016/S1161-0301(02)00110-7.
Butler, M.P., Reed, P.M., Fisher-Vanden, K., Keller, K., Wagener, T., Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environ. Model. Softw. 59 (2014), 10–29, 10.1016/j.envsoft.2014.05.001.
Carrillo, Y., Pendall, E., Dijkstra, F.A., Morgan, J.A., Newcomb, J.M., Carbon input control over soil organic matter dynamics in a temperate grassland exposed to elevated CO2 and warming. Biogeosci 7 (2010), 1575–1602, 10.5194/bgd-7-1575-2010.
Cavallero, A., Talamucci, P., Grignani, C., Reyneri, A., Ziliotto, U., Scotton, M., Bianchi, A.A., Santilocchi, R., Basso, F., Postiglione, L., Carone, F., Corleto, A., Cazzato, E., Cassaniti, S., Cosentino, S., Litrico, P.G., Leonardi, S., Sarno, R., Stringi, L., Gristina, L., Amato, G., Bullitta, P., Caredda, S., Roggero, P.P., Caporali, F., D'Antuono, L.F., Pardini, A., Zagni, C., Piemontese, S., Pazzi, G., Costa, G., Pascal, G., Acutis, M., Caratterizzazione della dinamica produttiva di pascoli naturali italiani. Rivista di Agronomia 26:3 (1992), 325–343 nsupplItalian.
Chen, F., Dudhia, J., Coupling an advanced land surface hydrology model with the Penn State NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129 (2001), 569–585, 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Chen, F., Dudhia, J., Coupling an advanced land surface hydrology model with the Penn State NCAR MM5 modeling system. Part II: preliminary model validation. Mon. Weather Rev. 129 (2001), 587–604, 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.
Chen, Y., Feng, J., Yuan, X., Zhu, B., Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma, 370, 2020, 114363, 10.1016/j.geoderma.2020.114363.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buhmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437 (2005), 529–533, 10.1038/nature03972.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P., Carbon and other biogeochemical cycles. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013, Cambridge University Press, Cambridge, 465–570.
Cure, J.D., Acock, B., Crop responses to carbon dioxide doubling: a literature survey. Agric. For. Meteorol. 38 (1986), 127–145, 10.1016/0168-1923(86)90054-7.
Dabros, A., Fyles, J.W., Strachan, I.B., Effects of open-top chambers on physical properties of air and soil at post-disturbance sites in northwestern Quebec. Plant Soil 333 (2010), 203–218, 10.1007/s11104-010-0336-z.
Dangal, S.R.S., Tian, H., Lu, C., Pan, S., Pederson, N., Hessl, A., Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands. Ecosphere, 5, 2016, e01274, 10.1002/ecs2.1274.
De Boeck, H.J., Lemmens, C.M.H.M., Gielen, B., Malchair, S., Carnol, M., Merckx, R., Van den Berge, J., Ceulemans, R., Nijs, I., Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5 (2008), 585–594, 10.5194/bg-5-585-2008.
Dieleman, W.I.J., Vicca, S., Dijkstra, F.A., Hagedorn, F., Hovenden, M.J., Larsen, K.S., Morgan, J.A., Volder, A., Beier, C., Dukes, J.S., King, J., Leuzinger, S., Linder, S., Luo, Y., Oren, R., De Angelis, P., Tingey, D., Hoosbeek, M.R., Janssens, I.A., Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biol 18 (2012), 2681–2693, 10.1111/j.1365-2486.2012.02745.x.
Diodato, N., Brocca, L., Bellocchi, G., Fiorillo, F., Guadagno, F.M., Complexity-reduction modelling for assessing the macro-scale patterns of historical soil moisture in the Euro-Mediterranean region. Hydrol. Processes 28 (2014), 3752–3760, 10.1002/hyp.9925.
EC (European Commission). Regulation (EC) No. 1166/2008 of the European Parliament and of the Council of 19 November 2008 On Farm Structure Surveys and the Survey on Agricultural Production Methods and Repealing Council Regulation (EEC), 2008.
Farquhar, G.C., Von Caemmerer, S., Berry, J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980), 78–90, 10.1007/BF00386231.
Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. 2012, Cambridge University Press, Cambridge and New York.
Fu, Z., Niu, S., Dukes, J., What have we learned from global change manipulative experiments in China? A meta-analysis. Sci. Rep., 5(1), 2015, 12344, 10.1038/srep12344.
Fu, Z., Ciais, P., Makowski, D., Bastos, A., Stoy, P.C., Ibrom, A., Knohl, A., Migliavacca, M., Cuntz, M., Šigut, L., Peichl, M., Loustau, D., El-Madany, T.S., Buchmann, N., Gharun, M., Janssens, I., Markwitz, C., Grünwald, T., Rebmann, C., Mölder, M., Varlagin, A., Mammarella, I., Kolari, P., Bernhofer, C., Heliasz, M., Vincke, C., Pitacco, A., Cremonese, E., Foltýnová, L., Wigneron, J.-P., Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Global Change Biol 28 (2022), 2111–2123, 10.1111/gcb.16050.
Golodets, C., Sternberg, M., Kigel, J., Boeken, B., Henkin, Z., Seligman, N.G., Ungar, D.E., From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?. Clim. Change 119 (2013), 785–798, 10.1007/s10584-013-0758-8.
Graux, A.-I., Bellocchi, G., Lardy, R., Soussana, J.-F., Ensemble modelling of climate change risks and opportunities for managed grasslands in France. Agric. For. Meteorol. 170 (2013), 114–131, 10.1016/j.agrformet.2012.06.010.
Hidy, D., Barcza, Z., Haszpra, L., Churkina, G., Pintér, K., Nagy, Z., Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecol. Modell. 226 (2012), 99–119, 10.1016/j.ecolmodel.2011.11.008.
Hidy, D., Barcza, Z., Marjanovič, H., Ostrogovič Sever, M.Z., Dobor, L., Gelybó, Gy., Fodor, N., Pintér, K., Churkina, G., Running, S.W., Thornton, P.E., Bellocchi, G., Haszpra, L., Horváth, F., Suyker, A., Nagy, Z., Terrestrial ecosystem process model Biome-BGCMuSo: summary of improvements and new modeling possibilities. Geosci. Model Dev. 9 (2016), 4405–4437, 10.5194/gmd-9-4405-2016.
Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.G., Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., Rosenzweig, C., Wheeler, T.R., Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155 (2017), 269–288, 10.1016/j.agsy.2016.09.021.
Kimball, B.A., Theory and performance of an infrared heater for ecosystem warming. Global Change Biol 11 (2005), 2041–2056, 10.1111/j.1365-2486.2005.01028.x.
Kipling, R., Virkajärvi, P., Breitsameter, L., Curnel, Y., De Swaef, T., Gustavsson, A.-M., Hennart, S., Höglind, M., Järvenranta, K., Minet, J., Nendel, C., Persson, T., Picon-Cochard, C., Rolinski, S., Sandars, D.L., Scollan, N.D., Sebek, L., Seddaiu, G., Bellocchi, G., Key challenges and priorities for modelling European grasslands under climate change. Sci. Total Environ. 566–567 (2016), 851–864, 10.1016/j.scitotenv.2016.05.144.
Klumpp, K., Tallec, T., Guix, N., Soussana, J.-F., Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Global Change Biol 17 (2011), 3534–3545, 10.1111/j.1365-2486.2011.02490.x.
Knapp, A.K., Hoover, D.L., Wilcox, K.R., Avolio, M.L., Koerner, S.E., La Pierre, K.J., Loik, M.E., Luo, Y., Sala, O.E., Smith, M.D., Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biol 21 (2015), 2624–2633, 10.1111/gcb.12888.
Köchy, M., Wilson, S.D., Semiarid grassland responses to short-term variation in water availability. Plant Ecol 174 (2004), 197–203, 10.1023/B:VEGE.0000049098.74147.57.
Lambers, H., Stulen, I., van der Werf, A., Carbon use in root respiration as affected by elevated atmospheric CO2. Plant Soil 187 (1996), 251–263, 10.1007/BF00017091.
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., Körner, C., Do global change experiments overestimate impacts on terrestrial ecosystems?. Trends Ecol. Evol. 26 (2011), 236–241, 10.1016/j.tree.2011.02.011.
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., Gaydon, D., Marcaida, M. III, Nakagawa, H., Oriol, P., Ruane, A.C., Ruget, F., Singh, B., Singh, U., Tang, L., Tao, F., Wilkens, P., Yoshida, H., Zhang, Z., Bouman, B., Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biol 21 (2015), 1328–1341, 10.1111/gcb.12758.
Li, W., Migliavacca, M., Forkel, M., Denissen, J.M.C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., Orth, R., Widespread increasing vegetation sensitivity to soil moisture. Nat. Commun., 13(1), 2022, 3959, 10.1038/s41467-022-31667-9.
Lin, D., Xia, J., Wan, S., Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188 (2010), 187–198, 10.1111/j.1469-8137.2010.03347.x.
Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., Li, B., Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecol 94 (2013), 726–738, 10.1890/12-0279.1.
Luna, D.A., Pottier, J., Picon-Cochard, C., Variability and drivers of grassland sensitivity to drought at different timescales using satellite image time series. Agric. For. Meteorol., 331, 2023, 109325, 10.1016/j.agrformet.2023.109325.
Ma, S., Lardy, R., Graux, A.-I., Ben Touhami, H., Klumpp, K., Martin, R., Bellocchi, G., Regional-scale analysis of carbon and water cycles on managed grassland systems. Environ. Model. Softw. 72 (2015), 356–371, 10.1016/j.envsoft.2015.03.007.
Marion, G.M., Henry, G.H.R., Freckman, D.W., Johnstone, J., Jones, G., Jones, M.H., Lévesque, E., Molau, U., Mølgaard, P., Parsons, A.N., Svoboda, J., Virginia, R.A., Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biol 3 (1997), 20–32, 10.1111/j.1365-2486.1997.gcb136.x.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rotter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., Nendel, C., O'leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherback, I., Steduto, P., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J., Multi-model ensembles of wheat growth: many models are better than one. Global Change Biol 21 (2015), 911–925, 10.1111/gcb.12768.
Nagy, Z., Barcza, Z., Horváth, L., Balogh, J., Hagyó, A., Káposztás, N., Grosz, B., Machon, A., Pintér, K., Measurements and estimations of biosphere-atmosphere exchange of greenhouse gases – grasslands. Haszpra, L., (eds.) Atmospheric Greenhouse gases: the Hungarian perspective, 2010, Springer, Dordrecht, 91–119.
Noguchi, K., Yamori, W., Hikosaka, K., Terashima, I., Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytol 207 (2015), 34–42, 10.1111/nph.13339.
Norby, R.J., Luo, Y., Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162 (2004), 281–293, 10.1111/j.1469-8137.2004.01047.x.
Oelmann, Y., Buchmann, N., Gleixner, G., Habekost, M., Roscher, C., Rosenkranz, S., Schulze, E.-D., Steinbeiss, S., Temperton, V.M., Weigelt, A., Weisser, W., Wilcke, W., Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Global Biogeochem. Cycles, 25, 2011, GB2014, 10.1029/2010GB003869.
et al.Pan, Y., Jackson, R.B., Hollinger, D.Y., Phillips, O.L., Nowak, R.S., Norby, R.J., Oren, R., Reich, P.B., Lüscher, A., Mueller, K.E., Owensby, C., Birdsey, R., Hom, J., Luo, Y., Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nat. Ecol. Evol. 6 (2022), 315–323, 10.1038/s41559-021-01642-6.
Perego, A., Giussani, A., Sanna, M., Fumagalli, M., Carozzi, M., Alfieri, L., Brenna, S., Acutis, M., The ARMOSA simulation crop model: overall features, calibration and validation results. Ital. J. Agrometeorol. 3 (2013), 23–38.
Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X., Plant phenology and global climate change: current progresses and challenges. Global Change Biol 25 (2019), 1922–1940, 10.1111/gcb.14619.
Pilon, R., Picon-Cochard, C., Bloor, J.M.G., Revaillot, S., Kuhn, E., Falcimagne, R., Balandier, P., Soussana, J.-F., Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant Soil 364 (2013), 395–408, 10.1007/s11104-012-1371-8.
Piseddu, F., Bellocchi, G., Picon-Cochard, C., Mowing and warming effects on grassland species richness and harvested biomass: meta-analyses. Agron. Sustain. Dev., 41, 2021, 74, 10.1007/s13593-021-00722-y.
Pokovai, K., Hollós, R., Bottyán, E., Kis, A., Marton, T., Pongrácz, R., Pásztor, L., Hidy, D., Barcza, Z., Fodor, N., Estimation of agro-ecosystem services using biogeochemical models. Időjárás 124 (2020), 209–225, 10.28974/idojaras.2020.2.4.
Prescher, A.-K., Grünwald, T., Bernhofer, C., Land use regulates carbon budgets in eastern Germany: from NEE to NBP. Agric. For. Meteorol. 150 (2010), 1016–1025, 10.1016/j.agrformet.2010.03.008.
R Core Team. R: A language and Environment for Statistical Computing. 2023, R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M., Climate extremes and the carbon cycle. Nature 500 (2013), 287–295, 10.1038/nature12350.
Richards, L.A., Capillary conduction of fluid through porous mediums. Phys 1 (1931), 318–333, 10.1063/1.1745010.
Ritchie, J.T., Water dynamics in the soil-plant-atmosphere system. Plant Soil 58 (1981), 81–96, 10.1007/BF02180050.
Rosenzweig, C., Parry, M.L., Potential impact of climate change on world food supply. Nature 367 (1994), 133–138, 10.1038/367133a0.
Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J., News, G.T.C.E., A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 (2001), 543–562, 10.1007/s004420000544.
Saban, J.M., Chapman, M.A., Taylor, G., FACE facts hold for multiple generations; Evidence from natural CO2 springs. Global Change Biol 25 (2019), 1–11, 10.1111/gcb.14437.
Sándor, R., Acutis, M., Barcza, Z., Doro, L., Hidy, D., Köchy, M., Minet, J., Lellei-Kovács, E., Ma, S., Perego, A., Rolinksi, S., Ruget, F., Sanna, M., Seddaiu, G., Wu, L., Bellocchi, G., Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: uncertainties and ensemble performance. Eur. J. Agron. 88 (2017), 22–40, 10.1016/j.eja.2016.06.006.
Sándor, R., Barcza, Z., Hidy, D., Lellei-Kovács, E., Ma, S., Bellocchi, G., Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models. Agric. Ecosyst. Environ. 215 (2016), 1–19, 10.1016/j.agee.2015.09.001.
Schils, R., Snijders, P., The combined effect of fertiliser nitrogen and phosphorus on herbage yield and changes in soil nutrients of a grass/clover and grass-only sward. Nutr. Cycl. Agroecosystems 68 (2004), 165–179, 10.1023/B:FRES.0000019045.90791.a4.
Schimel, D., Stephens, B.R., Fisher, J.B., Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 112 (2014), 436–441, 10.1073/pnas.140730211.
Schröpel, R., Diepolder, M., Auswirkungen Der Grünlandextensivierung auf Einer Weidelgras-Weißklee-Weide im Allgäuer Alpenvorland. Schuleund Beratung, Heft 11/2003, Seite III–13 Bis III–15. 2003, Bayerisches Staatsministerium für Landwirtschaft und Forsten, Munich. German.
Schwanitz, V.J., Evaluating integrated assessment models of global climate change. Environ. Model. Softw. 50 (2013), 120–131, 10.1016/j.envsoft.2013.09.005.
Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C., Land-atmosphere coupling and climate change in Europe. Nature 443 (2006), 205–209, 10.1038/nature05095.
Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Changes in climate extremes and their impacts on the natural physical environment. Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K, Allen, S.K., Tignor, M., Midgley, P.M., (eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, 2012, Cambridge University Press, Cambridge, 109–230.
Shao, J., Zhou, X., van Groenigen, K.J., Zhou, G., Zhou, H., Zhou, L., Lu, M., Xia, J., Jiang, L., Hungate, B.A., Luo, Y., He, F., Thakur, M.P., Warming effects on grassland productivity depend on plant diversity. Global Ecol. Biogeogr. 31 (2022), 588–598, 10.1111/geb.13441.
Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M., Biss, P.M., The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 94 (2006), 801–814, 10.1111/j.1365-2745.2006.01145.x.
Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, W.C., Schmid, H.P., Wofsy, S.C., Xu, L., On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. G: Biogeosci., 111, 2006, G04015, 10.1029/2006JG000162.
Smith, W., Reed, S., Cleveland, C., Ballantyne, A., Anderegg, W., Wieder, W., Liu, Y., Running, S., Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6 (2016), 306–310, 10.1038/nclimate2879.
Song, J., Wan, S., Piao, S., Knapp, A.K., Classen, A.T., Vicca, S., Ciais, P., Hovenden, M.J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., Dukes, J.S., Tang, J., Chen, J., Hofmockel, K.S., Kueppers, L.M., Rustad, L., Liu, L., Smith, M.D., Templer, P.H., Quinn Thomas, R., Norby, R.J., Phillips, R.P., Niu, S., Fatichi, S., Wang, Y., Shao, P., Han, H., Wang, D., Lei, L., Wang, J., Li, X., Zhang, Q., Li, X., Su, F., Liu, B., Yang, F., Ma, G., Li, G., Liu, Y., Liu, Y., Yang, Z., Zhang, K., Miao, Y., Hu, M., Yan, C., Zhang, A., Zhong, M., Hui, Y., Li, Y., Zheng, M., A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3:9 (2019), 1309–1320, 10.1038/s41559-019-0958-3.
Soussana, J.-F., Lüscher, A., Temperate grasslands and global atmospheric change: a review. Grass Forage Sci 62 (2007), 127–134, 10.1111/j.1365-2494.2007.00577.x.
Soussana, J.-F., Graux, A.I., Tubiello, F.N., Improving the use of modelling for projections of climate change impacts on crops and pastures. J. Exp. Bot. 61:8 (2010), 2217–2228, 10.1093/jxb/erq100.
Soussana, J.-F., Barioni, L.G., Ben Ari, T., Conant, R., Gerber, P., Havlik, P., Ickowicz, A., Howden, M., Managing grassland systems in a changing climate: the search for practical solutions. Michalk, D.L., Millar, G.D., Badgery, W.B., Broadfoot, K.M., (eds.) Proceedings of the 22nd International Grassland Congress, 15–19 September, Sydney, 2013, 10–27.
ten Broeke, G., van Voorn, G., Ligtenberg, A., Which sensitivity analysis method should I use for my agent-based model?. J. Artif. Soc. S., 19, 2016, 5, 10.18564/jasss.2857.
Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., Wohlfahrt, G., Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3 (2010), 722–727, 10.1038/ngeo950.
Thornley, J.H.M., A balanced quantitative model for root:shoot ratios in vegetative plants. Ann. Bot. 36 (1972), 431–441, 10.1093/oxfordjournals.aob.a084602.
Tonitto, C., Woodbury, P.B., McLellan, E.L., Defining a best practice methodology for modeling the environmental performance of agriculture. Environ. Sci. Policy 87 (2018), 64–73, 10.1016/j.envsci.2018.04.009.
Tubiello, F.N., Soussana, J.-F., Howden, S.M., Crop and pasture response to climate change. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 19686–19690, 10.1073/pnas.0701728104.
Unger, S., Jongen, M., Consequences of changing precipitation patterns for ecosystem functioning in grasslands: a review. Progress in Botany Lüttge, U., Beyschlag, W., (eds.) Progress in Botany, 2015, Springer, Cham, 10.1007/978-3-319-08807-5_14 76.
van Oijen, M., Barcza, Z., Confalonieri, R., Korhonen, P., Kröel-Dulay, G., Lellei-Kovács, E., Louarn, G., Louault, F., Martin, R., Moulin, T., Movedi, E., Picon-Cochard, C., Rolinski, S., Viovy, N., Wirth, S.B., Bellocchi, G., Incorporating biodiversity into biogeochemistry models to improve prediction of ecosystem services in temperate grasslands. Rev. Roadmap. Agron., 10, 2020, 259, 10.3390/agronomy10020259.
Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thonburn, P.J., van Ittersum, M., Aggarwal, P.K., Ahmed, M., Basso, B., Biernath, C., Cammarano, D., Challinor, A.J., De Sanctis, G., Dumont, B., Rezaei, E.E., Fereres, E., Fitzgerald, G.J., Gao, Y., Garcia-Vila, M., Gayler, S., Girousse, C., Hoogenboom, G., Horan, H., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.-K., Maiorano, A., Minoli, S., Müller, C., Kumar, S.N., Nendel, C., O'Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D., Rötten, R.P., Semenov, M.A., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Fao, F., Wolf, J., Zhang, Z., Multi-model ensembles improve predictions of crop-environment-management interactions. Global Change Biol 24 (2018), 5072–5083, 10.1111/gcb.14411.
Wang, D., Heckathorn, S.A., Wang, X., Philpott, S.M., A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169 (2012), 1–13, 10.1007/s00442-011-2172-0.
Wang, N., Quesada, B., Xia, L., Butterbach-Bahl, K., Goodale, C.L., Kiese, R., Effects of climate warming on carbon fluxes in grasslands – A global meta-analysis. Glob. Change Biol. 25 (2019), 1839–1851, 10.1111/gcb.14603.
Warnant, P., François, L., Strivay, D., Gérard, J.-C., CARAIB: a global model of terrestrial biological productivity. Global Biogeochem. Cycles 8 (1994), 255–270, 10.1029/94GB00850.
Way, D.A., Yamori, W., Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosyn. Res. 119:1–2 (2014), 89–100, 10.1007/s11120-013-9873-7.
White, J.W., Hoogenboom, G., Kimball, B.A., Wall, G.W., Methodologies for simulating impacts of climate change on crop production. Field Crop. Res. 124 (2011), 357–368, 10.1016/j.fcr.2011.07.001.
Wilcox, K.R., Shi, Z., Gherardi, L.A., Lemoine, N.P., Koerner, S.E., Hoover, D.L., Bork, E., Byrne, K.M., Cahill, J., Collins, S.L., Evans, S., Gilgen, A.K., Holub, P., Jiang, L., Knapp, A.K., LeCain, D., Liang, J., Garcia-Palacios, P., Peñuelas, J., Pockman, W.T., Smith, M.D., Sun, S., White, S.R., Yahdjian, L., Zhu, K., Luo, Y., Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Global Change Biol 23 (2017), 4376–4385, 10.1111/gcb.13706.
Williams, J.R., Arnold, J.G., Kiniry, J.R., Gassman, P.W., Green, C.H., History of model development at Temple. Texas. Hydrol. Sci. J. 53 (2008), 948–960, 10.1623/hysj.53.5.948.
Wohlfahrt, G., Anderson-Dunn, M., Bahn, M., Balzarolo, M., Berninger, F., Campbell, C., Carrara, A., Cescatti, A., Christensen, T., Dore, S., Eugster, W., Friborg, T., Furger, M., Gianelle, D., Gimeno, C., Hargreaves, K., Hari, P., Haslwanter, A., Johansson, T., Marcolla, B., Milford, C., Nagy, Z., Nemitz, E., Rogiers, N., Sanz, M.J., Siegwolf, R.T.W., Susiluoto, S., Sutton, M., Tuba, Z., Ugolini, F., Valentini, R., Zorer, R., Cernusca, A., Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems 11 (2008), 1338–1351, 10.1007/s10021-008-9196-2.
Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J., Hungate, B.A., Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17 (2011), 927–942, 10.1111/j.1365-2486.2010.02302.x.
Wu, W., Lan, C.-W., Lo, M.-H., Reager, J.T., Famiglietti, J.S., Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. Geophys. Res. Lett. 42 (2015), 3903–3910, 10.1002/2015GL064110.
Wu, L., McGechan, M.B., McRoberts, N., Baddeley, J.A., Watson, C.A., SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling – model description. Ecol. Modell. 3-4, 2007, 343–359, 10.1016/j.ecolmodel.2006.08.010.
Wullschleger, S.D., Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot. 44 (1993), 907–920, 10.1093/jxb/44.5.907.
Xu, W., Yuan, W., Dong, W., Xia, J., Liu, D., Chen, Y., A meta-analysis of the response of soil moisture to experimental warming. Environ. Res. Lett., 8, 2013, 044027, 10.1088/1748-9326/8/4/044027.
Yahdjian, L., Sala, O.E., A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133 (2002), 95–101, 10.1007/s00442-002-1024-3.