Response of a grassland species to dry environmental conditions from water stable isotopic monitoring: no evident shift in root water uptake to wetter soil layers
Deseano Diaz, Paulina Alejandra; van Dusschoten, Dagmar; Kübert, Angelikaet al.
Centaurea jacea; Drought; Non-destructive monitoring; Root water uptake; Water stable isotopes; Soil Science; Plant Science
Abstract :
[en] Aims: We aimed at assessing the influence of above- and below-ground environmental conditions over the performance of Centaurea jacea L., a drought-resistant grassland forb species. Methods: Transpiration rate, CO2 assimilation rate, leaf water potential, instantaneous and intrinsic water use efficiency, temperature, relative humidity, vapor pressure deficit and soil water content in one plant and root length density in four plants, all grown in custom-made columns, were monitored daily for 87 days in the lab. The soil water isotopic composition in eleven depths was recorded daily in a non-destructive manner. The isotopic composition of plant transpiration was inferred from gas chamber measurements. Vertical isotopic gradients in the soil column were created by adding labeled water. Daily root water uptake (RWU) profiles were computed using the multi-source mixing model Stable Isotope Analysis in R (Parnell et al. PLoS ONE 5(3):1–5, 2010). Results: RWU occurred mainly in soil layer 0–15 cm, ranging from 79 to 44%, even when water was more easily available in deeper layers. In wet soil, the transpiration rate was driven mainly by vapor pressure deficit and light intensity. Once soil water content was less than 0.12 cm3 cm− 3, the computed canopy conductance declined, which restricted leaf gas exchange. Leaf water potential dropped steeply to around − 3 MPa after soil water content was below 0.10 cm3 cm− 3. Conclusion: Our comprehensive data set contributes to a better understanding of the effects of drought on a grassland species and the limits of its acclimation in dry conditions.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Deseano Diaz, Paulina Alejandra ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
van Dusschoten, Dagmar ; Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
Brüggemann, Nicolas ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
Javaux, Mathieu ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany ; Earth and Life Institute, Environmental Sciences (ELIE), Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
Merz, Steffen ; Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany
Vanderborght, Jan ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
Vereecken, Harry ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
Dubbert, Maren ; Leibniz-Institut für Agrarlandschaftsforschung ZALF Gewässerökologie und Binnenfischerei Berlin, Iosotopebiogeochemistry and Gasfluxes, Müncheberg, Germany
Rothfuss, Youri ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes ; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
Language :
English
Title :
Response of a grassland species to dry environmental conditions from water stable isotopic monitoring: no evident shift in root water uptake to wetter soil layers
Publication date :
21 September 2022
Journal title :
Plant and Soil
ISSN :
0032-079X
eISSN :
1573-5036
Publisher :
Springer Science and Business Media Deutschland GmbH
Bachmann D et al (2015) No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands. PLoS ONE 10(1):1–14. 10.1371/journal.pone.0116367 DOI: 10.1371/journal.pone.0116367
Beyer M et al (2018) Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. J Hydrol 566:122–136. Elsevier.https://doi.org/10.1016/j.jhydrol.2018.08.060
Bogena HR et al (2007) Evaluation of a low-cost soil water content sensor for wireless network applications. J Hydrol 344(1–2):32–42. 10.1016/j.jhydrol.2007.06.032 DOI: 10.1016/j.jhydrol.2007.06.032
Carminati A, Javaux M (2020) Soil rather than Xylem vulnerability controls stomatal response to drought. Trends Plant Sci, The Authors 25(9):868–880. 10.1016/j.tplants.2020.04.003 DOI: 10.1016/j.tplants.2020.04.003
Chitra-Tarak R et al (2021) Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol 231(5):1798–1813. 10.1111/nph.17464 DOI: 10.1111/nph.17464
Couvreur V et al (2020) Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies. Hydrol Earth Syst Sci 24(6):3057–3075. 10.5194/hess-24-3057-2020 DOI: 10.5194/hess-24-3057-2020
Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment: Stomatal function in the regulation of gas exchange. University Press, Cambridge, pp 471–505
Dubbert M, Cuntz M et al (2014) Oxygen isotope signatures of transpired water vapor: The role of isotopic non-steady-state transpiration under natural conditions. New Phytol 203(4):1242–1252. 10.1111/nph.12878 DOI: 10.1111/nph.12878
Dubbert M, Piayda A et al (2014) Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange. Front Plant Sci 5:1–17. 10.3389/fpls.2014.00530 DOI: 10.3389/fpls.2014.00530
Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15(9):1073–1082. 10.1111/j.1365-3040.1992.tb01657.x DOI: 10.1111/j.1365-3040.1992.tb01657.x
Gang C et al (2016) Drought-induced dynamics of carbon and water use efficiency of global grassland from 200 to 2011. Ecol Indic 67:788–797
Gessler A et al (2022) Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytol 233(1):194–206. 10.1111/nph.17767 DOI: 10.1111/nph.17767
Gollan T, Turner NC, Schulze ED (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65:356–362
Hayat F et al (2019) Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents. Adv Water Resour 124:96–105 DOI: 10.1016/j.advwatres.2018.12.009
Hayat F et al (2020) Transpiration reduction in maize (Zea mays L) in response to soil drying. Front Plant Sci 10(January):1–8. 10.3389/fpls.2019.01695 DOI: 10.3389/fpls.2019.01695
Hegi G (1954) Dicotyledones. Illustrierte Flora von Mitteleuropa. Mit besonderer Berücksichtigung von Oesterreich, Deutschland und der Schweiz. Zum Gebrauche in den Schulen und zum Selbstunterricht, Volume VI. 2nd Part. Omnitypie-Gesellschaft, Stuttgart
Hochberg U et al (2018) Iso / Anisohydry: A plant – Environment interaction rather than a simple hydraulic trait. Trends Plant Sci 23:112–120. 2. Elsevier Ltd. https://doi.org/10.1016/j.tplants.2017.11.002.
Jentsch A et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. 10.1111/j.1365-2745.2011.01817.x DOI: 10.1111/j.1365-2745.2011.01817.x
Judson PH et al (2006) Advantages in water relations contribute to greater photosynthesis in Centaurea maculosa compared with established grasses. Int J Plant Sci 167(2):269–277 DOI: 10.1086/499505
Kübert A et al (2021) Combined experimental drought and nitrogen loading: the role of species-dependent leaf level control of carbon and water exchange in a temperate grassland. Plant Biol 23(3):427–437. 10.1111/plb.13230 DOI: 10.1111/plb.13230
Kühnhammer K et al (2020) Investigating the root plasticity response of Centaurea jacea to soil water availability changes from isotopic analysis. New Phytol 226(1):98–110. 10.1111/nph.16352 DOI: 10.1111/nph.16352
Kulmatiski A et al (2010) A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytol 188(1):199–209. 10.1111/j.1469-8137.2010.03338.x DOI: 10.1111/j.1469-8137.2010.03338.x
Kulmatiski A et al (2017) Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere 8(3). 10.1002/ecs2.1738
Majoube M (1971) Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J Chem Phys 68:1423–1436
Martínez-Vilalta J et al (2014) A new look at water transport regulation in plants. New Phytol 204(1):105–115. 10.1111/nph.12912 DOI: 10.1111/nph.12912
Maseda PH, Fernández RJ (2006) Stay wet or else: Three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57(15):3963–3977. 10.1093/jxb/erl127 DOI: 10.1093/jxb/erl127
Mazzacavallo MG, Kulmatiski A (2015) Modelling water uptake provides a new perspective on grass and tree coexistence. PLoS ONE 10(12):1–16. 10.1371/journal.pone.0144300 DOI: 10.1371/journal.pone.0144300
Meunier F et al (2017) Measuring and modeling hydraulic lift of Lolium multiflorum using stable water isotopes. Vadose Zone J 17(1):160134. 10.2136/vzj2016.12.0134 DOI: 10.2136/vzj2016.12.0134
Murray FW (1966) On the computation of saturation vapor pressure. (No. P-3423). Rand Corp, Santa Monica. https://www.rand.org/pubs/papers/P3423.html
Newman BD et al (2006) Ecohydrology of water-limited environments: A scientific vision. Water Resour Res 42:1–15. 10.1029/2005WR004141 DOI: 10.1029/2005WR004141
Parnell AC et al (2010) Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5(3):1–5. 10.1371/journal.pone.0009672 DOI: 10.1371/journal.pone.0009672
Pflugfelder D et al (2017) Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods 13(1):1–9. BioMed Central. 10.1186/s13007-017-0252-9
Prechsl UE et al (2015) No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland. Oecologia 177(1):97–111. 10.1007/s00442-014-3092-6 DOI: 10.1007/s00442-014-3092-6
Quade M et al (2018) Investigation of kinetic isotopic fractionation of water during bare soil evaporation. Water Resour Res 54:6909–6928. 10.1029/2018WR023159 DOI: 10.1029/2018WR023159
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Rodriguez-Dominguez CM, Brodribb TJ (2020) Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol 225(1):126–134. 10.1111/nph.16177 DOI: 10.1111/nph.16177
Rothfuss Y et al (2015) Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column. Hydrol Earth Syst Sci 12:3893–3918. 10.5194/hess-19-4067-2015 DOI: 10.5194/hess-19-4067-2015
Rothfuss Y, Javaux M (2017) Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences 14:2199–2224. 10.5194/bg-14-2199-2017
Rothfuss Y, Vereecken H, Brüggemann N (2013) Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy. Water Resour Res 49:3747–3755. 10.1002/wrcr.20311 DOI: 10.1002/wrcr.20311
Schenk HJ (2008) The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal 7(3):1119–1124. 10.2136/vzj2007.0119 DOI: 10.2136/vzj2007.0119
Sperry JS et al (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25(2):251–263. 10.1046/j.0016-8025.2001.00799.x DOI: 10.1046/j.0016-8025.2001.00799.x
Sperry JS, Love DM (2015) What plant hydraulics can tell us about responses to climate-change droughts. New Phytol 207(1):14–27. 10.1111/nph.13354 DOI: 10.1111/nph.13354
Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432 DOI: 10.1093/jxb/49.Special_Issue.419
van Dusschoten D et al (2016) Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170(3):1176–1188. 10.1104/pp.15.01388 DOI: 10.1104/pp.15.01388
van Dusschoten D et al (2020) Spatially resolved root water uptake determination using a precise soil water sensor. Plant Physiol 184(3):1221–1235. 10.1104/pp.20.00488 DOI: 10.1104/pp.20.00488
von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153(4):376–387. 10.1007/BF00384257 DOI: 10.1007/BF00384257
Volkmann THM et al (2016) High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface. New Phytol 210(3):839–849. 10.1111/nph.13868 DOI: 10.1111/nph.13868
Warren CP (2011) Isotopic tracer reveals depth-specific water use patterns between two adjacent native and non- native plant communities. Utah State University
Yang Y et al (2016) Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci Rep 6:1–8. Nature Publishing Group. https://doi.org/10.1038/srep23284.
Yue P et al (2020) Biometeorological effects on carbon dioxide and water-use efficiency within a semiarid grassland in the Chinese Loess Plateau. J Hydrol 590:125520. Elsevier. https://doi.org/10.1016/j.jhydrol.2020.125520
Zarebanadkouki M, Kim YX, Carminati A (2013) Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil. New Phytol 199(4):1034–1044. 10.1111/nph.12330 DOI: 10.1111/nph.12330
Zhao Y et al (2021) Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agric For Meteorol 300:108323. Elsevier B.V. https://doi.org/10.1016/j.agrformet.2021.108323
Zwicke M et al (2015) What functional strategies drive drought survival and recovery of perennial species from upland grassland? Ann Bot 116(6):1001–1015. 10.1093/aob/mcv037 DOI: 10.1093/aob/mcv037