Planets and satellites: atmospheres; Stars: individual: 51 Eridani; Techniques: image processing; Atmospheric parameters; Atmospheric retrieval; Best fit; Exo-planets; Fit parameters; Self consistent modeling; Star: individual: 51 eridani; Stars: individual: proxima Centauri; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.EP
Abstract :
[en] Aims. We aim to better constrain the atmospheric properties of the directly imaged exoplanet 51 Eri b using a retrieval approach with data of higher signal-to-noise ratio (S/N) than previously reported. In this context, we also compare the results from an atmospheric retrieval to using a self-consistent model to fit atmospheric parameters. Methods. We applied the radiative transfer code petitRADTRANS to our near-infrared SPHERE observations of 51 Eri b in order to retrieve its atmospheric parameters. Additionally, we attempted to reproduce previous results with the retrieval approach and compared the results to self-consistent models using the best-fit parameters from the retrieval as priors. Results. We present a higher S/N YH spectrum of the planet and revised K1K2 photometry (MK1 = 15.11 ± 0.04 mag, MK2 = 17.11 ± 0.38 mag). The best-fit parameters obtained using an atmospheric retrieval differ from previous results using self-consistent models. In general, we find that our solutions tend towards cloud-free atmospheres (e.g. log τclouds =-5.20 ± 1.44). For our 'nominal' model with new data, we find a lower metallicity ([Fe/H] = 0.26 ± 0.30 dex) and C/O ratio (0.38 ± 0.09), and a slightly higher effective temperature (Teff = 807 ± 45 K) than previous studies. The surface gravity (log g = 4.05 ± 0.37) is in agreement with the reported values in the literature within uncertainties. We estimate the mass of the planet to be between 2 and 4 MJup. When comparing with self-consistent models, we encounter a known correlation between the presence of clouds and the shape of the P-T profiles. Conclusions. Our findings support the idea that results from atmospheric retrievals should not be discussed in isolation, but rather along with self-consistent temperature structures obtained using the best-fit parameters of the retrieval. This, along with observations at longer wavelengths, might help to better characterise the atmospheres and determine their degree of cloudiness.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Brown-Sevilla, S.B.; Max Planck Institute for Astronomy, Heidelberg, Germany
Maire, Anne-Lise ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Mollière, P.; Max Planck Institute for Astronomy, Heidelberg, Germany
Samland, M.; Max Planck Institute for Astronomy, Heidelberg, Germany
Feldt, M.; Max Planck Institute for Astronomy, Heidelberg, Germany
Brandner, W.; Max Planck Institute for Astronomy, Heidelberg, Germany
Henning, Th.; Max Planck Institute for Astronomy, Heidelberg, Germany
Gratton, R.; Inaf-Osservatorio Astronomico di Padova, Padova, Italy
Janson, M.; Department of Astronomy, Stockholm University, Stockholm, Sweden
Hagelberg, J.; Geneva Observatory, University of Geneva, Versoix, Switzerland
Zurlo, A.; Aix-Marseille Univ., Cnrs, Cnes, Lam, Marseille, France ; Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile ; Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile
Cantalloube, F.; Aix-Marseille Univ., Cnrs, Cnes, Lam, Marseille, France
Boccaletti, A.; Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Université de Paris, Meudon, France
Bonnefoy, M.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France
Chauvin, G.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France ; Unidad Mixta Internacional Franco-Chilena de Astronomía, Cnrs, Insu Umi 3386, Departamento de Astronomía, Universidad de Chile, Santiago, Chile
Desidera, S.; Inaf-Osservatorio Astronomico di Padova, Padova, Italy
D'Orazi, V.; Inaf-Osservatorio Astronomico di Padova, Padova, Italy
Lagrange, A.-M.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France ; Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Université de Paris, Meudon, France
Langlois, M.; Cral, Umr 5574, Cnrs, Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
Menard, F.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France
Mesa, D.; Inaf-Osservatorio Astronomico di Padova, Padova, Italy
Meyer, M.; European Southern Observatory (ESO), Garching, Germany
Pavlov, A.; Max Planck Institute for Astronomy, Heidelberg, Germany
Petit, C.; Dota, Onera, Université Paris Saclay, Palaiseau, France
Rochat, S.; Université Grenoble Alpes, Cnrs, Ipag, Grenoble, France
Rouan, D.; Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile
Schmidt, T.; Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile
Vigan, A.; Aix-Marseille Univ., Cnrs, Cnes, Lam, Marseille, France
Weber, L.; Geneva Observatory, University of Geneva, Versoix, Switzerland
SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF – Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zürich (Switzerland), NOVA (Netherlands), ON ERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009-2012) and grant number 312430 for FP7 (2013-2016). This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CeSAM (Marseille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris), and Observatoire de Lyon (OSUL/CRAL). A.L.M. acknowledges financial support from the Agence Nationale de la Recherche, the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 819155), and the F.R.S.-FNRSSPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF – Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zürich (Switzerland), NOVA (Netherlands), ON ERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009-2012) and grant number 312430 for FP7 (2013-2016). This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CeSAM (Marseille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris), and Observatoire de Lyon (OSUL/CRAL). A.L.M. acknowledges financial support from the Agence Nationale de la Recherche, the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 819155), and the F.R.S.-FNRS.
Commentary :
Accepted for publication in A&A. 21 pages, 7 figures in the main text
and 9 figures in the Appendix
Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872
Allard, F., Homeier, D., & Freytag, B. 2012, Philos. Trans. Roy. Soc. Lond. A, 370, 2765
Arentsen, A., Prugniel, P., Gonneau, A., et al. 2019, A&A, 627, A138
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 2003, in Brown Dwarfs, 211, ed. E. Martín, 41
Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42
Barstow, J. K. 2020, MNRAS, 497, 4183
Baudino, J. L., Bézard, B., Boccaletti, A., et al. 2015, A&A, 582, A83
Bayo, A., Rodrigo, C., Barrado Y., Navascués, D., et al. 2008, A&A, 492, 277
Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, MNRAS, 454, 593
Beuzit, J. L., Vigan, A., Mouillet, D., et al. 2019, A&A, 631, A155
Boccaletti, A., Sezestre, E., Lagrange, A. M., et al. 2018, A&A, 614, A52
Bohn, A. J., Kenworthy, M. A., Ginski, C., et al. 2020, MNRAS, 492, 431
Bowler, B. P., Liu, M. C., Mawet, D., et al. 2017, AJ, 153, 18
Buchner, J. 2014, ArXiv e-prints [arXiv: 1407.5459]
Burningham, B., Marley, M. S., Line, M. R., et al. 2017, MNRAS, 470, 1177
Burningham, B., Faherty, J. K., Gonzales, E. C., et al. 2021, MNRAS, 506, 1944
Cantalloube, F., Mouillet, D., Mugnier, L. M., et al. 2015, A&A, 582, A89
Carbillet, M., Bendjoya, P., Abe, L., et al. 2011, Exp. Astron., 30, 39
Carrión-González,Ö., García Muñoz, A., Cabrera, J., et al. 2020, A&A, 640, A136
Chauvin, G., Desidera, S., Lagrange, A. M., et al. 2017, in SF2A-2017: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, eds. C. Reylé, P. Di Matteo, F. Herpin, et al., 331
Claudi, R. U., Turatto, M., Gratton, R. G., et al. 2008, SPIE Conf. Ser., 7014, 70143E
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR On-line Data Catalog: II/246
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products
De Rosa, R. J., Nielsen, E. L., Blunt, S. C., et al. 2015, ApJ, 814, L3
De Rosa, R. J., Nielsen, E. L., Wang, J. J., et al. 2020, AJ, 159, 1
Delorme, P., Meunier, N., Albert, D., et al. 2017, in SF2A-2017: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, eds. C. Reylé, P. Di Matteo, F. Herpin, et al., 347
Desidera, S., Chauvin, G., Bonavita, M., et al. 2021, A&A, 651, A70
Dupuy, T. J., Brandt, G. M., & Brandt, T. D. 2022, MNRAS, 509, 4411
Feigelson, E. D., Lawson, W. A., Stark, M., Townsley, L., & Garmire, G. P. 2006, AJ, 131, 1730
Feroz, F., & Hobson, M. P. 2008, MNRAS, 384, 449
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Feroz, F., Hobson, M. P., Cameron, E., & Pettitt, A. N. 2019, Open J. Astrophys., 2, 10
Freudling, W., Romaniello, M., Bramich, D. M., et al. 2013, A&A, 559, A96
Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1
Gandhi, S., & Madhusudhan, N. 2018, MNRAS, 474, 271
Greco, J. P., & Brandt, T. D. 2016, ApJ, 833, 134
Helou, G., & Walker, D. W. 1988, Infrared Astronomical Satellite (IRAS) Catalogs and Atlases, 7: The Small Scale Structure Catalog
Hoeg, E., Bässgen, G., Bastian, U., et al. 1997, A&A, 323, L57
Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, A27
Hubeny, I. 2017, MNRAS, 469, 841
Janson, M., Asensio-Torres, R., André, D., et al. 2019, A&A, 626, A99
Morley, C. V., Fortney, J. J., Marley, M. S., et al. 2012, ApJ, 756, 172
Mugnier, L. M., Cornia, A., Sauvage, J.-F., et al. 2009, J. Opt. Soc. Am. A, 26, 1326
Müller, S., & Helled, R. 2021, MNRAS, 507, 2094
Öberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011, ApJ, 743, L16
Patel, R. I., Metchev, S. A., & Heinze, A. 2014, ApJS, 212, 10
Pavlov, A., Möller-Nilsson, O., Feldt, M., et al. 2008, SPIE Conf. Ser., 7019, 701939
Prugniel, P., Soubiran, C., Koleva, M., & Le Borgne, D. 2007, ArXiv e-prints [arXiv: 0703658v2]
Quanz, S. P., Crossfield, I., Meyer, M. R., Schmalzl, E., & Held, J. 2015, Int. J. Astrobiol., 14, 279
Querel, R. R., & Kerber, F. 2014, SPIE Conf. Ser., 9147, 914792
Rajan, A., Rameau, J., De Rosa, R. J., et al. 2017, AJ, 154, 10
Rebull, L. M., Stapelfeldt, K. R., Werner, M. W., et al. 2008, ApJ, 681, 1484
Riviere-Marichalar, P., Barrado, D., Montesinos, B., et al. 2014, A&A, 565, A68
Samland, M., Mollière, P., Bonnefoy, M., et al. 2017, A&A, 603, A57
Samland, M., Bouwman, J., Hogg, D. W., et al. 2021, A&A, 646, A24
Sepulveda, A. G., Huber, D., Zhang, Z., et al. 2022, ApJ, 938, 49
Simon, M., & Schaefer, G. H. 2011, ApJ, 743, 158
Skemer, A. J., Morley, C. V., Zimmerman, N. T., et al. 2016, ApJ, 817, 166
Skilling, J. 2004, in American Institute of Physics Conference Series, 735, Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, eds. R. Fischer, R. Preuss, & U. V. Toussaint, 395
Skilling, J. 2006, Bayesian Anal., 1, 833
Spiegel, D. S., & Burrows, A. 2012, ApJ, 745, 174
Tremblin, P., Amundsen, D. S., Mourier, P., et al. 2015, ApJ, 804, L17
Tremblin, P., Amundsen, D. S., Chabrier, G., et al. 2016, ApJ, 817, L19
Tremblin, P., Chabrier, G., Baraffe, I., et al. 2017, ApJ, 850, 46
Tremblin, P., Padioleau, T., Phillips, M. W., et al. 2019, ApJ, 876, 144
Vigan, A. 2020, Astrophysics Source Code Library [record ascl: 2009.002]
Vigan, A., Moutou, C., Langlois, M., et al. 2010, MNRAS, 407, 71
Vigan, A., Bonnefoy, M., Ginski, C., et al. 2016, A&A, 587, A55
Vigan, A., Fontanive, C., Meyer, M., et al. 2021, A&A, 651, A72
Wright, G. S., Rieke, G. H., Colina, L., et al. 2004, SPIE Conf. Ser., 5487, 653
Zalesky, J. A., Line, M. R., Schneider, A. C., & Patience, J. 2019, ApJ, 877, 24
Zhang, Y., Snellen, I. A. G., & Mollière, P. 2021, A&A, 656, A76
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ, 562, L87