Geochemical and mineralogical characterizations of Silurian “Hot” shales: Implications for shale gas/oil reservoir potential in Jeffara basin-southeastern Tunisia, North Africa
Arfaoui, Imen; Omar, Hamdi; Boulvain, Frédéric
2024 • In Journal of African Earth Sciences, 212 (C), p. 105213
Hot shales; organic geochemistry; mineralogy; unconventional reservoir; silurian; Jeffara basin
Abstract :
[en] The Silurian organic-rich hot shale deposits represent the origin of 80–90% Paleozoic sourced hydrocarbons on the entire Saharan Platform. As such, it is an area of significant interest for exploring its potential as an unconventional reservoir and gaining new insights into its properties. In this study, the geochemical and mineralogical analysis of eighty-two borehole samples from three studied wells (T, B, and M) located in Jeffara Basin, in southeastern Tunisa, distributed over a depth between 1200 m and 2200 m, show that the hot shale layer has significant potentials of an unconventional shale gas reservoir. According to the rock-eval and GCMS results, the total organic carbon (TOC) of the hot shale deposits is good to great, ranging between 0.54 wt% and 23.86 wt%, and the average hydrogen index (HI) is around ∼200 mg HC/g of TOC, which indicates that the hot shales were originally rich in type II/III organic matter (OM). The thermal maturity of the preserved OM is determined by the kerogen type with values varying from 0.4% to 1%, and Tmax values reaching 460 °C in T, B, and M wells which indicate that the hot shales preserved early mature to mature OM placed within oil/gas generation window. The calculated geochemical parameters reveal an average hydrocarbon generation potential (HGP) for the three studied wells of 20.37 kg HC/ton rock. In addition, the transformation ratios (TR) in T, B, and M wells are, respectively, 21.12%, 30% and 35.25%. However, only B and M wells show a cross-over layer, with oil saturation index (OSI) exceeding 100%, with significant potential as a hydrocarbon saturated source rock, making it a considerable target for unconventional oil exploration. Relevant results of Rock-Eval, biomarkers and XRD exhibit coherent features that reflect reducing marine conditions during the lower Silurian period. Moreover, the mineralogical composition was investigated to estimate the importance of frackable mineral fractions such as quartz (∼15%) and carbonates (calcite-dolomite). Mineral brittleness index (MBI) was calculated and compared to a well-known unconventional reservoir in the Neal shale member of the Floyd shale group in the Black Warrior Basin (US), which displays moderate to low MBI. The hot shales in the study area have a considerable MBI, which could be easily enhanced by hydraulic fracturing to liberate oil/gas from the potentially saturated unconventional shale reservoir.
Precision for document type :
Review article
Disciplines :
Earth sciences & physical geography
Author, co-author :
Arfaoui, Imen ; Université de Liège - ULiège > Geology ; Université de Liège - ULiège > Faculté des Sciences > Doct. sciences. (géologie)
Omar, Hamdi; University of Sfax [TN] > Department of Geology > Laboratory of Sedimentary Dynamics and Environment, National Engineering School of Sfax,
Boulvain, Frédéric ; Université de Liège - ULiège > Département de géologie ; Université de Liège - ULiège > Département de géologie > Pétrologie sédimentaire
Language :
English
Title :
Geochemical and mineralogical characterizations of Silurian “Hot” shales: Implications for shale gas/oil reservoir potential in Jeffara basin-southeastern Tunisia, North Africa
Abouelresh, M.O., Mahmoud, M., Radwan, A.E., Dodd, T.J., Kong, L., Hassan, H.F., Characterization and classification of the microporosity in the unconventional carbonate reservoirs: a case study from Hanifa Formation, Jafurah Basin, Saudi Arabia. Mar. Petrol. Geol., 145, 2022, 105921.
Acheche, M.H., M'Rabet, A., Ghariani, H., Ouahchi, A., Montgomery, S.L., Ghadames Basin, southern Tunisia: a Reappraisal of triassic reservoirs and future prospectivity. AAPG Bulletin 85:5 (2001), 765–780, 10.1306/8626C9F1-173B-11D7-8645000102C1865D.
Aissaoui, N., Acheche, M.H., Ben Yacoub, J., M'rabet, A., N.T. P.F.A.S.J. Silurian Acacus New Play in Southern Tunisia. 2015 August.
Al-Juboury, A.I., Qader, F.M., Howard, J., Vincent, S.J., Al-Hadidy, A., Thusu, B., Kaye, M., Vautravers, B., Organic and inorganic geochemical and mineralogical assessement of the silurian akkas formation, western Iraq. S.J. J. Petrol. Geol. 44:1 (2021), 69–96 N.D.
Al-Juboury, A.I., Howard, J.P., Nichols, G., Vincent, S.J., Manning, C., Vautravers, B.P., Sedimentology, geochemistry and reservoir potential of sandstones in the Silurian Akkas Formation, western Iraq. J. Petrol. Geol. 42:3 (2019), 261–280.
Al-Juboury, A.I., Thani, M.A.M., Silurian gas-rich “Hot Shale” from Akkas gas field, Western Iraq: geological importance and updated hydrocarbon potential and reservoir development estimations of the field. Al-Juboury, A.I., (eds.) Shale Gas – New Aspects and Technologies, 2018, InTechOpen, London, 41–66 978-953-51-5949-0.
Alkhafaji, M.W., Aljubouri, Z.A., Aldobouni, I.A., Depositional environment of the Lower Silurian Akkas hot shales inthe Western Desert of Iraq: results from an organic geochemical study. Mar. Petrol. Geol. 64 (2015), 294–303, 10.1016/j.marpetgeo.2015.02.012.
Allaoui, A., Belksier, M.S., Ameur-Zaimeche, O., Kechiched, R., Remita, A., Fellah, L., Lamouri, B., Habes, S., The lower Silurian black Shales from the Ahnet basin (SW Algerian Saharan platform): a comprehensive mineralogical study and paleoenvironmental implications. Arabian J. Geosci., 15(11), 2022, 10.1007/s12517-022-10388-9.
Baouche, R., Sen, S., Radwan, A.E., Geomechanical and petrophysical assessment of the lower turonian tight carbonates, southeastern constantine basin, Algeria: implications for unconventional reservoir development and fracture reactivation potential. Energies, 15(21), 2022, 7901.
Behar, F., Beaumont, V.D.E.B., Penteado, H.D.B., Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56:2 (2001), 111–134.
Bellini, E., Massa, D., Salem, M.J., A stratigraphic contribution to the Palaeozoic of the southern basins of Libya. The geology of Libya 1 (1980), 3–56.
Bjorkum, P.A., Gjelsvik, N., An isochemical model for formation of authigenic kaolinite, K-feldspar and illite in sediments. J. Sediment. Res. 58:3 (1988), 506–511, 10.1306/212F8DD2-2B24-11D7-8648000102C1865D.
Booth, D.R.D., Clark-Lowes, D.D., Traut, M.W., Palaeozoic petroleum systems of North Africa. Geol. Soc. Spec. Publ. 132:132 (1998), 7–68, 10.1144/GSL.SP.1998.132.01.02.
Burnham, A.K., Sweeney, J.J., A chemical kinetic model of vitrinite maturation and reflectance. Geochem. Cosmochim. Acta 53:10 (1989), 2649–2657, 10.1016/0016-7037(89)90136-1.
Dadi, K., Ahmadi, R., Ouali, J.A., Organic geochemical assessment and shale gas potential of lower silurian organic rich shale in the Ghadames Basin, North Africa. Oil Shale 36:2 (2019), 337–352, 10.3176/oil.2019.2.06.
El Diasty, W.S., El Beialy, S.Y., Anwari, T.A., Batten, D.J., Palynofacies and geochemical analyses of the Silurian Tanezzuft Formation, NC115 concession, Murzuq Basin, south-west Libya: implications for source rock potential and palaeoenvironment. J. Afr. Earth Sci. 151 (2019), 324–336, 10.1016/j.jafrearsci.2018.12.010 2019.
English, J., Burial and Exhumation of the Telemzane Arch. 2010 EPC 2010.
Espitalie, J., Deroo, G., Marquis, F., La pyrolyse Rock-Eval et ses applications. Revue - Institut Francais Du Petrole 40:5 (1985), 563–579.
Espitalie, J., Madec, M., Tissot, B., Mennig, J.J., Leplat, P., Source rock characterization method for petroleum exploration. Proceedings of the Annual Offshore Technology Conference, 1977, 439–444, 10.4043/2935-MS 1977-May.
Fred, P., Wang, J.F.W.G., Screening Criteria for Shale-Gas Systems. 2009.
Ghenima, R., Etude des roches mères Paléozoïques du Bassin de Ghadamès: modélisation de la migration des hydrocarbures et application a l’étude du gisement d'El Borma. 1993, Orleans University.
Glorioso, J.C., Rattia, A., Unconventional reservoirs: basic petrophysical concepts for shale gas. SPE/EAGE European Unconventional Resources Conference and Exhibition, 2012, 10.2118/153004-MS SPE-153004-MS).
Ghulam, A.N., Dos Santos, O.A., Hazeem, L., Pizzorno Backx, B., Bououdina, M., Bellucci, S., Graphene oxide (GO) materials—applications and toxicity on living organisms and environment. J. Funct. Biomater., 13(2), 2022, 77.
Guo, T., Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking. Earth Sci. Front., 23(1), 2016, 29, 10.13745/J.ESF.2016.01.003.
Hadded, A., Layeb, M., Mannai-Tayech, B., Milad, B., Saïdi, M., Soussi, M., Subsurface geochemical and mineralogical evaluation for unconventional “shale” oil play of the Bahloul Formation (Cenomanian-Turonian) in the Sahel Basin, Eastern Tunisia. Arabian J. Geosci., 14(17), 2021, 10.1007/s12517-021-07977-5.
Hakimi, M.H., Hamed, T.E., Lotfy, N.M., Radwan, A.E., Lashin, A., Rahim, A., Hydraulic fracturing as unconventional production potential for the organic-rich carbonate reservoir rocks in the Abu El Gharadig Field, north western Desert (Egypt): evidence from combined organic geochemical, petrophysical and bulk kinetics modeling res. Fuel, 334(October 2022), 2023, 126606, 10.1016/j.fuel.2022.126606.
Hallett, D., Clark-Lowes, D., Petroleum Geology of Libya. 2017.
Haq, B.U., Schutter, S.R., A chronology of paleozoic sea-level changes. Science 322:5898 (2008), 64–68, 10.1126/science.1161648.
Helgeson, H., Jm, D., Hw, N., dk, B., Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals. Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals. 1978.
Hunt, J., Petroleum Geochemistry and Geology. second ed., 1996, W.H. Freeman and Company 1996.
Jarvie, D.M., Shale resource systems for oil and gas: Part 1—shale-gas resource systems. AAPG Memoir 97:January 2012 (2012), 69–87, 10.1306/13321446M973489.
Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., Jarvie, D.M., Geochemical, H., Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. 4(4), 475–499 https://doi.org/10.1306/12190606068, 2007.
Jin, X., Pan, C., Yu, S., Li, E., Wang, J., Fu, X., Qin, J., Xie, Z., Zheng, P., Wang, L., Chen, J., Tan, Y., Organic geochemistry of marine source rocks and pyrobitumen-containing reservoir rocks of the Sichuan Basin and neighbouring areas, SW China. Mar. Petrol. Geol. 56 (2014), 147–165, 10.1016/j.marpetgeo.2014.04.010.
Kazi-Tani, N., Evolution géodynamique de la bordure nord-africaine: le domaine intraplaque nord-algérien: approche megaséquentielle. 1986 https://www.theses.fr/1986PAUU3010.
Luning, S., Craig, J., Loydell, D.K., Storch, P., Fitches, B., Lower Silurian ‘ Hot Shales ’ in North Africa and Arabia: Regional Distribution and Depositional Model. 2000.
Luning, S., Shahin, Y.M., Loydell, D., Al-Rabi, H.T., Masri, A., Tarawneh, B., Kolonic, S., Anatomy of a world-class source rock: distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential. AAPG Bulletin 89:10 (2005), 1397–1427.
Mews, K.S., Alhubail, M.M., Barati, R.G., A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs. Geosciences (Switzerland), 9(7), 2019, 10.3390/geosciences9070319.
Mohamed, A.B., Saidi, M., Soussi, M., Organic geochemistry of the paleozoic source rocks in the Chotts Basin, southern Tunisia. Society of Petroleum Engineers - SPE North Africa Technical Conference and Exhibition 2015, NATC, 2015, 1166–1187, 10.2118/175830-MS 2015.
Mounir Ferjaoui, A.M.M.H.A., Modeling of Hydrocarbon Generation and Expulsion from Tannezuft and Aouinet Ouinine Formations in Southern Tunisia – North Africa. 2001, 120–129.
Ourisson, G., Albrecht, P., Sciences, M.R.-T., Predictive Microbial Biochemistry—From Molecular Fossils to Procaryotic Membranes. B. 1982, Elsevier, 236–239 1982. (Accessed 3 June 2023)
Owusu, E.B., Tsegab, H., Sum, C.W., Padmanabhan, E., Organic geochemical analyses of the Belata black shale, Peninsular Malaysia; implications on their shale gas potential. J. Nat. Gas Sci. Eng., 69(July), 2019, 102945, 10.1016/j.jngse.2019.102945.
Palacas, J.G., PD 1(3) Carbonate Rocks as Sources of Petroleum: Geological and Chemical Characteristics and Oil-Source Correlations. 1983, OnePetro /WPCONGRESS/proceedings-abstract/WPC11/All-WPC11/200978.
Pashin, J.C., Gas shale potential of Alabama: tuscaloosa, Alabama, University of Alabama, college of continuing studies. 2008 International Coalbed & Shale Gas Symposium Proceedings, vol. 808, 2008 13.
Peters, K.E., Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG (Am. Assoc. Pet. Geol.) Bull. 70:3 (1986), 318–329, 10.1306/94885688-1704-11d7-8645000102c1865d.
Peters, K.E., Moldowan, J.M., Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem. 17:1 (1991), 47–61, 10.1016/0146-6380(91)90039-M.
Pogacsas, G., M'rabet, A., Hass, J., Samu, L., Vakarcs, G., Khochtali, T., Ben Gacha, A., Paleozoic-Mesozoic facies evolution and related hydrocarbon system of the Kebili area (Central Tunisia)., sixth ed. E. Memoire Proc. 6th Tunisian Petroleum Exploration and Production Conference, vol. 12, 1998.
Radwan, A.E., Trippetta, F., Kassem, A.A., Kania, M., Multi-scale characterization of unconventional tight carbonate reservoir: insights from October oil filed, Gulf of Suez rift basin, Egypt. J. Petrol. Sci. Eng., 197, 2021, 107968.
Radwan, A.E., Husinec, A., Benjumea, B., Kassem, A.A., Abd El Aal, A.K., Hakimi, M.H., et al. Diagenetic overprint on porosity and permeability of a combined conventional-unconventional reservoir: insights from the Eocene pelagic limestones, Gulf of Suez, Egypt. Mar. Petrol. Geol., 146, 2022, 105967.
Rezouga, N., Belhaj Mohamed, A., Saidi, M., Bouazizi, I., Assessment of unconventional shale reservoir: the Fegaguira Fm, Chotts Basin, Tunisia. Society of Petroleum Engineers - North Africa Technical Conference and Exhibition 2012, NATC 2012: Managing Hydrocarbon Resources in a Changing Environment, vol. 1, 2012, 642–661, 10.2118/150830-ms (February).
Ruble, T., Drozd, R.J., Heck, W.A., Practical Geochemical Methods to Assess Unconventional Reservoirs: A Case Study from the Permian Basin. 2012, Weatherford Laboratories, Texas, 47.
Sachse, V.F., Delvaux, D., Littke, R., Petrological and geochemical investigations of potential source rocks of the central Congo Basin, Democratic Republic of Congo. AAPG Bulletin 96:2 (2012), 245–275, 10.1306/07121111028.
Saeed, S.A., Hail, M., Al-muntaser, A.A., Khamieva, A.N., Varfolomeev, M.A., Morozov, V.P., Lashin, A., Abdelaal, M.A., Suwaid, M.A., Azlan, K., Djimasbe, R., Kadyrov, R.I., Gareev, B.I., Kwofie, M., Journal of Petroleum Science and Engineering Geochemical, Mineralogical and Petrographical Characteristics of the Domanik Formation from North Samara Region in the Volga-Ural Basin, Russia: Implication for Unconventional Tight Oil Reservoir Potential. 2023, 220 April 2022.
Schnyder, J., Gorin, G., Deconinck, J.F., Baudin, F., Soussi, M., Enregistrement de la variation climatique du passage Jurassique/Crétacé sur la marge sud de la Téthys: minéralogie des argiles et palynofaciès de la coupe du Jebel Meloussi en Tunisie (formation Sidi Kralif). Bulletin Société Géologique de France 176 (2005), 171–182, 10.2113/176.2.171.
Soua, M., Paleozoic oil/gas shale reservoirs in southern Tunisia: an overview. J. Afr. Earth Sci. 100 (2014), 450–492, 10.1016/j.jafrearsci.2014.07.009.
Steinke, S., Hanebuth, T.J.J., Vogt, C., Stattegger, K., Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17,000 yr. Mar. Geol. 250:3–4 (2008), 199–210, 10.1016/j.margeo.2008.01.005.
Thiry, M., Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Review 49 (2000), 201–221.
Turner, B.R., Armstrong, H.A., Holt, P., Visions of ice sheets in the early ordovician greenhouse world: evidence from the peninsula formation, Cape Peninsula, South Africa. Sediment. Geol. 236 (2011), 226–238.
Uffmann, A.K., Littke, R., Rippen, D., Mineralogy and geochemistry of mississippian and lower pennsylvanian black shales at the northern margin of the variscan mountain belt (Germany and Belgium). Int. J. Coal Geol. 103 (2012), 92–108, 10.1016/j.coal.2012.08.001.
Volkman, J.K., Maxwell, J.R., Acyclic isoprenoids as biological markers. Johns, R.B., (eds.) Biological Markers in the Sedimentary Record, 1986, Elsevier.
Wang, Z., Shi, B., Wen, Z., Tong, X., Song, C., He, Z., Liu, X., Shale oil and gas exploration potential in the tanezzuft formation, Ghadames Basin, North Africa. J. Afr. Earth Sci. 153:March (2019), 83–90, 10.1016/j.jafrearsci.2019.02.026.
Wignall, P.B., Newton, R., Brookfield, M.E., Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216:3–4 (2005), 183–188, 10.1016/J.PALAEO.2004.10.009.
Yuan, G., Cao, Y., Schulz, H., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., Li, F., Earth-Science Reviews A review of feldspar alteration and its geological signi fi cance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs. Earth Sci. Rev. 191:February (2019), 114–140, 10.1016/j.earscirev.2019.02.004.
Zhou, C., Jiang, S.Y., Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271:3–4 (2009), 279–286, 10.1016/J.PALAEO.2008.10.024.