Water cycle modelling strengthened by probabilistic integration of field data for groundwater management of a quite unknown tropical volcanic hydrosystem
Andesitic setting; Groundwater; Groundwater management; Lumped model; Multidisciplinary approach; Probabilistic; Global and Planetary Change; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] Andesitic volcanic hydrosystems in Indonesia are mostly hydrogeologically unknown despite their socio-economic importance. The development of robust and easy-to-implement methodologies to conceptualize and quantify the water cycle components becomes a prerequisite for their sustainable management. We developed a lumped hydrological model to mimic the structure and functioning of a previously unknown hydrosystem located on the flanks of the Salak volcano (West Java). The structure of the aquifers was revealed with electrical resistivity tomography. The distinction between springs fed by the extensive artesian aquifer and others fed by shallow perched aquifers was obtained mostly using hydrochemistry. The elevation of the recharge area was identified using isotopic analysis of spring water. After designing the hydrological model structure, we carried out a probabilistic parameters exploration using the multiple-try differential evolution adaptive Metropolis algorithm to calibrate aquifer discharge. Multiple Markov chains allow a better exploration of the parameter values. The Bayesian approach provides the best water cycle simulation with a parameter uncertainty analysis, improving the accuracy and representation of the water cycle appropriate for previously unknown hydrosystems.
Dumont, Marc ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée ; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Plagnes, Valérie; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Guérin, Roger; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Nugraha, Bayu; Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Indonesia
Mohamad, Febriwan; Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Indonesia
Oudin, Ludovic; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Fadillah, Arif; Danone Aqua Group, Department of Water Resources, Jakarta, Indonesia
Valdès, Danièle; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Brocard, Gilles; Archéorient, Maison de l’Orient et de la Méditerranée, Université Louis Lumière-Lyon 2, France
Bonjour, Jean-Luc; Water Institute by Evian, Water Resources and Sustainability Division, Evian-les-Bains, France
Saadi, Mohamed; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France ; Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS, Toulouse, France
Esneu, Anne-Sophie; Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Paris, France
Muhammad, Aswar; Danone Aqua Group, Department of Water Resources, Jakarta, Indonesia
Hendarmawan; Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Indonesia
Dörfliger, Nathalie; Water Institute by Evian, Water Resources and Sustainability Division, Evian-les-Bains, France
Water cycle modelling strengthened by probabilistic integration of field data for groundwater management of a quite unknown tropical volcanic hydrosystem
This project has been carried out within the collaboration between Sorbonne University (METIS laboratory), Water Institute by Evian, Danone Aqua group and the Universitas Padjajaran (UNPAD). This research was funded by Sorbonne University and Danone Aqua, in the framework of Danone Aqua Waterstewardship acceleration plan on watershed preservation. The authors are grateful to Damien Jougnot (Sorbonne University—METIS laboratory) for his help in the implementation of the MT-DREAMZSalgorithm.
Aldrian, E. and Djamil, Y. S. (2008). Spatio-temporal climatic change of rainfall in East Java Indonesia. Int. J. Climatol., 28(4), 435–448.
Bénard, B., Famin, V., Agrinier, P., Aunay, B., Lebeau, G., Sanjuan, B., Vimeux, F., Bardoux, G., and Dezayes, C. (2019). Origin and fate of hydrothermal fluids at Piton des Neiges volcano (Réunion Island): A geochemical and isotopic (O, H, C, Sr, Li, Cl) study of thermal springs. J. Volcanol. Geotherm. Res., 392, article no. 106682.
Buwono, N. R., Risjani, Y., and Soegianto, A. (2021). Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia. Environ. Technol. Innov., 24, article no. 101915.
Cerbelaud, A., Lefèvre, J., Genthon, P., and Menkes, C. (2022). Assessment of the WRF-hydro uncoupled hydro-meteorological model on flashy watersheds of the Grande Terre tropical island of New Caledonia (South–West Pacific). J. Hydrol. Reg. Stud., 40, article no. 101003.
Chang, S. W., Chung, I.-M., Kim, M.-G., and Yifru, B. A. (2020). Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea. Environ. Earth Sci., 79(22), article no. 498.
Charlier, J.-B., Cattan, P., Moussa, R., and Voltz, M. (2008). Hydrological behaviour and modelling of a volcanic tropical cultivated catchment. Hydrol. Process., 22(22), 4355–4370.
Charlier, J.-B., Lachassagne, P., Ladouche, B., Cattan, P., Moussa, R., and Voltz, M. (2011). Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multi-disciplinary experimental approach. J. Hydrol., 398(3–4), 155–170.
Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702–1703.
Dahlin, T. and Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect., 52(5), 379–398.
de Marsily, G. (2020). Will we soon run out of water? Ann. Nutrition Metabolism, 76(1), 10–16.
de Marsily, G., Delhomme, J.-P., Delay, F., and Buoro, A. (1999). Regards sur 40 ans de problèmes inverses en hydrogéologie. C. R. Acad. Sci. Ser. IIA - Earth Planet. Sci., 329(2), 73–87.
Descloitres, M., Ritz, M., Robineau, B., and Courteaud, M. (1997). Electrical structure beneath the eastern collapsed flank of Piton de la Fournaise volcano, Reunion Island: Implications for the quest for groundwater. Water Resour. Res., 33(1), 13–19.
Dubois, E., Doummar, J., Pistre, S., and Larocque, M. (2020). Calibration of a semi-distributed lumped karst system model and analysis of its sensitivity to climate conditions: The example of the Qachqouch karst spring (Lebanon). Hydrol. Earth Syst. Sci. Discussions, 24, 1–25.
Dumont, M., Peltier, A., Roblin, E., Reninger, P.-A., Barde-Cabusson, S., Finizola, A., and Ferrazzini, V. (2019). Imagery of internal structure and destabilization features of active volcano by 3D high resolution airborne electromagnetism. Sci. Rep., 9(1), 1–11.
Dumont, M., Reninger, P. A., Aunay, B., Pryet, A., Jougnot, D., Join, J. L., Michon, L., and Martelet, G. (2021). Hydrogeophysical characterization in a volcanic context from local to regional scales combining airborne electromagnetism and magnetism. Geophys. Res. Lett., 48(12), article no. e2020GL092000.
Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J.-L., Muhammad, A., Hendarmawan, Dörfliger, N., and Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. J. Hydrol. Reg. Stud., 40, article no. 101037.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G. (2014). Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrol. Earth Syst. Sci., 18(12), 4839–4859.
Gómez-Delgado, F., Roupsard, O., le Maire, G., Taugourdeau, S., Pérez, A., van Oijen, M., Vaast, P., Rapidel, B., Harmand, J. M., Voltz, M., Bonnefond, J. M., Imbach, P., and Moussa, R. (2011). Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica. Hydrol. Earth Syst. Sci., 15(1), 369–392.
Gresse, M., Uyeshima, M., Koyama, T., Hase, H., Aizawa, K., Yamaya, Y., Morita, Y., Weller, D., Rung-Arunwan, T., Kaneko, T., Sasai, Y., Zlotnicki, J., Ishido, T., Ueda, H., and Hata, M. (2021). Hydrothermal and magmatic system of a volcanic island inferred from magnetotellurics, seismicity, self-potential, and thermal image: An example of Miyakejima (Japan). J. Geophys. Res. Solid Earth, 126(6), article no. e2021JB022034.
He, B., Takase, K., and Wang, Y. (2008). Numerical simulation of groundwater flow for a coastal plain in Japan: Data collection and model calibration. Environ. Geol., 55(8), 1745–1753.
Hrachowitz, M. and Clark, M. P. (2017). HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrol. Earth Syst. Sci., 21(8), 3953–3973.
Join, J. L., Coudray, J., and Longworth, K. (1997). Using principal components analysis and Na/Cl ratios to trace groundwater circulation in a volcanic island: The example of Reunion. J. Hydrol., 190(1–2), 1–18.
Join, J.-L., Folio, J.-L., Bourhane, A., and Comte, J.-C. (2016). Groundwater resources on active Basaltic Volcanoes: Conceptual models from La Réunion Island and Grande Comore. In Bachelery, P., Lenat, J.-F., Muro, A. D., and Michon, L., editors, Active Volcanoes of the Southwest Indian Ocean, pages 61–70. Springer, Berlin, Heidelberg.
Khasanah, N., Tanika, L., Pratama, L. D. Y., Leimona, B., Prasetiyo, E., Marulani, F., Hendriatna, A., Zulkarnain, M. T., Toulier, A., and van Noordwijk, M. (2021). Groundwater-extracting rice production in the Rejoso Water-Shed (Indonesia) reducing urban water availability: Characterisation and intervention priorities. Land, 10(6), article no. 586.
Kolbe, T., Marçais, J., Thomas, Z., Abbott, B. W., de Dreuzy, J.-R., Rousseau-Gueutin, P., Aquilina, L., Labasque, T., and Pinay, G. (2016). Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. Hydrol., 543, 31–46.
Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., and Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: A Mayotte, Comoros, case study. Terra Nova, 26(4), 307–321.
Laloy, E., Linde, N., Jacques, D., and Vrugt, J. A. (2015). Probabilistic inference of multi-Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction. Water Resour. Res., 51, 4224–4243.
Lesparre, N., Girard, J.-F., Jeannot, B., Weill, S., Dumont, M., Boucher, M., Viville, D., Pierret, M.-C., Legchenko, A., and Delay, F. (2020). Magnetic resonance sounding measurements as posterior information to condition hydrological model parameters: Application to a hard-rock headwater catchment. J. Hydrol., 587, article no. 124941.
Lo, W., Purnomo, S. N., Sarah, D., Aghnia, S., and Hardini, P. (2021). Groundwater modelling in urban development to achieve sustainability of groundwater resources: A case study of Semarang City, Indonesia. Water, 13(10), article no. 1395.
Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C., and Reynard, E. (2003). Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surf. Geophys., 1(2), 57–67.
Mazzilli, N., Guinot, V., Jourde, H., Lecoq, N., La-bat, D., Arfib, B., Baudement, C., Danquigny, C., Dal Soglio, L., and Bertin, D. (2019). KarstMod: A modelling platform for rainfall—discharge analysis and modelling dedicated to karst systems. Environ. Model. Softw., 122, article no. 103927.
Monteith, J. L. (1965). Evaporation and environment. Symp. Soc. Experiment. Biol., 19, 205–234.
Mottes, C., Lesueur-Jannoyer, M., Charlier, J.-B., Carles, C., Guéné, M., Le Bail, M., and Malézieux, E. (2015). Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model. J. Hydrol., 529, 909–927.
Oldenburg, D. W. and Li, Y. (1999). Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2), 403–416.
Perrin, C., Michel, C., and Andréassian, V. (2003). Improvement of a parsimonious model for stream-flow simulation. J. Hydrol., 279(1), 275–289.
Satapona, A., Putra, D. P. E., and Hendrayana, H. (2018). Groundwater flow modeling in the Malioboro, Yogyakarta, Indonesia. J. Appl. Geol., 3(1), 11–22.
Selles, A., Deffontaines, B., Hendrayana, H., and Violette, S. (2015). The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. J. Asian Earth Sci., 108, 33–47.
Suriadikusumah, A., Mulyani, O., Sudirja, R., Sofyan, E. T., Maulana, M. H. R., and Mulyono, A. (2021). Analysis of the water quality at Cipeusing river, Indonesia using the pollution index method. Acta Ecol. Sin., 41(3), 177–182.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H. (2014). Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci., II4, 71–76.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geogr. Rev., 38(1), 55–94. JSTOR.
Toulier, A., Baud, B., de Montety, V., Lachassagne, P., Leonardi, V., Pistre, S., Dautria, J.-M., Hendrayana, H., Miftakhul Fajar, M. H., Satrya Muhammad, A., Beon, O., and Jourde, H. (2019). Multidisciplinary study with quantitative analysis of isotopic data for the assessment of recharge and functioning of volcanic aquifers: Case of Bromo-Tengger volcano, Indonesia. J. Hydrol. Reg. Stud., 26, article no. 100634.
Toulier, A., Lachassagne, P., Hendrayana, H., Fadillah, A., and Jourde, H. (2022). A cost-effective device and methodology to compute aquifer transmissivity and piezometry from free-flowing artesian wells. Hydrogeol. J., 30, 1917–1931.
Vittecoq, B., Deparis, J., Violette, S., Jaouën, T., and Lacquement, F. (2014). Influence of successive phases of volcanic construction and erosion on Mayotte Island’s hydrogeological functioning as determined from a helicopter-borne resistivity survey correlated with borehole geological and permeability data. J. Hydrol., 509, 519–538.
Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G., and Violette, S. (2019). Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Syst. Sci., 23(5), 2321–2338.
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A. (2009). Equifinality of Formal (DREAM) and Informal (GLUE) Bayesian Approaches in Hydrologic Modeling? Stoch. Environ. Res. Risk Assess., 23(7), 1011–1026.