[en] Light exposure fundamentally influences human physiology and behavior, with light being the most important zeitgeber of the circadian system. Throughout the day, people are exposed to various scenes differing in light level, spectral composition and spatio-temporal properties. Personalized light exposure can be measured through wearable light loggers and dosimeters, including wrist-worn actimeters containing light sensors, yielding time series of an individual’s light exposure. There is growing interest in relating light exposure patterns to health outcomes, requiring analytic techniques to summarize light exposure properties. Building on the previously published Python-based pyActigraphy module, here we introduce the module pyLight. This module allows users to extract light exposure data recordings from a wide range of devices. It also includes software tools to clean and filter the data, and to compute common metrics for quantifying and visualizing light exposure data. For this tutorial, we demonstrate the use of pyLight in one example dataset with the following processing steps: (1) loading, accessing and visual inspection of a publicly available dataset, (2) truncation, masking, filtering and binarization of the dataset, (3) calculation of summary metrics, including time above threshold (TAT) and mean light timing above threshold (MLiT). The pyLight module paves the way for open-source, large-scale automated analyses of light-exposure data.
Disciplines :
Neurosciences & behavior
Author, co-author :
Hammad, Grégory ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte ; Chair of Neurogenetics, Institute of Human Genetics, University Hospital, Technical University of Munich, Munich, Germany
Wulff, Katharina; Department of Molecular Biology, Umea University, Umea, Sweden ; Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umea, Sweden
Skene, Debra J.; Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
Münch, Mirjam; Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland ; Transfaculty Platform for Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
Spitschan, Manuel ; Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany ; TUM School of Medicine & Health, Technical University of Munich, Munich, Germany ; TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
Language :
English
Title :
Open-Source Python Module for the Analysis of Personalized Light Exposure Data from Wearable Light Loggers and Dosimeters
Publication date :
28 February 2024
Journal title :
LEUKOS - Journal of Illuminating Engineering Society of North America
Velux Stiftung Wellcome Trust University of Oxford KAW - Knut and Alice Wallenberg Foundation
Funding text :
This project was financially supported by the Daylight
Academy (DLA), a non-profit organization to promote the
research on and use of daylight funded by the Velux Stiftung.
K.W., D.S., M.M. and M.S. are members of DLA. During
early parts of this work, G.H., and M.S. were supported by
participating in the OLS-3 (Open Life Sciences) program.
During parts of this work, M.S. was supported by a Sir
Henry Wellcome Postdoctoral Fellowship (Wellcome Trust,
204686/Z/16/Z) and Linacre College, University of Oxford
(Biomedical Sciences Junior Research Fellowship). M.M. is
supported by the Velux Stiftung. K.W.’s contribution was in
part supported by the Knut and Wallenberg Foundation.
Aarts MPJ, van Duijnhoven J, Aries MBC, Rosemann ALP., 2017. Performance of personally worn dosimeters to study non-image forming effects of light: assessment methods. Build Environ. 117:60–72. doi:10.1016/j.buildenv.2017.03.002.
Angelova M, Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond S, Ellis J., 2020. Chronic insomnia and bed partner actigraphy data [Internet]. Dryad Digital Repository. 18036133 bytes. doi:10.5061/DRYAD.B8GTHT7BH.
Bierman A, Klein TR, Rea MS. 2005. The Daysimeter: a device for measuring optical radiation as a stimulus for the human circadian system. Meas Sci Technol. 16(11):2292–2299.
Blume C, Garbazza C, Spitschan M. 2019. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl). 23(3):147–156.
Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, Lucas RJ, Münch M, O’Hagan JB, Peirson SN, Price LLA, et al. 2022. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 20(3):e3001571. doi:10.1371/journal.pbio.3001571.
Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC. 1988. Exposure to light in healthy elderly subjects and alzheimer’s patients. Physiology & Behavior. 42(2):141–144. doi:10.1016/0031-9384(88)90289-2.
Dumont M, Beaulieu C. 2007. Light exposure in the natural environment: relevance to mood and sleep disorders. Sleep Med. 8(6):557–565.
Figueiro MG, Hamner R, Bierman A, Rea MS. 2013. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol. 45(4):421–434.
Hammad G, Reyt M, Beliy N, Baillet M, Deantoni M, Lesoinne A, Muto V, Schmidt C. 2021. pyActigraphy: open-source python package for actigraphy data visualization and analysis. PLoS Comput Biol. 17(10):e1009514. doi:10.1371/journal.pcbi.1009514.
Hartmeyer S, Webler F, Andersen M. 2022. Towards a framework for light-dosimetry studies: methodological considerations. Light Res Technol. 147715352211032. doi:10.1177/14771535221103258.
Houser KW, Esposito T. 2021. Human-centric lighting: foundational considerations and a five-step design process. Front Neurol. 12:630553.
Hubalek S, Brink M, Schierz C. 2010. Office workers’ daily exposure to light and its influence on sleep quality and mood. Light Res Technol. 42(1):33–50. doi:10.1177/1477153509355632.
Hubalek S, Zöschg D, Schierz C. 2006. LuxBlick–a measurement device for recording corneal illuminance and effective irradiance regarding unspecific biological effects [Abstracts from the 17th annual meeting of the society for light treatment and biological rhythms (Eindhoven, the Netherlands)]. Chronobiol Int. 23(3):695–746. doi:10.1080/07420520600767622.
Jardim AC, Pawley MD, Cheeseman JF, Guesgen MJ, Steele CT, Warman GR. 2011. Validating the use of wrist-level light monitoring for in-hospital circadian studies. Chronobiol Int. 28(9):834–840.
Kim SJ, Lim YC, Kwon HJ, Lee JH. 2020. Association of rest–activity and light exposure rhythms with sleep quality in insomnia patients. Chronobiol Int. 37(3):403–413. doi:10.1080/07420528.2019.1696810.
Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond SPA, Ellis JG, Angelova M. 2021. A machine learning model for multi-night actigraphic detection of chronic insomnia: development and validation of a pre-screening tool. R Soc Open Sci. 8(6):202264.
Mansencal T, Mauderer M, Parsons M, Shaw N, Wheatley K, Cooper S, Vandenberg JD, Canavan L, Crowson K, Lev O, et al. 2022. Colour 0.4.1 [Internet]. doi:10.5281/ZENODO.605791.
Markvart J, Hansen ÅM, Christoffersen J. 2015. Comparison and correction of the light sensor output from 48 wearable light exposure devices by using a side-by-side field calibration method. LEUKOS. 11(3):155–171.
Mellor A, Hamill K, Jenkins MM, Baucom DH, Norton PJ, Drummond SPA. 2019. Partner-assisted cognitive behavioural therapy for insomnia versus cognitive behavioural therapy for insomnia: a randomised controlled trial. Trials. 20(1):262. doi:10.1186/s13063-019-3334-3.
Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene DJ. 2020. The role of daylight for humans: gaps in Current knowledge. Clocks Sleep. 2(1):61–85.
Okudaira N, Kripke DF, Webster JB. 1983. Naturalistic studies of human light exposure. Am J Physiol. 245(4):R613–615.
Peeters ST, Smolders KCHJ, Kompier ME, de Kort YAW. 2022. Let me count the light. Accounting for intensity, duration and timing of light when predicting sleep and subjective alertness in field studies. LEUKOS. 18(4):417–437. doi:10.1080/15502724.2021.2001345.
Reid KJ, Santostasi G, Baron KG, Wilson J, Kang J, Zee PC. 2014. Timing and intensity of light correlate with body weight in adults. Mistlberger RE, editor. PLoS One. 9(4):e92251. doi:10.1371/journal.pone.0092251.
Savides TJ, Messin S, Senger C, Kripke DF. 1986. Natural light exposure of young adults. Physiology & Behavior. 38(4):571–574. doi:10.1016/0031-9384(86)90427-0.
Scheuermaier K, Laffan AM, Duffy JF. 2010. Light exposure patterns in healthy older and young adults. J Biol Rhythms. 25(2):113–122. doi:10.1177/0748730410361916.
Smet KAG. 2020. Tutorial: the LuxPy python toolbox for lighting and color science. LEUKOS. 16(3):179–201. doi:10.1080/15502724.2018.1518717.
Smolders KCHJ, de Kort YAW, van den Berg SM. 2013. Daytime light exposure and feelings of vitality: results of a field study during regular weekdays. J Environ Psychol. 36:270–279. doi:10.1016/j.jenvp.2013.09.004.
Sokolove PG, Bushell WN. 1978. The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol. 72(1):131–160.
Spitschan M, Joyce DS. 2023. Human-centric lighting research and policy in the Melanopsin Age. Policy Insights Behav Brain Sci. 10(2):237–246. doi:10.1177/23727322231196896.
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. 2021. Luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res. 6:69. doi:10.12688/wellcomeopenres.16595.2.
Spitschan M, Smolders K, Vandendriessche B, Bent B, Bakker JP, Rodriguez-Chavez IR, Vetter C. 2022. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digital Health. 8:205520762211448. doi:10.1177/20552076221144858.
Stampfli J, Schrader B, di Battista C, Häfliger R, Schälli O, Wichmann G, Zumbühl C, Blattner P, Cajochen C, Lazar R, et al. 2023. The light-dosimeter: a new device to help advance research on the non-visual responses to light. Light Res Technol. 147715352211471. doi:10.1177/14771535221147140
Stefani O, Cajochen C. 2021. Should we re-think regulations and standards for lighting at workplaces? A practice review on existing lighting recommendations. Front Psychiatry. 12:652161.
Thorne HC, Jones KH, Peters SP, Archer SN, Dijk D-J. 2009. Daily and seasonal variation in the spectral composition of light exposure in humans. Chronobiol Int. 26(5):854–866. doi:10.1080/07420520903044315.
Van Someren EJ, Kessler A, Mirmiran M, Swaab DF. 1997. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry. 41(9):955–963. doi:10.1016/S0006-3223(97)89928-3.
Vetter C, Pattison PM, Houser K, Herf M, Phillips AJK, Wright KP, Skene DJ, Brainard GC, Boivin DB, Glickman G. 2022. A review of human physiological responses to light: implications for the development of integrative lighting solutions. LEUKOS. 18(3):387–414. doi:10.1080/15502724.2021.1872383.
Wams EJ, Woelders T, Marring I, van Rosmalen L, Beersma DGM, Gordijn MCM, Hut RA. 2017. Linking light exposure and subsequent sleep: a field polysomnography study in humans. Sleep. 40(12). doi:10.1093/sleep/zsx165.
Webler FS, Spitschan M, Foster RG, Andersen M, Peirson SN. 2019. What is the ‘spectral diet’of humans?Curr Opin Behav Sci. 30:80–86. doi:10.1016/j.cobeha.2019.06.006.
Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. 1990. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 27(6):563–572. doi:10.1016/0006-3223(90)90523-5.
Woelders T, Beersma DGM, Gordijn MCM, Hut RA, Wams EJ. 2017. Daily light exposure patterns reveal phase and period of the human circadian clock. J Biol Rhythms. 32(3):274–286. doi:10.1177/0748730417696787.