Global and Planetary Change; Atmospheric Science; Management, Monitoring, Policy and Law
Abstract :
[en] Partitioned estimates of the boreal forest carbon (C) sink components are crucial for understanding processes and developing science-driven adaptation and mitigation strategies under climate change. Here, we provide a concise tree-centered overview of the boreal forest C balance and offer a circumpolar perspective on the contribution of trees to boreal forest C dynamics. We combine an ant’s-eye view, based on quantitative in situ observations of C balance, with a bird’s-eye perspective on C dynamics across the circumboreal region using large-scale data sets. We conclude with an outlook addressing the trajectories of the circumboreal C dynamics in response to projected environmental changes.
Pappas, Christoforos; Department of Civil Engineering, University of Patras, Rio Patras, Greece ; Centre for Forest Research, Université du Québec à Montréal, Montréal, Canada ; Département Science et Technologie, Université TÉLUQ, Montréal, Canada
Babst, Flurin; School of Natural Resources and the Environment, Laboratory of Tree-Ring Research, The University of Arizona, Tucson, United States
Fatichi, Simone; Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
Klesse, Stefan; Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Paschalis, Athanasios; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus London, London, United Kingdom
Peters, Richard ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs ; Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ; Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
Language :
English
Title :
A Circumpolar Perspective on the Contribution of Trees to the Boreal Forest Carbon Balance
ACIA. (2005). Impacts of a warming arctic: Arctic climate impact assessment. Cambridge University Press.
Alexander, H. D., Mack, M. C., Goetz, S., et al. (2012). Carbon accumulation patterns during post-fire succession in cajander larch (Larix cajanderi) forests of siberia. Ecosystems, 15(7), 1065–1082. https://doi.org/10.1007/s10021-012-9567-6.
Ameray, A., Bergeron, Y., Valeria, O., et al. (2021). Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports, 7(4), 245–266. https://doi.org/10.1007/s40725-021-00151-w.
Amiro, B.D., Barr, A. G., Barr, J. G. et al. (2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences, 115(G4), G00K02 https://doi.org/10.1029/2010JG001390.
Anderegg, W. R. L., Trugman, A. T., Badgley, G., et al. (2020). Climate-driven risks to the climate mitigation potential of forests. Science, 368(6497), eaaz7005 https://doi.org/10.1126/science.aaz 7005.
Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., et al. (2015). CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21(2), 528–549. https://doi.org/10.1111/gcb.12712.
Babst, F., Bouriaud, O., Alexander, R., et al. (2014a). Toward consistent measurements of carbon accumulation: A multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia, 32(2), 153–161. https://doi.org/10.1016/j.dendro.2014.01.002.
Babst, F., Bouriaud, O., Papale, D., et al. (2014b). Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201(4), 1289–1303. https://doi.org/10.1111/nph.12589.
Babst, F., Friend, A. D., Karamihalaki, M., et al. (2021). Modeling ambitions outpace observations of forest carbon allocation. Trends in Plant Science, 26(3), 210–219. https://doi.org/10.1016/j.tpl ants.2020.10.002.
Babst, F., Bouriaud, O., Poulter, B. et al. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5(1), eaat4313. https://doi.org/10.1126/sciadv.aat4313.
Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26(1), 242–260. https://doi.org/10. 1111/gcb.14807.
Baldocchi, D., & Peñuelas, J. (2019). The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global Change Biology, 25(4), 1191–1197. https://doi.org/10.1111/gcb.14559.
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115.
Barr, A. G., van der Kamp, G., Black, T. A., et al. (2012). Energy balance closure at the BERMS flux towers in relation to the water balance of the white gull creek watershed 1999–2009. Agricultural and Forest Meteorology, 153, 3–13. https://doi.org/10.1016/j.agrformet.2011.05.017.
Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121.
Bonan, G. B. (2016). Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annual Review of Ecology, Evolution, and Systematics, 47, 97–121. https://doi.org/10.1146/ann urev-ecolsys-121415-032359.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., et al. (2007). Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450(7166), 89–92. https://doi.org/10.1038/nature 06272.
Bond-Lamberty, B., Bailey, V. L., Chen, M., et al. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83. https://doi.org/10.1038/s41586-018-0358-x.
Bradshaw, C. J. A., & Warkentin, I. G. (2015). Global estimates of boreal forest carbon stocks and flux. Global and Planetary Change, 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015. 02.004.
Brandt, J. P., Flannigan, M. D., Maynard, D. G., et al. (2013). An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environmental Reviews, 21(4), 207–226. https://doi.org/10.1139/er-2013-0040.
Brassard, B. W., & Chen, H. Y. H. (2006). Stand structural dynamics of North American boreal forests. Critical Reviews in Plant Sciences, 25(2), 115–137. https://doi.org/10.1080/073526805 00348857.
Brienen, R. J. W., Caldwell, L., Duchesne, L., et al. (2020). Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature Communications, 11(1), 4241. https://doi.org/10. 1038/s41467-020-17966-z.
Bugmann, H., & Bigler, C. (2011). Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia, 165(2), 533–544. https://doi.org/10.1007/s00442-010-1837-4.
Büntgen, U., Krusic, P. J., Piermattei, A., et al. (2019). Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 10(1), 2171. https://doi.org/10.1038/s41467-019-10174-4.
Campioli, M., Malhi, Y., Vicca, S., et al. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(5), 13717. https://doi.org/10.1038/ncomms13717.
Carvalhais, N., Forkel, M., Khomik, M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514(7521), 213–217. https://doi.org/10.1038/nat ure13731.
Ceccherini, G., Duveiller, G., Grassi, G., et al. (2020). Abrupt increase in harvested forest area over Europe after 2015. Nature, 583(7814), 72–77. https://doi.org/10.1038/s41586-020-2438-y.
Chapin, F. S., III. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–260. https://doi.org/10.1146/annurev.es.11.110180.001313.
Chapin, F. S., III., Woodwell, G. M., Randerson, J. T., et al. (2006). Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10 021-005-0105-7.
Chen, J. M., Govind, A., Sonnentag, O., et al. (2006). Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140(1–4), 257–268. https://doi.org/10. 1016/j.agrformet.2006.08.005.
Ciais, P., Tan, J., Wang, X., et al. (2019). Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 568(7751), 221–225. https://doi.org/10.1038/s41 586-019-1078-6.
Clark, D. A., Brown, S., Kicklighter, D. W., et al. (2001). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11(2), 356–370. https://doi.org/10. 1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127), 1615–1618 https://doi.org/10.1016/b978-0-408-01434-2.50020-6; https://doi.org/10.1126/science.1231923.
Collalti, A., & Prentice, I. C. (2019). Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology, 39(8), 1473–1483. https://doi.org/10.1093/treephys/tpz034.
Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., et al. (2020). Mapping carbon accumulation potential from global natural forest regrowth. Nature, 585(7826), 545–550. https://doi.org/10.1038/s41 586-020-2686-x.
Crowther, T. W., Glick, H. B., Covey, K. R., et al. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–205. https://doi.org/10.1038/nature14967.
De Lucia, E. H., Drake, J. E., Thomas, R. B., et al. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13(6), 1157–1167. https://doi.org/10.1111/j.1365-2486.2007.01365.x.
Dewar, R. C., Medlyn, B. E., & McMurtrie, R. E. (1998). A mechanistic analysis of light and carbon use efficiencies. Plant, Cell and Environment, 21(6), 573–588. https://doi.org/10.1046/j. 1365-3040.1998.00311.x.
D’Orangeville, L., Houle, D., Duchesne, L., et al. (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 9(1), 3213. https://doi.org/10. 1038/s41467-018-05705-4.
Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., et al. (2019). The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. New Phytologist, 222(3), 1298–1312. https://doi.org/10.1111/nph.15629.
Duchesne, L., Houle, D., Ouimet, R., et al. (2019). Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Scientific Reports, 9(1), 6832. https://doi.org/10.1038/s41598-019-43243-1.
Duncanson, L., Armston, J., Disney, M., et al. (2019). The importance of consistent global forest aboveground biomass product validation. Surveys in Geophysics, 40(4), 979–999. https://doi.org/10.1007/s10712-019-09538-8.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., et al. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2(6), 453–457. https://doi.org/10.1038/nclimate1465.
Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90. https://doi.org/10.1007/BF0038 6231.
Fatichi, S., Pappas, C., Zscheischler, J., et al. (2019). Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 221(2), 652–668. https://doi.org/10.1111/nph.15451.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10. 1002/joc.5086.
Forkel, M., Carvalhais, N., Rödenbeck, C., et al. (2016). Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science, 351(6274), 696–699. https://doi.org/10.1126/science.aac4971.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., et al. (2020). Global carbon budget 2020. Earth System Science Data, 12(4), 3269–3340. https://doi.org/10.5194/essd-12-3269-2020.
Friedlingstein, P. (2015). Carbon cycle feedbacks and future climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 1–22 https://doi.org/10.1098/not.
Friend, A. D., Lucht, W., Rademacher, T. T., et al. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3280. https://doi.org/10.1073/pnas.1222477110.
Gaumont-Guay, D., Black, T. A., Barr, A. G., et al. (2014). Eight years of forest-floor CO2 exchange in a boreal black spruce forest: Spatial integration and long-term temporal trends. Agricultural and Forest Meteorology, 184, 25–35. https://doi.org/10.1016/j.agrformet.2013.08.010.
Gauthier, S., Bernier, P., Kuuluvainen, T., et al. (2015). Boreal forest health and global change. Science, 349, 819–822. https://doi.org/10.1126/science.aaa9092.
Giguère-Croteau, C., Boucher, É., Bergeron, Y., et al. (2019). North America’s oldest boreal trees are more efficient water users due to increased [CO2 ], but do not grow faster. Proceedings of the National Academy of Sciences of the United States of America, 116(7), 2749–2754. https://doi. org/10.1073/pnas.1816686116.
Girardin, M. P., Bouriaud, O., Hogg, E. H., et al. (2016). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113(52), E8406–E8414. https://doi.org/10. 1073/pnas.1610156113.
Goetz, S. J., Bond-Lamberty, B., Law, B. E., et al. (2012). Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research, 117(G2), G02022. https://doi.org/10.1029/2011JG001733.
Gower, S. T., Vogel, J. G., Norman, M. et al. (1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research, 102(D24), 29029–29041. https://doi.org/10.1029/97J D02317.
Grassi, G., House, J., Kurz, W. A., et al. (2018). Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 8(10), 914–920. https://doi.org/10.1038/s41558-018-0283-x.
Griffis, T. J., Black, T. A., Morgenstern, K., et al. (2003). Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology, 117(1–2), 53–71. https://doi.org/10.1016/S0168-1923(03)00023-6.
Harmon, M. E. (2001). Carbon sequestration in forest; addressing the scale question. Journal of Forestry, 99, 24–29. https://doi.org/10.1093/jof/99.4.24.
Hart, S. A., & Chen, H. Y. H. (2006). Understory vegetation dynamics of North American boreal forests. Critical Reviews in Plant Sciences, 25(4), 381–397. https://doi.org/10.1080/073526806 00819286.
Helbig, M., Pappas, C., & Sonnentag, O. (2016). Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophysical Research Letters, 43(4), 1598–1606. https://doi.org/10.1002/2015GL067193.
Ilvesniemi, H., Levula, J., Ojansuu, R., et al. (2009). Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Environment Research, 14(4), 731–753.
Intergovernmental Panel on Climate Change (IPCC). (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Kajimoto, T., Osawa, A., Usoltsev, V. A., et al. (2010). Biomass and productivity of Siberian larch forest ecosystems. In A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kajimoto, R. W. Wein (Eds.), Permafrost ecosystems: Siberian larch forests. Ecological Studies 209 (pp. 99–122). Dordrecht: Springer.
Kauppi, P. E., Posch, M., & Pirinen, P. (2014). Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE, 9(11), e111340. https://doi.org/10.1371/journal.pone.011 1340.
Keenan, T. F., & Williams, C. A. (2018). The terrestrial carbon sink. Annual Review of Environment and Resources, 43(1), 219–243. https://doi.org/10.1146/annurev-environ-102017-030204.
Kolari, P., Kulmala, L., Pumpanen, J., et al. (2009). CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Boreal Environment Research, 14(4), 761–783.
Körner, C. (2017). A matter of tree longevity. Science, 355(6321), 130–131. https://doi.org/10.1126/science.aal2449.
Körner, C. (2018). Concepts in empirical plant ecology. Plant Ecology Diversity, 11(4), 405–428. https://doi.org/10.1080/17550874.2018.1540021.
Kotani, A., Kononov, A. V., Ohta, T., et al. (2014). Temporal variations in the linkage between the net ecosystem exchange of water vapour and CO2 over boreal forests in eastern Siberia. Ecohydrology, 7(2), 209–225. https://doi.org/10.1002/eco.1449.
Krishnan, P., Black, T. A., Barr, A. G., et al. (2008). Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. Journal of Geophysical Research, 113(D9), D09109. https://doi.org/10.1029/2007JD008965.
Kurz, W. A., Shaw, C. H., Boisvenue, C., et al. (2013). Carbon in Canada’s boreal forest–A synthesis. Environmental Reviews, 21(4), 260–292. https://doi.org/10.1139/er-2013-0041.
Lagergren, F., Jönsson, A. M., Linderson, H., et al. (2019). Time shift between net and gross CO2 uptake and growth derived from tree rings in pine and spruce. Trees, 33(3), 765–776. https://doi. org/10.1007/s00468-019-01814-9.
Landsberg, J. J., Waring, R. H., & Williams, M. (2020). The assessment of NPP/GPP ratio. Tree Physiology, 40(6), 695–699. https://doi.org/10.1093/treephys/tpaa016.
Le Quéré, C., Andrew, R. M., Friedlingstein, P., et al. (2018). Global carbon budget 2017. Earth System Science Data, 10(1), 405–448. https://doi.org/10.5194/essd-10-405-2018.
Litton, C. M., Raich, J. W., & Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13(10), 2089–2109. https://doi.org/10.1111/j.1365-2486.2007.01420.x.
Liu, P., Black, T. A., Jassal, R. S., et al. (2019). Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999–2017. Global Change Biology, 25(9), 3056–3069. https://doi.org/10.1111/gcb.14674.
Lloyd, J., Shibistova, O., Zolotoukhine, D., et al. (2002). Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus B Chemical and Physical Meteorology, 54(5), 590–610. https://doi.org/10.3402/tellusb.v54i5.16689.
Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 22(6), 715–740. https://doi.org/10.1046/j.1365-3040.1999.00453.x.
Manzoni, S., Čapek, P., Porada, P., et al. (2018). Reviews and syntheses: Carbon use efficiency from organisms to ecosystems–definitions, theories, and empirical evidence. Biogeosciences, 15(19), 5929–5949. https://doi.org/10.5194/bg-15-5929-2018.
Marchand, W., Girardin, M. P., Gauthier, S., et al. (2018). Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environmental Research Letters, 13(9), 093001. https://doi.org/10.1088/1748-9326/aad82a.
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), eaaz9463. https://doi.org/10.1126/science. aaz9463.
Mencuccini, M., & Bonosi, L. (2001). Leaf/sapwood area ratios in Scots pine show acclimation across Europe. Canadian Journal of Forest Research, 31(3), 442–456. https://doi.org/10.1139/x00-173.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., et al. (2011). Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 045509. https://doi.org/10.1088/1748-9326/6/4/045509.
Naidu, D. G. T., & Bagchi, S. (2021). Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change. Global Change Biology, 27(10), 2029–2038. https://doi.org/10.1111/gcb.15531.
Odum, E. P. (1969). The strategy of ecosystem development. Science, 164(3877), 262–270. https://doi.org/10.1126/science.164.3877.262.
Ohta, T., Maximov, T. C., Dolman, A. J., et al. (2008). Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agricultural and Forest Meteorology, 148(12), 1941–1953. https://doi.org/10.1016/j.agrformet. 2008.04.012.
Ohta, T., Kotani, A., Iijima, Y., et al. (2014). Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agricultural and Forest Meteorology, 188, 64–75. https://doi.org/10.1016/j.agrformet.2013.12.012.
Pan, Y., Birdsey, R., Phillips, O. L., et al. (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593–622. https://doi.org/10.1146/annurev-ecolsys-110512-135914.
Pappas, C., Maillet, J., Rakowski, S., et al. (2020). Aboveground tree growth is a minor and decou-pled fraction of boreal forest carbon input. Agricultural and Forest Meteorology, 290, 108030. https://doi.org/10.1016/j.agrformet.2020.108030.
Pastorello, G., Trotta, C., Canfora, E., et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3.
Peng, C., Ma, Z., Lei, X., et al. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467–471. https://doi.org/10.1038/ncl imate1293.
Peñuelas, J., Ciais, P., Canadell, J. G., et al. (2017). Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 1(10), 1438–1445. https://doi.org/10.1038/s41559-017-0274-8.
Peters, R. L., Steppe, K., Cuny, H. E., et al. (2021). Turgor-a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229(1), 213–229. https://doi.org/10.1111/nph.16872.
Piao, S., Wang, X., Park, T., et al. (2020). Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, 1(1), 14–27. https://doi.org/10.1038/s43017-019-0001-x.
Popkin, G. (2019). How much can forests fight climate change? Nature, 565, 280–282. https://doi. org/10.1038/d41586-019-00122-z.
Pugh, T. A. M., Arneth, A., Kautz, M., et al. (2019a). Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature Geoscience, 12(9), 730–735. https://doi.org/10.1038/s41561-019-0427-2.
Pugh, T. A. M., Lindeskog, M., Smith, B., et al. (2019b). Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4382–4387. https://doi.org/10.1073/pnas.1810512116.
Pumpanen, J., Kulmala, L., Lindén, A., et al. (2015). Seasonal dynamics of autotrophic respiration in boreal forest soil estimated by continuous chamber measurements. Boreal Environment Research, 20(5), 637–650.
Rannik, Ü., Altimir, N., Raittila, J., et al. (2002). Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology, 111(3), 187–202. https://doi.org/10.1016/S0168-1923(02)00022-9.
Rees, W. G., Hofgaard, A., Boudreau, S., et al. (2020). Is subarctic forest advance able to keep pace with climate change? Global Change Biology, 26(7), 3965–3977. https://doi.org/10.1111/gcb.15113.
Reich, P. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275–301. https://doi.org/10.1111/1365-2745.12211.
Reichstein, M., Falge, E., Baldocchi, D., et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x.
Reichstein, M., Bahn, M., Ciais, P., et al. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. https://doi.org/10.1038/nature12350.
Rodríguez-Veiga, P., Quegan, S., Carreiras, J., et al. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53–68. https://doi.org/10.1016/j.jag.2018.12.008.
Running, S., & Zhao, M. (2019). MOD17A3HGF MODIS/Terra net primary production gap-filled yearly L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC.
Sawamoto, T., Hatano, R., Shibuya, M., et al. (2003). Changes in net ecosystem production associated with forest fire in taiga ecosystems, near Yakutsk, Russia. Soil Science and Plant Nutrition, 49(4), 493–501. https://doi.org/10.1080/00380768.2003.10410038.
Schepaschenko, D., Chave, J., Phillips, O. L., et al. (2019). The forest observation system, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 6(1), 198. https://doi.org/10.1038/s41597-019-0196-1.
Schurgers, G., Ahlstrom, A., Arneth, A., et al. (2018). Climate sensitivity controls uncertainty in future terrestrial carbon sink. Geophysical Research Letters, 45(9), 4329–4336. https://doi.org/10.1029/2018GL077528.
Seidl, R., Thom, D., Kautz, M., et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303.
Seidl, R., Honkaniemi, J., Aakala, T., et al. (2020). Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography, 43(7), 967–978. https://doi.org/10.1111/ecog.04995.
Serreze, M. C., & Francis, J. A. (2006). The Arctic amplification debate. Climatic Change, 76(3–4), 241–264. https://doi.org/10.1007/s10584-005-9017-y.
Soja, A. J., Tchebakova, N. M., French, N. H. F., et al. (2007). Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 56, 274–296. https://doi. org/10.1016/j.gloplacha.2006.07.028.
Tagesson, T., Schurgers, G., Horion, S., et al. (2020). Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nature Ecology and Evolution, 4(2), 202–209. https://doi.org/10.1038/s41559-019-1090-0.
Tei, S., Sugimoto, A., Kotani, A., et al. (2019). Strong and stable relationships between tree-ring parameters and forest-level carbon fluxes in a Siberian larch forest. Polar Science, 21(1), 146–157. https://doi.org/10.1016/j.polar.2019.02.001.
Thurner, M., Beer, C., Santoro, M., et al. (2014). Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography, 23(3), 297–310. https://doi.org/10.1111/geb.12125.
Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818. https://doi.org/10.1126/science.aac6759.
Van Oijen, M., Schapendonk, A., & Höglind, M. (2010). On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Annals of Botany, 105(5), 793–797. https://doi.org/10.1093/aob/mcq039.
Vesala, T., Suni, T., Rannik, Ü., et al. (2005). Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles, 19(2), GB2001. https://doi.org/10.1029/2004GB002316.
Vicca, S., Luyssaert, S., Peñuelas, J., et al. (2012). Fertile forests produce biomass more efficiently. Ecology Letters, 15(6), 520–526. https://doi.org/10.1111/j.1461-0248.2012.01775.x.
Wang, S., Zhang, Y., Ju, W., et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 1295–1300. https://doi.org/10.1126/science.abb 7772.
Waring, R. H., Landsberg, J. J., & Williams, M. (1998). Net primary production of forests: A constant fraction of gross primary production? Tree Physiology, 18(2), 129–134. https://doi.org/10.1093/treephys/18.2.129.
Yu, K., Smith, W. K., Trugman, A. T., et al. (2019). Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24662–24667. https://doi.org/10.1073/pnas.1821387116.
Yuan, W., Zheng, Y., Piao, S., et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax 1396.
Zeng, J., Matsunaga, T., Tan, Z. H., et al. (2020). Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Scientific Data, 7(1), 313. https://doi.org/10.1038/s41597-020-00653-5.
Zhu, Z., Piao, S., Myneni, R. B., et al. (2016). Greening of the earth and its drivers. Nature Climate Change, 6(8), 791–795. https://doi.org/10.1038/nclimate3004.
Zhu, P., Zhuang, Q., Welp, L., et al. (2019). Recent warming has resulted in smaller gains in net carbon uptake in northern high latitudes. Journal of Climate, 32(18), 5849–5863. https://doi.org/10.1175/jcli-d-18-0653.1.